Parallel Qualitative Simulation®

Marco Platzner, Bernhard Rinner, Reinhold Weiss

{marco, rinner, rweiss}@iti.tu-graz.ac.at

Institute for Technical Informatics

Graz University of Technology, AUSTRIA

The goal of qualitative simulation is to derive a characterization of the behavior of
a dynamic system given only weak information about it. This fundamental strength of
qualitative simulation is exploited more and more in applications, like design, monitoring,
and fault diagnosis, nowadays. However, the poor performance of current qualitative
simulators complicates or even prevents its application in technical environments.

In our research project [9] a special-purpose computer architecture for the widely-used
qualitative simulator QSIM is developed. Two approaches are considered two improve
the performance. Complex functions are parallelized and mapped onto a multiprocessor
system. Less complex functions are directly implemented in hardware. These functions
are executed on specialized coprocessors. This paper presents an overview of the design
and implementation of this computer architecture.

keywords: special-purpose computer architecture,
qualitative simulator QSIiM,
multi-DSP TMS320C40,
FPGA

1. Introduction

Qualitative simulation is a new and challenging simulation paradigm which belongs
to the research area qualitative reasoning (QR). In qualitative simulation physical sys-
tems are modeled on a higher level of abstraction than in other simulation paradigms —
like continuous simulation. In continuous simulation the structural description of physi-
cal systems is modeled by a mathematical description in terms of differential equations.
Qualitative simulations relies on a further abstraction of these differential equations —
the so-called qualitative differential equations (QDEs). Qualitative simulation requires
neither a complete structural description of the physical system nor a fully specified ini-
tial state. The major strength of qualitative simulation is the prediction of all physically
possible behaviors derivable from this incomplete knowledge. Additionally, qualitative

*This project is partially supported by the Austrian National Science Foundation Fonds zur Forderung
der wissenschaftlichen Forschung under grant number P10411-MAT.

simulation potentially predicts behaviors which are not physically possible. Hence, qual-
itative simulation is complete but not sound. Thus, the qualitative simulation paradigm
is mainly used in applications where a detailed description is not required or even not
known. Major applications areas are design, monitoring, and fault diagnosis.

The widely-used algorithm QSIM is the best-known representative of qualitative sim-
ulators. It has been developed by Kuipers [5]. In the past years QSIM has been widely
studied, applied, and extended, both by the original developers and by researchers world-
wide. None of these works study or analyze the computational complexity of QSIM or
even present an empirical study of runtimes of qualitative simulators [1]. However, these
complexity and performance issues are extremely important for applying qualitative sim-
ulation in embedded systems. High performance qualitative simulators are required in
these environments. As a matter of fact current QSIM implementations lack in execution
speed. Furthermore, investigations concerning guaranteed execution times are desired to
allow the application of qualitative simulation in real-time environments.

In our research project [9] a special-purpose computer architecture for QSIM is devel-
oped with the primary goal to increase the performance. The design of this application-
specific computer architecture is mainly based on an extensive analysis of QSIM imple-
mentations [11]. This analysis has been completed by runtime measurements of a QSIM
implementation.

In the following sections of this paper we present the design and implementation of
this special-purpose computer architecture — i.e. important results of QSIM analysis
are presented in Section 2. An overview of the computer architecture design and first
experimental results are given in Section 3. Some remarks for further work conclude this

paper.

2. QSIM Analysis

The qualitative simulator QSIM is a very complex algorithm and has many optional
features. Design considerations of this specialized computer architecture are restricted to
kernel functions. Kernel functions are essential in calculating one simulation step, and
they normally dominate the runtime of the complete simulator. Several model-based fault
diagnosis and monitoring systems use qualitative simulation [2] [6]. These systems do not
require the functionality of the whole simulator. However, QSIM kernel functions are
required.

Figure 1 presents an overview of the kernel functions, which are hierarchically struc-
tured. The constraint check functions (CCF's) are primitive kernel functions but they
dominate the overall kernel runtime. These functions are called by the tuple-filter. For
each constraint of the input model one tuple-filter is required. The constraint-filter is
generated by all tuple-filters and the Waltz-filter, which is used for efliciency reasons.
The final kernel function is called FORM-ALL-STATES.

The presented runtime ratios in Figure 1 are extracted from various runtime measure-
ments of a QSIM system implemented on a TI Explorer LISP workstation. Many input
models were simulated and the runtimes of the individual functions were measured. The
runtime ratios represent an average of all simulated models. For most models kernel
functions require more than 50 % of the overall runtime. An important fact is that this

,7 ’7' /
© CCF
3 Tuplefilter | o
o 53 (D/IDT, M+, M-
Constraint-filter 8 F-d. ADD, MULT)

QSim kernd

| waltzfilter |3
N [9p]

FORM-ALL-STATES

| 20% !

Figure 1. Runtime analysis of the QSIM kernel. Kernel functions are hierarchically
structured and their runtimes are informally presented with regard to the runtime of the
calling function.

percentage is positively correlated to the complexity of the model. Qualitative models
for serious technical processes usually have many constraints and variables [4]. For these
models kernel functions consume definitely more than 50 % of the overall runtime.

Constraint-filter The constraint-filter is generated by mutually independent functions
(tuple-filter) and the Waltz-filter. The number of tuple-filters depends on the input
simulation model. Waltz-filtering can be considered as a preprocessing step for
the successive function of the QSIM kernel (FORM-ALL-STATES). It is used for
efficiency reasons to reduce the search space for FORM-ALL-STATES as soon as
possible.

FORM-ALL-STATES FORM-ALL-STATES is actually a backtracking algorithm to
solve a constraint satisfaction problem (CSP) [8]. Although solving CSPs is NP-
complete we did not experimentally observe an exponential behavior of this function
[11]. The runtime of FORM-ALL-STATES remains nearly constant — even with
complex models the runtime of FORM-ALL-STATES does not exceed 20 % of the

kernel runtime.

Constraint Check Functions (CCF) Current QSIM implementations include many
types of CCFs. Although these CCFs vary in their complexity, they only consist
of primitive operations. Examples of these operations are the evaluation of boolean
functions, comparisons, and table-lookups. Due to their frequent execution the
CCFs dominate the overall kernel runtime.

3. QSiMm Computer Architecture

According to the complexity of the kernel functions different approaches to increase the
performance are considered. Complex kernel functions (like constraint-filter and FORM-
ALL-STATES) are parallelized and mapped onto a multiprocessor system. Less complex
functions (CCFs) are HW-implemented using FPGAs. These runtime intensive functions
are executed on specialized coprocessors.

3.1. QSiM Multiprocessor

Parallelization of the constraint-filter is trivial. Tuple-filters are executed on individual
processors. After all tuple-filter results have been received Waltz-filtering is executed.
Since the Waltz-filter requires global access to all tuple-filter results, parallelization of the
Waltz-filter is not considered.

FORM-ALL-STATES is parallelized by a parallel agent based (PAB) strategy [7]. The
overall search space is partitioned into smaller independent subproblems which can be
solved with any sequential CSP-algorithm. The overall result is formed by merging the
results of the subspaces. Two aspects are of special interest for an efficient parallelization.
First, the overall search space has to be partitioned into equally complex subproblems,
and second, for a given subproblem the fastest sequential algorithm has to be chosen.

Both kernel functions (constraint-filter, FORM-ALL-STATES) can be parallelized in

the same way. Important design issues of the multiprocessor are:

Topology A wide tree topology is used as a compromise between the optimal structure
(star) and the scalability of the multiprocessor system.

Scheduling/Mapping The number of independent functions for parallelization is not
known before runtime. Hence, dynamic mapping and dynamic scheduling of these
functions is required.

We have introduced and evaluated several partitioning heuristics for QSIM-CSPs by a
worst- and best-case speedup estimation [10]. Using certain heuristics a linear speedup is
expected for a parallel implementation. Several sequential CSP-algorithms have also been
compared using CSPs traced from QSIM. Especially for complex CSPs, some algorithms
are more than 7 times faster than the sequential algorithm used in QSIM.

3.2. CCF Coprocessor
The CCF coprocessor is designed at the gate- and register-level. This is necessary to
obtain maximum execution speed. Main features of the design are:

e data structures are optimized for the application QSIM
e operations use maximum parallelism
e customized memory architectures allow parallel access

Communication between the coprocessor and the hostprocessor is established via two
separate communication channels. These unidirectional connections ease the I/O-controller
design of the coprocessor and allow parallel input and output operations.

TM S320C40
I O I
E T @ ft
7 1)
T T T
TMS320C40 TMS320C40 TMS320C40
1 C 11
Hf iy
CCF
[copr ocessor
TM S320C40
1
1140
CCF
CODI'OCT

Figure 2. Example of the overall architecture. The processing elements are connected in
a wide tree structure. Some processing elements are equipped with CCF-coprocessors.

First experimental results [3] show that the implementation of a CCF in an FPGA
of type Xilinx XC4013 leads to a usage of 50 % totally occupied CLBs and a maximum
clock frequency of 15 MHz. In order to compare the coprocessor to a SW reference system
we consider a worst- and best-case execution path of the CCF. In best-case the runtime
improvement is given by a factor of 6, in worst-case the gain is 20.7. It should be mentioned
that these experimental results are first results. Further improvements are expected due
to routing optimizations and overlapping of computation and communication.

4. Overall Architecture, Future Work

A prototype of the overall multiprocessor architecture, consisting of digital signal pro-
cessors TMS320C40, 1s shown in Figure 2. The digital signal processor TMS320C40 was
chosen because of its high I/O performance and its 6 independent communication chan-
nels [12]. Some processing elements of the multiprocessor architecture are equipped with
a CCF coprocessor. The distributed real-time operating system Virtuoso [13] supports a
portable and flexible SW implementation.

Further work on this project will focus on

e implementation of the parallelized kernel functions on the multi-DSP system
o design and routing optimization of the CCF coprocessor

e integration of the coprocessors into the multi-DSP system

REFERENCES

1.

10.

11.

12.

13.

Ernest Davis. An engaging exploration of QSIM and its extensions. [EEE FEzpert,
9(6):70-71, December 1994. book review.

Daniel Dvorak and Benjamin Kuipers. Process Monitoring and Diagnosis: A Model-
Based Approach. IEEE Ezpert, pages 67-74, June 1991.

Gerald Friedl. Entwurf und FPGA-Implementierung eines Coprozessors fur qualita-
tive Simulation. Master’s thesis, Institute for Technical Informatics, Graz University
of Technology, 1995.

Herbert Kay. A qualitative model of the space shuttle reaction control system. Tech-
nical Report AI92-188, Artificial Intelligence Laboratory, University of Texas, Septem-
ber 1992.

Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. Artificial Intelligence. MIT Press, 1994.

Franz Lackinger and Wolfgang Nejdl. Diamon: A Model-Based Troubleshooter Based
on Qualitative Reasoning. IEFE Ezxpert, pages 33—40, February 1993.

Q.P. Luo, P.G. Hendry, and J.T. Buchanan. Strategies for Distributed Constraint
Satisfaction Problems. In Proceedings 13th International DAI Workshop, Seattle,
WA, 1994. DAL

Alan K. Mackworth. Constraint Satisfaction. In Stuart C. Shapiro, editor, Encyclo-
pedia of Artificial Intelligence, volume 1, pages 285-293. John Wiley & Sons, Inc.,
1992.

Marco Platzner, Bernhard Rinner, and Reinhold Weiss. A Distributed Computer Ar-
chitecture for Qualitative Simulation Based on a Multi-DSP and FPGAs. In 3rd Fu-
romicro Workshop on Parallel and Distributed Processing, pages 311-318, San Remo,
January 1995. IEEE Computer Society Press.

Johannes Riedl. Parallele Algorithmen und Laufzeitmessungen fur Constraint Sat-
isfaction im qualitativen Simulator QSim. Master’s thesis, Institute for Technical
Informatics, Graz University of Technology, 1995.

Bernhard Rinner. Konzepte zur Parallelisierung des qualitativen Simulators QSIM.
Master’s thesis, Institute for Technical Informatics, Graz University of Technology,
October 1993.

Christian Steger, Marco Platzner, and Reinhold Weiss. Performance Measurements on
a Multi-DSP Architecture with TMS320C40. In International Conference on Signal
Processing Applications & Technology, Santa Clara, California, USA, September 1993.
Eric Verhulst. Virtuoso: A virtual single processor programming system for dis-
tributed real-time applications. Microprocessing and Microprogramming, 40:103-115,
1994.

