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Abstract 

The design of a specialized computer architecture 
for qualitative simulation is presented. 

Our interest focuses on the hardware design of 
an application-specific computer architecture which is 
composed of programmable processors (digital signal 
processors TMS32OC40) and application-specific inte- 
grated circuits (FPGAs). Two design strategies are 
considered to improve the performance. Primitive 
functions are hardware-implemented using FPGAs 
(software/hardware migration). More complex func- 
tions are mapped onto a multi processor system for- 
med by  TMS320C40. This computer architecture is 
designed for the well known algorithm for qualitative 
simulation - QSIM[S]. 

In this paper we present the design of a compu- 
ter architecture for the constraint-check-function - a 
function of the QSIM kernel. 
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1 Introduction 

In this paper we describe the design of a specialized 
computer architecture for applications in the field of 
qualitative simulation. A primary goal in designing 
special-purpose computer architectures is to improve 
the performance. Larger [real) problems can be solved 
more effectively on special-purpose architectures than 
on general-purpose architectures. High performance is 
also essential for most real-time applications. Speciali- 
zed computer architectures and design methodologies 
in the area of artificial intelligence have emerged re- 
cently. Several case studies for computer architectures 
for intelligent systems are presented in [2]. 
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We are implementing the special-purpose compu- 
ter architecture by using programmable processors 
(TMS320C40) and application-specific integrated cir- 
cuits (FPGAs). This flexible implementation is well 
suited for experimental evaluation of the design. Two 
strategies are considered in this computer architecture 
to improve the performance. Firstly, the runtime of 
frequently used primitive functions is reduced by hard- 
ware implementation. Software-implemented func- 
tions migrate to hardware-implemented ones. Soft- 
ware/hardware migration is one important aspect of 
the codesign paradigm. Examples can be found in 
[3][4]. Secondly, more complex functions are mapped 
onto a multiprocessor system. The parallelism of the 
application is exploited. 

This application-specific computer architecture is 
developed for the well known algorithm for qualitative 
simulation QSIM [5]. In qualitative simulation physi- 
cal systems are modeled on a higher level of abstrac- 
tion than in other simulation paradigms, e.g. conti- 
nuous simulation. Simulating continuous models re- 
quires extensive computation and results in a detai- 
led description of the system behavior. Qualitative 
simulation leads to a less detailed description of possi- 
ble behaviors. There are many applications where the 
detailed description is not necessary. Furthermore, a 
corresponding qualitative model is simulated more ef- 
ficiently than a continuous one, due to a less accurate 
description. 

This computer architecture for qualitative simula- 
tion will extend simulators which are already in use 
at  our institute. These simulators are part of a Dis- 
tributed Real- Time Expert-System for  Fault Diagnosis 
in Technical Processes [12][13]. The already applied 
hybrid simulation technique, which combines discrete 
and continuous simulation, will be extended by the 
paradigm of qualitative simulation. 

311 



init states in agenda + 
................... ..................... . 

I i :  i generate po;,,,,,ues i 

constraint filter 
I I ,  

I 

: !?! painvise consistency filter j 
I I *  

I.! global interpretations 

....................................... 

:-; 
I global filters I 

Figure 1: Flow chart of QSIM 

2 Problem task 

2.1 Algorithm QSIM 

In this section we present a brief description of 
the algorithm QSIM. Variables and constraints are 
basic components of a qualitative model (constraint 
network). Variables represent system parameters 
(e.g. speed, temperature etc.) and constraints des- 
cribe relations between system parameters. QSIM uses 
several types of constraints which represent arithme- 
tic relations (ADD-, MULT-, D/DT-constraints) and 
functional dependencies (M+-, M--constraints) bet- 
ween variables. 

Figure 1 shows the flow chart of QSIM. States are 
stored in a global queue called agenda. A state in 
QSIM is defined as an assignment of values to all va- 
riables of the model. A state characterhes the system 
at a given time. In one simulation step (one loop cy- 
cle) all possible values for the next time step are de- 
termined. Qualitative simulation can predict several 
behaviors - contrary to continuous simulation. The 
simulation step is repeated until the agenda is em- 

pty or a time limit or state limit is exceeded. The 
individual steps of this procedure can be informally 
described as follows. 

The first step generates the possible values for 
the next time step for all variables. The possible 
values in combination with the model description 
(constraint network) define a constmint-satisfaction- 
problem (CSP) [7]. The following three steps are used 
to solve a CSP (i.e. to determine all global consistent 
value assignments). 

The constraint filter checks all value assignments 
for a given constraint. The pairwise consistency filter 
rejects inconsistencies between adjacent constraints. 
Constraints are adjacent if they share a variable. The 
last step in solving the CSP is the generation of glo- 
bal interpretations. A global interpretation is formed 
by each consistent combination of possible values for 
all variables. This step is achieved by a backtracking 
algorithm. Global filters reduce the set of new states 
which are added to  the agenda. There are many glo- 
bal filters in QSIM. Some of them are necessary while 
most of them are optional extensions of QSIM. 

2.2 Objectives 

QSIM is implemented in LISP and its source code 
is public domain. The design of the presented 
application-specific computer architecture is based on 
QSIM-version N Q  2.0. Following system aspects stron- 
gly influence the design. 

Execution speed Applications of qualitative simu- 
lation rely on the availability of fast qualitative simula- 
tors. The major objective of our project is to increase 
significantly the performance of current simulators. 

Scalability A further important aspect of this com- 
puter architecture is the scalable design. A higher per- 
formance can be achieved by increasing the number of 
processing elements. 

Real-time requirements The knowledge of gua- 
ranteed execution times is important for real-time ap- 
plications of qualitative simulation. Current QSIM im- 
plementations allow timed constraint reasoning. After 
a given runtime the simulation process is aborted and 
states already in the agenda are excluded from further 
processing. 

The designed computer architecture eases real-time 
applications for two reasons. Firstly, maximum exe- 
cution times are reduced due to  the improved per- 
formance. Secondly, analysis of maximum execution 
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Table 1: Runtime ratio of QsIM-functions measured on a TI-Explorer LISP workstation. The total runtime and 
the runtime ratios of kernel functions, global filters, and initial processing (Init) are shown. The used models are 
included in the QSIM package. 

times is simplified. This is achieved by mapping ite- 
rations from time domain into space domain [8]. 

2.3 Kernel functions 

The qualitative simulator QSIM is a very complex 
algorithm and has a lot of optional functions. De- 
sign considerations of this computer architecture are 
restricted to QSIM kernel functions. Kernel functions 
are essential in calculating one simulation step. They 
are shown ir Figure 1. The kernel fulfills the basic 
functionality of qualitative simulation and it domina- 
tes the runtime of the overall algorithm [9]. Table 1 
presents the runtime ratios of kernel functions, global 
filters, and initial processing. 

Several model-based fault diagnosis and monitoring 
systems use qualitative simulation [6] [ 11. These sy- 
stems normally do not require the functionality of the 
entire simulator - basically, QSIM kernel functions 
are sufficient. 

3 QSIM computer architecture 

Developing new computer architectures is a com- 
plex and challenging task. In this paper only the de- 
sign of a part of the entire computer architecture is 
presented. We demonstrate this in more detail in the 
next section based on the constraint-check-function 
(CCF) - an essential function of the constraint fil- 
ter. The limited complexity of the CCF enables a 
direct hardware implementation of this function. Soft- 
ware/hardware migration is applied to increase the 
performance. 

The parallelism of the remaining kernel functions 
is exploited. The hierarchical structure of the kernel 
functions is mapped onto a hierarchical processor to- 
pology. Individual kernel functions are executed in 

parallel on several processors. Figure 2 represents an 
overview of the overall architecture. 

4 Constraint-check-function 

The constraint-check-function checks one tuple of 
the tuple set of a given constraint for consistency. A 
tuple set is the product space of all possible values for 
the considered constraint. 

4.1 CCF analysis 

Analysis shows that CCFs can generally be par- 
titioned into two groups of sub-functions. Figure 3 
presents this partitioning for the MULT-CCF. The 
first group consists of a fixed number of sub-functions. 
They take a tuple of possible values (pval-tuple) as 
input data and produce a boolean result. In case of 
the MULT-CCF these sub-functions are labeled qdir, 
sign, and inf. The second group is formed by several 
identical sub-functions, labeled cvaZsfi]. Each cval[i] 
sub-function takes the pval-tuple and one tuple of COT- 

responding values as input data (labeled cval-tuples). 
The sub-functions of the second group return a boo- 
lean result. The cval-tuples are created dynamically 
outside the QSIM kernel. The number of cvals[i] sub- 
functions can increase monotonically during simula- 
tion. However, the creation of a cval-tuple is a very 
rare process compared with the number of CCF execu- 
tions. All sub-functions of an individual CCF are mu- 
tually independent. The boolean results are combined 
to the total result by a logical AND-operation. Shod 
circuit evaluation can be used to implement this ope- 
ration. Whenever one sub-function returns a negative 
result, the entire calculation is aborted. A negative 
result is returned to the calling function. 
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Figure 2: Example of the overall computer architecture. Five processing elements are connected in a tree-structure. 
Two processing elements are equipped with specialized CCF-coprocessors. 
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Figure 3: Sub-functions of the MULT-CCF 

Two methods of complexity estimation are used. 
A mathematical approach (0-notation) results in a 
quite trivial estimation. More suitable results can be 
provided by experimental measurements. We have im- 
plemented the CCFs in software on the target proces- 
sor TMS320C40 and measured runtimes with different 
input data. Figure 4 presents the results of the run- 
time measurements of the MULT-CCF. 

4.2 Design of a CCF coprocessor 

Analysis brings up low complexity of the CCF sub- 
functions. This encourages a direct hardware imple- 

mentation of the whole CCF. Hardware implemen- 
tation also supports fast communication mechanisms 
between the sub-functions. This is required for an ef- 
ficient exploitation of the parallelism. The hardware 
implemented CCF can be considered as application- 
specific coprocessor. Following points are of special 
interest for the design. 

Number of cval[i] elements Two strategies for 
the implementation of cval[i] sub-functions are con- 
sidered. Firstly, one sub-function is implemented in 
hardware and the cval-tuples are checked sequenti- 
ally. The second alternative is to implement several 
cval[i] processing elements and to check the cval-tuples 
in parallel. The number of cval-tuples is an import- 
ant parameter for design considerations. It limits the 
number of processing elements. Although the number 
of cval-tuples is generally unbounded, experience re- 
veals that in most cases only a few cval-tuples are used. 
Results from tracing a QSIM system are presented in 
Figure 5 .  Cval-tuples of all constraints have been 
counted while several models have been simulated. 
Even with complex models at  most four cval-tuples 
have been traced for a given constraint. A coproces- 
sor with four cval[i] elements can calculate the CCFs 
of the traced models in one step. 
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Figure 4: Runtimes (number of clock cycles) of CCF sub-functions measured on a TMS320C40. The labels qdir, 
sign, and inf represent sub-functions which take the pval-tuple as input data. The sub-function cvals[i] requires 
the pvalfuple and one cval-tuple as input data. 

Customised memory architecture The memory 
which holds the cvalfuples is split into as many banks 
as cval[i] processing elements are implemented. This 
leads to a parallel memory access for all cval[i] ele- 
ments. The disadvantage of this memory architec- 
ture is a more complex update procedure for the 
cval-tuples. Since the memory is updated outside the 
QSIM kernel, the complex update operation can be to- 
lerated. 

Coprocessor interface The interface between co- 
processor and host processor is essential for the perfor- 
mance of the overall architecture. A high speed inter- 
face with low communication setup time is required. 
The amount of transferred data has to be minimized. 
For example, a better throughput can be achieved by 
packing several results into one message. This avo- 
ids redundancy in communication. However, the com- 
plexity of the coprocessor design is increased. Ano- 
ther technique to improve the throughput is to over- 
lap computation and communication phases whenever 
possible. This can be supported by the use of buffer 
registers in the coprocessor. 

4.3 Implementation and experimental 
evaluation 

The design of the coprocessor is based on Xilinx 
XC40xx FPGAs to allow a fast and flexible deve- 
lopment. The DSP TMS320C40 has been chosen as 
host processor. This DSP fulfills several requirements 

which are necessary for both, an efficient interface to 
the coprocessor and the implementation of a multi 
DSP system. 

0 Fast communication ports 

0 Independent communication channels 

0 Simultaneous 1/0 and CPU processing 

0 Multiprocessor support 

Some special features of this DSP, like hardware 
multiplier and special addressing modes, are of minor 
interest to this project. Other simulators developed a t  
the institute have also been implemented on the DSP 
TMS320C40 [lo] [ll]. 

A proposed computer architecture is presented in 
Figure 6. Data flow between host processor, FPGA, 
and cval-tuples memory is shown. Data transfer bet- 
ween DSP and CCF coprocessor is established via two 
separate communication ports. Unidirectional data 
transfer is preferred due to less communication setup 
time and less complex FPGA design. 

Figure 7 defines three phases of CCF execution. 
There are two communication phases (A and C) and 
one computation phase (B). A sequential procedure 
for CCF execution is shown in Figure 7a. Increased 
throughput can be achieved by packing results into 
one communication (example in 7b) and by overlap 
ping communication and computation phases (exam- 
ple in 7c). 
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Figure 5: Average and maximum number of cvalfuples for individual types of constraints. The maximum number 
of cval-tuples does not exceed the moderate value 4, even in complex models. 
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Figure 6: Example of a CCF-coprocessor system. Data paths between host processor, CCF-coprocessor, and 
cval-tuples memory are shown. The cvalfuples memory is partitioned into two banks. 
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Figure 7: Phases of execution of the CCF-coprocessor system. Two communication phases (A, C) and one 
computation phase (B) are defined. A sequential execution is presented in (a). Two techniques for increasing the 
throughput are shown: Packing several results into one data transfer (b) and overlapping several phases (c). 

Evaluation of this application-specific computer ar- 
chitecture is based on an experimental multiprocessor 
system consisting of several DSPs and FPGAs. A soft- 
ware implementation on a DSP is used as a reference 
system for the evaluation of the CCF coprocessor. We 
do not compare runtimes of this special-purpose sy- 
stem with runtimes of a LISP environment. 

Two kinds of parameters are considered for evalua- 
tion. Firstly, the execution time of one CCF and se- 
condly, the execution time of the tuple filter. The tuple 
filter checks the whole tuple set of a given constraint 
for consistency. It consists of 1 up to 64 CCF execu- 
tions. Therefore, execution time measured in [sec] of 
one CCF and throaghput measured in [CCFs/sec] are 
important parameters. 

Development of the FPGA-based CCF coproces- 
sor is in progress. The instruction set of the copro- 
cessor is currently being defined. The sub-functions 
of the MULT-CCF coprocessor are being implemen- 
ted. First preliminary results show that a MULT- 
CCF with one cval[i] processing element fits easily into 
one XC4013 FPGA. We will present experimental re- 
sults in the near future. 

5 Summary and future work 

An application-specific computer architecture for 
the qualitative simulation algorithm QSIM is presen- 

ted. Design considerations are mainly influenced by 
requirements for technical applications. The main ob- 
jective is to improve the performance. This is achie- 
ved by two strategies - exploiting parallelism and 
software/hardware migration. These two strategies 
are illustrated by the example of the constraint-check- 
function - a function of the QSIM kernel. This func- 
tion is analyzed, the computation and communication 
requirements are defined. An architecture consisting 
of a host processor and a coprocessor for CCFs is pre- 
sented. Parameters for the experimental evaluation 
are discussed. 

Implementation of several kernel functions is in pro- 
gress (i.e. functions for CCF, constraint filter, and 
CSP). Computer architectures for these functions are 
independently developed and evaluated. The entire 
parallelism and best performance is exploited by com- 
bining these individual architectures. 
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