
Improving Performance of the Qualitative Simulator QSim �

Design and Implementation of a Specialized Computer Architecture�

Marco Platzner Bernhard Rinner

Graz University of Technology Graz University of Technology

Institute for Technical Informatics Institute for Technical Informatics

A����� Graz� Austria A����� Graz� Austria

Abstract

Qualitative simulation is a new and challenging
simulation paradigm� QSim� the widely�used algo�
rithm for qualitative simulation has been developed
by Kuipers at UT Austin� A drawback of current
QSim�implementations is poor execution speed� In
our research project a special�purpose computer ar�
chitecture for QSim is developed to increase the per�
formance� Two approaches are considered to improve
the performance� Complex functions are parallelized
and mapped onto a multiprocessor system� Less com�
plex functions are directly implemented in hardware�
These functions are executed on specialized coproces�
sors� The prototype implementation of this compu�
ter architecture is based on digital signal processors
TMS���C�� and 	eld programmable gate arrays
Xi�
linx�� This paper presents 	rst experimental results of
this research project�

keywords� special�purpose computer architecture�
parallel qualitative simulation�
multi�DSP TMS���C��� FPGA
specialized coprocessor

� Introduction

QSim� the widely�used algorithm for qualitative si�
mulation� has been developed by Kuipers ��� Qualita�
tive simulation is a new and challenging simulation pa�
radigm� QSim is mainly used in applications where a
accurate description of a system is not required or even
not known� Major areas of qualitative simulation ap�
plications are design� monitoring� and fault�diagnosis�
A drawback of current QSim implementations is poor
execution speed� In our research project ���� ���� a

�This project is partially supported by the Austrian National

Science FoundationFonds zur F�orderung der wissenschaftlichen

Forschung under grant number P������MAT�

global filters

generate possible values

agenda={} yes

no

init states in agenda

kernel

tuple-filter

Waltz-filter

FORM-ALL-STATES

Figure �� Flow chart of QSim�

special�purpose computer architecture for QSim is de�
veloped to improve the performance�

In qualitative simulation systems are modeled on
a higher level of abstraction than in other simula�
tion paradigms� like continuous simulation� Varia�
bles and constraints are basic components of a qua�
litative model� Variables represent system parameters

e�g� speed� temperature etc�� and constraints des�
cribe relations between system parameters� QSim uses
several types of constraints which represent arithme�
tic relations
ADD�� MULT�� D�DT�constraints� and
functional dependencies
M��� M��constraints� bet�
ween variables�

Figure � shows the �ow chart of QSim� States are
stored in a global queue called agenda� A state in
QSim is de	ned as an assignment of values to all varia�

bles of the model� A state characterizes the system at a
given time� In one simulation step
one loop cycle� all
possible values for the next time step are determined�
Qualitative simulation can predict several behaviors
� contrary to continuous simulation� The simulation
step is repeated until the agenda is empty or a time
limit or state limit is exceeded� The individual steps of
this procedure can be informally described as follows�

The 	rst step generates the possible values for the
next time step for all variables� An assignment of
possible values of all variables of a given constraint
is called tuple� The tuple�	lter rejects all tuples of
an individual constraint which do not satisfy the con�
ditions of this constraint� The Waltz�	lter discards
additional tuples by detecting inconsistencies between
adjacent constraints� Constraints are adjacent if they
share a variable� The 	nal kernel function
FORM�
ALL�STATES� 	nds consistent combinations of tup�
les of all constraints� Global 	lters reduce the set of
new states which are added to the agenda� There are
many global 	lters in QSim� Some of them are ne�
cessary while many of them are optional extensions of
QSim�

This paper describes the current state of our rese�
arch project and presents experimental results of 	rst
prototypes of components of the overall computer ar�
chitecture� Chapter � gives an overview of QSim ker�
nel functions and shows a runtime analysis� In Chap�
ter � top�level kernel functions are analyzed and the
speedup of a parallel version of FORM�ALL�STATES
is estimated� Chapter � presents an analysis of low�
level kernel functions and experimental results of an
implemented coprocessor for these functions� Some
conclusions are given in the 	nal chapter�

� Simulator Kernel

The qualitative simulator QSim is a very complex
algorithm and has many optional features� Design
considerations of this specialized computer architec�
ture are restricted to kernel functions� Kernel func�
tions are essential in calculating one simulation step�
and they normally dominate the runtime of the com�
plete simulator� Several model�based fault diagnosis
and monitoring systems use qualitative simulation ���
���� These systems do not require the functionality of
the whole simulator� However� QSim kernel functions
are required�

Figure � presents an overview of the kernel func�
tions� These functions are hierarchically structured
and are analyzed in the following two chapters� The
constraint check functions �CCFs� are primitive kernel

30
 %

70
 %

CCF

(D/DT, M+, M-
ADD, MULT)

Q
Si

m
 k

er
ne

l

80
 %

20
 %

tuple-filter

Waltz-filter

FORM-ALL-STATES

constraint-filter

Figure �� Runtime analysis of the kernel� Kernel func�
tions are hierarchically structured and their runtimes
are informally presented with regard to the runtime of
the calling function�

functions but they dominate the overall kernel run�
time� These functions are called by the tuple��lter �
For each constraint of the input model one tuple�	lter
is required� The constraint��lter is generated by all
tuple�	lters and the Waltz��lter� which is used for ef�
	ciency reasons� The 	nal kernel function is called
FORM�ALL�STATES�

The presented runtime ratios in Figure � are extrac�
ted from various runtime measurements of a QSim sy�
stem implemented on a TI Explorer LISP workstation�
Many input models were simulated and the runtimes
of the individual functions were measured� The run�
time ratios represent an average of all simulated mo�
dels� For most models kernel functions require more
than �� � of the overall runtime� An important fact
is that this percentage is positively correlated to the
complexity of the model� Qualitative models for seri�
ous technical processes usually have many constraints
and variables ���� For these models kernel functions
consume de	nitely more than �� � of the overall run�
time�

According to the complexity of the kernel functions
di�erent approaches to increase the performance are
considered� Complex kernel functions
like constraint�
	lter and FORM�ALL�STATES� are parallelized and
mapped onto a multiprocessor system� Less complex
functions
CCFs� are HW�implemented using FPGAs�
These runtime intensive functions are executed on spe�
cialized coprocessors�

� QSim Multiprocessor

As depicted in Figure �� the QSim kernel mainly
consists of two consecutive functions � the constraint�
�lter and FORM�ALL�STATES � In this chapter we
analyze these functions and present some implemen�
tation considerations and experimental results from
parallelizing and mapping these functions onto a mul�
tiprocessor system�

��� Constraint��lter

The constraint�	lter is generated by mutually inde�
pendent functions
tuple�	lters� and the Waltz�	lter�
The number of tuple�	lters is variable and depends
on the input simulation model� For each constraint
of the input simulation model one tuple�	lter has to
be executed� Waltz�	ltering can be considered as a
preprocessing step for the successive function of the
QSim kernel
FORM�ALL�STATES�� It is used for ef�
	ciency reasons to reduce the search space for FORM�
ALL�STATES as soon as possible� An even better im�
provement is achieved by interleaving the tuple�	lter
with the Waltz�	lter� This is called incremental Waltz�
	ltering which possibly eliminates input data for un�
processed tuple�	lters� The pseudocode of sequential
and incremental Waltz�	ltering is shown in Figure ��

FOR all constraints ci DO FOR all constraints ci DO

tuple�filter�ci� tuple�filter�ci�
ENDFOR waltz�filter��

waltz�filter�� ENDFOR

Figure �� Constraint�	lter pseudocode with sequential

left� and incremental
right� Waltz�	ltering�

Parallelization of tuple�	lter with sequential Waltz�
	ltering is trivial� Tuple�	lters are executed on indivi�
dual processors� After all tuple�	lter results have been
received sequential Waltz�	ltering is performed� Since
the Waltz�	lter requires global access to the results of
the tuple�	lters� incremental Waltz�	lter disables par�
allelization of the tuple�	lter� However� a variant of
incremental Waltz�	ltering can be used� if there are
more tuple�	lters than processing elements� Whene�
ver results from tuple�	lters are received� scheduling
is stopped and Waltz�	ltering is executed� After com�
pletion of the Waltz�	lter scheduling is continued�

��� FORM�ALL�STATES

FORM�ALL�STATES is actually a backtracking
algorithm to solve a constraint satisfaction problem

�CSP� ���� A big search space has to be processed
with a depth�	rst search to 	nd all solutions of the
CSP� Many parallel algorithms for constraint satisfac�
tion are known in literature� A classi	cation of the
most common parallel algorithms can be found in ����
We use a parallel�agent�based �PAB� strategy for our
application� The basic idea of PAB is to partition
the overall search�space into smaller independent sub�
spaces� which can be solved with any sequential CSP�
algorithm� The overall result is formed by merging
the results of the subspaces� Hence� the overall CSP
is partitioned into independent smaller sub�CSPs�

Partitioning the complete search�space is essential
to achieve good parallel performance� Due to red�
undancies in the subproblems� the overall runtime to
solve all sub�CSPs can be longer than the runtime to
solve the complete CSP� An e�cient partitioning keeps
this overall runtime small� It is also important to gene�
rate equally complex sub�CSPs� Big di�erences in the
runtime of individual sub�CSPs can lead to poor load�
balance� When tasks with long runtimes are scheduled
last some processors can get idle�

��� Implementation and Experimental
Results

Analysis of both kernel functions
constraint�	lter
and FORM�ALL�STATES� has brought up the same
logical structure of the parallel algorithms� The tasks
are logically connected in a star structure� The master
task� which is responsible for distributing tasks and re�
ceiving results� is the center of the star� The multipro�
cessor system is implemented in a wide tree structure�
which is a compromise between scalability and logical
structure� Hence� the processing elements of the multi�
processor system should be equipped with many com�
munication ports� This requirement was one reason
for choosing the digital signal processor TMS���C��
as processing element� It is equipped with six indepen�
dent high performance communication ports� Multi�
processor trees with up to 	ve children can be built
with this processor�

The number of tasks is not known at compile time�
Thus� dynamic mapping and dynamic scheduling of
these tasks is required� Implementation is based on
the distributed real�time operating system Virtuoso
����� Virtuoso eases a scalable design of the parallel
algorithms and allows a �exible and portable imple�
mentation�

In this paper we present only experimental results
from parallelizing FORM�ALL�STATES ����� Several
partitioning heuristics are evaluated and compared by
a speedup estimation� The evaluation is based on

Smin

Smax

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8
n

VBP-INST: RCS (64 tasks)

S(
n)

Smin

Smax

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8
n

VBP-INST: RCS (256 tasks)

S(
n)

Smin

Smax

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8
n

S(
n)

Smin

VBP-INST: RCS (16 tasks)

Smax

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8
n

VBP-CON: RCS (16 tasks)

S(
n)

Smin

Smax

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
n

VBP-CON: RCS (64 tasks)

S(
n)

Smin

Smax

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
n

VBP-CON: RCS (256 tasks)

S(
n)

Figure �� Speedup estimation for parallel FORM�ALL�STATES� Speedup limits
Smax� Smin� for two partitioning
heuristics
VBP�INST and VBP�CON� are shown in the left and right column plots� The speedup limits for di�erent
numbers of partitioned sub�CSPs
�� �� and �� tasks� are shown� Especially for complex models� like RCS����
VBP�CON performs better than VBP�INST�

many CSPs traced from QSim simulations� The par�
titioning heuristics are evaluated using these CSPs�
The partitioned sub�CSPs are solved sequentially on
a single TMS���C��� where runtimes are measured�
The most interesting runtimes are the overall runtime
to� which is the sum of the runtimes of all sub�CSPs�
the maximum runtime of all sub�CSPs tmax� and the
sequential runtime of the unpartitioned CSP tseq�

These runtimes are used to estimate the speedup of
the parallel algorithm� Communication times are not
considered for this estimation and simple task attrac�
tion is assumed to schedule tasks to free processors�
The speedup is de	ned as S
n� � tseq�tpar� where tpar
denotes the runtime using n processors� An upper li�
mit
worst�case� and a lower limit
best�case� for tpar
are given using to� tmax� and n� Worst�case runtime
of the parallel algorithm can be given as

tpar �
to � tmax

n
� tmax

and best�case runtime can be estimated as

tpar �

�
to
n

if n � d to
tmax

e

tmax otherwise

A comparison of two partitioning heuristics is pre�
sented in Figure �� A detailed description of the parti�
tioning heuristics can be found in ����� The most suc�
cessful partitioning heuristic is VBP
variable�based�
partitioning� with the two variants VBP�INST and
VBP�CON� This partitioning strategy is based on the
variables of the input simulation model� The di�erence
between the variants is the order in which variables are
processed� It turns out that in most cases VBP�CON
performs better than VBP�INST� VBP�CON results in

a linear speedup for worst� and best�case estimation�
A further interesting point is the number of generated
sub�CSPs� Three cases are considered � the complete
CSP is partitioned into at most �� at most �� and
at most �� sub�CSPs� The corresponding speedup
limits are also presented in Figure �� Speedup increa�
ses with the number of generated tasks� However� the
more tasks are generated the more overall communi�
cation time is required and the speedup of highly par�
titioned CSPs can be lost� Best results are expected
with VBP�CON and a medium number of tasks�

� QSim Coprocessor

��� Tuple	�lter

The tuple�	lter is executed for each constraint of
the simulation model� Its task is to check each com�
bination of possible values
pvals� for the particular
constraint and to discard the combination if it viola�
tes the rules of qualitative simulation� This check is
done by the so called constraint check function
CCF��

Two important attributes of constraint types are
arity and the existence of corresponding values
cvals��
For example� the arity of the constraint types D�DT�
M�� and M� is �� the constraint types ADD and
MULT are ternary� The maximum number of pvals
per variable is limited by � �� This leads to at most �
checks for binary constraints and to at most � checks
for ternary constraints� respectively� Cvals are tuples
which are known to be correct� Most constraint types
have an associated set of cvals� This set can grow mo�
notonically during simulation� However� the creation
of a new cval�tuple is a very rare process compared to
the execution of the CCF� Therefore� cvals are consi�
dered as constants rather than variables in the context
of the tuple�	lter�

Figure � shows the tuple�	lter pseudocode for a ter�
nary constraint� The indices i� j� and k scan over the
pvals of the corresponding parameters� the constants
imax� jmax� and kmax are bounded by �� Input data
for the constraint check function are the possible va�
lues p�
i�� p�
j�� and p�
k��

To improve the performance of the tuple�	lter it
is of utmost importance to accelerate the constraint
check function� The following sections in this chapter
present the analysis� hardware implementation� and
experimental evaluation of one of the most complex
check functions� the Mult�CCF� CCFs for other cons�

�Calculating initial states from an incomplete state descrip�

tion can lead to more the � pvals of an individual variable�

FOR i � � TO imax DO

FOR j � � TO jmax DO

FOR k � � TO kmax DO

result
i� j� k� � ccf
p�
i�� p�
j�� p�
k��
ENDFOR

ENDFOR

ENDFOR

Figure �� Tuple�	lter pseudocode for a ternary cons�
traint�

{true/false} {true/false}

SF 1 SF 2

{true/false}

{true/false}

&
SF 4

. . . SF 3 nSF 31

{true/false}

p1, p2, p3

Figure � Data�ow diagram for the Mult�CCF�

traint types are very similar in structure� but less com�
plex�

��� Mult	CCF

Figure presents the data�ow diagram for the
Mult�CCF� The function is partitioned into four sub�
functions� SF� to SF�� Subfunction SF� consists of n
iterations� where n denotes the number of cvals� All
subfunctions produce a boolean result�

Two important facts can be taken from Figure �
First� the subfunctions SF�� SF�� and all iterations of
SF� are data�ow�independent� Therefore they can be
executed in parallel� Second� subfunction SF� can be
implemented as short�circuit�evaluation� i�e� whenever
one of the subfunctions SF� to SF� returns a negative
result� the entire calculation is aborted� A negative
result is returned to the tuple�	lter� which discards
the current pval combination�

��� Implementation and Experimental
Results

The Mult�CCF was designed at the gate� and regi�
ster level and implemented directly in hardware to ob�
tain maximum execution speed ���� Figure � shows the
block diagram of the Mult�CCF coprocessor� Main

FUNCTION
CONTROLLER

SF 1
VALUE CHECKER

INTERNAL RAM
CVAL MEMORY

INPUT
CONTROLLER

OUTPUT
CONTROLLER

SF 2
INFVALUE CHECKER

SF 3
CORVALUE CHECKER

D
A

T
A

DATA

C
V

A
Li

1

C
V

A
Li

2

C
V

A
Li

3

D
A

T
A

D
A

T
A

SHORT CIRCUIT
EVALUATION

PARTIAL RESULT
 PARTIAL RESULT

PARTIAL RESULT

RESULT

 RESULT

DATA

STROBE READY

 STROBE READY

CONTROL LINES

CONTROL LINES

INSTRUCTION

Figure �� Block diagram of the Mult�CCF coprocessor� The input and output controller connect the coprocessor to
the host processor via two � bit data buses and four handshake lines
�xSTROBE� �xREADY�� For simpli	cation
control lines between input�output controller and function controller are not shown in this diagram�

features of the design are
i� optimized data struc�
tures for the application QSim�
ii� operations using
maximum parallelism� and
iii� customized memory
architecture for parallel access�

The input and output controller establish commu�
nication to the host processor
digital signal processor
TMS���C��� via two separate communication chan�
nels� These unidirectional connections ease the I�O
controller design of the coprocessor and allow paral�
lel input� and output�operations� The operands and
the instruction code
� bit� are packed into a �� bit
word for communication from host to the coprocessor�
The function controller decodes the instruction� sup�
plies the coprocessor�s function blocks with data� and

controls the operation� Also short�circuit�evaluation
is handled by the function controller� The blocks SF�
to SF� correspond directly to the subfunctions SF� to
SF� in Figure � The iterations of SF� are executed
sequentially in this design� For the cvals a fast internal
RAM is used� This memory is partitioned and allows
access to a whole cval�tuple in one memory read�cycle�
A detailed description of the design and implementa�
tion of the Mult�CCF coprocessor can be found in ����
Three instructions are de	ned for the coprocessor�

� EXECUTE CFF

� RESET CVAL MEMORY

Executed Subfunctions

Speedup

0

5

10

15

20

25

SF1 SF2 1 x
SF3

2 x
SF3

3 x
SF3

4 x
SF3

12,3

16,6

20,7

6,9 6 6,8

Figure �� Speedup of the Mult�CCF coprocessor com�
pared to a CCF implemented in software on the DSP
TMS���C���

� LOAD CVAL MEMORY

The most frequently used instruction
is EXECUTE CCF� The other two instructions establish
operations with the internal memory of the coproces�
sor� The runtime for an EXECUTE CCF operation can
be divided into three phases�
i� communication from
host to coprocessor
tin��
ii� operation
top�� and
iii�
communication from coprocessor to host
tout�� The
number of coprocessor clock cycles for tin � � � for
tout � �� and for top the runtime depends on i� the
number of cvals�

top �

�
� for i � �
�i� � for i � �

To evaluate the performance of the Mult�CCF co�
processor we compare it to a Mult�CCF software im�
plementation on the host processor� We have to distin�
guish several cases according to the subfunction� which
causes termination of the Mult�CCF� In Figure � six
cases are shown� Computation is 	nished after SF��
SF�� or � to � iterations of SF�� Although the number
of cvals is unbounded in general� more than � cvals are
very unlikely ���� Figure � shows a runtime improve�
ment with the Mult�CCF coprocessor of up to factor
���

The numbers in Figure � were measured on a copro�
cessor implementation in one FPGA
Xilinx XC�����
at a clock frequency of �� MHz� The software refe�
rence was executed on a TMS���C�� running at a
clock frequency of �� MHz� The TMS���C���s in�
struction cycle time is two clock cycles� Therefore�
the TMS���C�� and the CCF coprocessor are actually
running at nearly same clock rates
� MHz vs� ��
MHz�� Hence� the given speedup evaluates directly

our hardware design � no clock frequency transfor�
mation is necessary�

As the number of clock cycles for tin� top� and tout
is almost equal� the three phases can be overlapped�
This leads only to a minor increase of top� However�
the runtime for the tuple�	lter is further improved by
a factor of up to � resulting in a maximum speedup
for the tuple�	lter of factor ��

� Conclusion� Further Work

We presented the design and implementation of a
specialized computer architecture� We shortly intro�
duced the qualitative simulator QSim and analyzed
the simulator kernel� Runtime measurements were
used to identify the most runtime intensive functions�
It turned out that two approaches to increase per�
formance should be used� Parallelization of complex
functions and direct HW implementation of less com�
plex but frequently used functions� These approaches
were discussed in more detail in chapter � and chapter
�� respectively�

We already obtained 	rst experimental results�
some of them are presented in this paper� These 	rst
results are very important� They allow a rough per�
formance estimation of the overall architecture� Ob�
taining experimental results on real simulation runs is
the only useful evaluation method for this special com�
puter architecture� This is due to following facts�
i�
Since the algorithm QSim is very irregular and input�
data sensitive� analytical performance predictions are
not possible or at least very di�cult� Predicting per�
formance by simulation is too complex�
ii� The under�
lying hardware architecture can not easily be modeled
at a satisfying level of detail�

Speedup factors as shown in chapter � and chapter
� stress that a signi	cant performance increase com�
pared to QSim implementations on single�processor�
general�purpose computers will be achieved�

Work� which partially is already going on and par�
tially has to be done is divided into three sections�

QSim multiprocessor Implementation of the de�
veloped parallel functions constraint�	lter and
FORM�ALL�STATES on the multi�DSP system�
evaluation of several alternatives concerning sche�
duling policies and partitioning heuristics

QSim coprocessors Implementation of coprocessors
for other often used constraint types� e�g� ADD�
M�� M�� D�DT

Overall architecture SW integration of the specia�
lized coprocessors into the multi�DSP system� ex�
perimental evaluation of the QSim machine with
all features in its operational state

References

��� Daniel Dvorak and Benjamin Kuipers� Process
Monitoring and Diagnosis� A Model�Based Ap�
proach� IEEE Expert� pages ����� June �����

��� Gerald Friedl� Marco Platzner� and Bernhard
Rinner� A Special�Purpose Coprocessor for Qua�
litative Simulation� In EURO�PAR��� Interna�
tional Conference on Parallel Processing� Stock�
holm� Sweden� August �����

��� Gerald Friedl� Entwurf und FPGA�Implemen�
tierung eines Coprozessors f ur qualitative Simu�
lation� Master�s thesis� Institute for Technical In�
formatics� Graz University of Technology� �����

��� Peter Hinterberger� QSim Tracedaten Filter�
Technical report� Institute for Technical Informa�
tics� Graz University of Technology� �����

��� Herbert Kay� A qualitative model of the space
shuttle reaction control system� Technical Report
AI������� Arti	cial Intelligence Laboratory� Uni�
versity of Texas� September �����

�� Benjamin Kuipers� Qualitative Reasoning	 Mode�
ling and Simulation with Incomplete Knowledge�
Arti	cial Intelligence� MIT Press� �����

��� Franz Lackinger and Wolfgang Nejdl� Diamon�
A Model�Based Troubleshooter Based on Quali�
tative Reasoning� IEEE Expert� pages ������ Fe�
bruary �����

��� Q�P� Luo� P�G� Hendry� and J�T� Buchanan�
Strategies for Distributed Constraint Satisfaction
Problems� In Proceedings
�th International DAI
Workshop� Seattle� WA� ����� DAI�

��� Alan K� Mackworth� Consistency in Networks of
Relations� Arti�cial Intelligence� ��������� �����

���� Marco Platzner� Bernhard Rinner� and Reinhold
Weiss� A Distributed Computer Architecture for
Qualitative Simulation Based on a Multi�DSP
and FPGAs� In �rd Euromicro Workshop on Par�
allel and Distributed Processing� pages ��������
San Remo� January ����� IEEE Computer So�
ciety Press�

���� Marco Platzner� Bernhard Rinner� and Reinhold
Weiss� Parallel Qualitative Simulation� In EURO�
SIM��� Simulation Congress� Vienna� Austria�
September �����

���� Johannes Riedl� Parallele Algorithmen und Lauf�
zeitmessungen f ur Constraint Satisfaction im qua�
litativen Simulator QSim� Master�s thesis� Insti�
tute for Technical Informatics� Graz University of
Technology� �����

���� Eric Verhulst� Virtuoso� A virtual single proces�
sor programming system for distributed real�time
applications� Microprocessing and Microprogram�
ming� ����������� �����

