
A Distributed Computer Architecture for Qualit at ive Simulation
Based on a Multi-DSP and FPGAs

Marco Platzner, Bernhard Rinner, Reinhold WeiB
Institute for Technical Informatics

Graz University of Technology, Austria
(marc0 , r i m e r , raeiss}Git i . tu-graz . ac . at

Abstract

The design of a specialized computer architecture
for qualitative simulation is presented.

Our interest focuses on the hardware design of
an application-specific computer architecture which is
composed of programmable processors (digital signal
processors TMS32OC40) and application-specific inte-
grated circuits (FPGAs). Two design strategies are
considered to improve the performance. Primitive
functions are hardware-implemented using FPGAs
(software/hardware migration). More complex func-
tions are mapped onto a multi processor system for-
med by TMS320C40. This computer architecture is
designed for the well known algorithm for qualitative
simulation - QSIM[S].

In this paper we present the design of a compu-
ter architecture for the constraint-check-function - a
function of the QSIM kernel.

keywords:
TMS320C40, Multi-DSP, FPGA, application-specific
computer architecture, QSIM, codesign

1 Introduction

In this paper we describe the design of a specialized
computer architecture for applications in the field of
qualitative simulation. A primary goal in designing
special-purpose computer architectures is to improve
the performance. Larger [real) problems can be solved
more effectively on special-purpose architectures than
on general-purpose architectures. High performance is
also essential for most real-time applications. Speciali-
zed computer architectures and design methodologies
in the area of artificial intelligence have emerged re-
cently. Several case studies for computer architectures
for intelligent systems are presented in [2].

1066-6192/95 $4.00 0 1995 IEEE

We are implementing the special-purpose compu-
ter architecture by using programmable processors
(TMS320C40) and application-specific integrated cir-
cuits (FPGAs). This flexible implementation is well
suited for experimental evaluation of the design. Two
strategies are considered in this computer architecture
to improve the performance. Firstly, the runtime of
frequently used primitive functions is reduced by hard-
ware implementation. Software-implemented func-
tions migrate to hardware-implemented ones. Soft-
ware/hardware migration is one important aspect of
the codesign paradigm. Examples can be found in
[3][4]. Secondly, more complex functions are mapped
onto a multiprocessor system. The parallelism of the
application is exploited.

This application-specific computer architecture is
developed for the well known algorithm for qualitative
simulation QSIM [5]. In qualitative simulation physi-
cal systems are modeled on a higher level of abstrac-
tion than in other simulation paradigms, e.g. conti-
nuous simulation. Simulating continuous models re-
quires extensive computation and results in a detai-
led description of the system behavior. Qualitative
simulation leads to a less detailed description of possi-
ble behaviors. There are many applications where the
detailed description is not necessary. Furthermore, a
corresponding qualitative model is simulated more ef-
ficiently than a continuous one, due to a less accurate
description.

This computer architecture for qualitative simula-
tion will extend simulators which are already in use
at our institute. These simulators are part of a Dis-
tributed Real- Time Expert-System for Fault Diagnosis
in Technical Processes [12][13]. The already applied
hybrid simulation technique, which combines discrete
and continuous simulation, will be extended by the
paradigm of qualitative simulation.

311

init states in agenda +
...................

I i : i generate po;,,,,,ues i

constraint filter
I I ,

I

: !?! painvise consistency filter j
I I *

I.! global interpretations

.......................................

:-;
I global filters I

Figure 1: Flow chart of QSIM

2 Problem task

2.1 Algorithm QSIM

In this section we present a brief description of
the algorithm QSIM. Variables and constraints are
basic components of a qualitative model (constraint
network). Variables represent system parameters
(e.g. speed, temperature etc.) and constraints des-
cribe relations between system parameters. QSIM uses
several types of constraints which represent arithme-
tic relations (ADD-, MULT-, D/DT-constraints) and
functional dependencies (M+-, M--constraints) bet-
ween variables.

Figure 1 shows the flow chart of QSIM. States are
stored in a global queue called agenda. A state in
QSIM is defined as an assignment of values to all va-
riables of the model. A state characterhes the system
at a given time. In one simulation step (one loop cy-
cle) all possible values for the next time step are de-
termined. Qualitative simulation can predict several
behaviors - contrary to continuous simulation. The
simulation step is repeated until the agenda is em-

pty or a time limit or state limit is exceeded. The
individual steps of this procedure can be informally
described as follows.

The first step generates the possible values for
the next time step for all variables. The possible
values in combination with the model description
(constraint network) define a constmint-satisfaction-
problem (CSP) [7]. The following three steps are used
to solve a CSP (i.e. to determine all global consistent
value assignments).

The constraint filter checks all value assignments
for a given constraint. The pairwise consistency filter
rejects inconsistencies between adjacent constraints.
Constraints are adjacent if they share a variable. The
last step in solving the CSP is the generation of glo-
bal interpretations. A global interpretation is formed
by each consistent combination of possible values for
all variables. This step is achieved by a backtracking
algorithm. Global filters reduce the set of new states
which are added to the agenda. There are many glo-
bal filters in QSIM. Some of them are necessary while
most of them are optional extensions of QSIM.

2.2 Objectives

QSIM is implemented in LISP and its source code
is public domain. The design of the presented
application-specific computer architecture is based on
QSIM-version N Q 2.0. Following system aspects stron-
gly influence the design.

Execution speed Applications of qualitative simu-
lation rely on the availability of fast qualitative simula-
tors. The major objective of our project is to increase
significantly the performance of current simulators.

Scalability A further important aspect of this com-
puter architecture is the scalable design. A higher per-
formance can be achieved by increasing the number of
processing elements.

Real-time requirements The knowledge of gua-
ranteed execution times is important for real-time ap-
plications of qualitative simulation. Current QSIM im-
plementations allow timed constraint reasoning. After
a given runtime the simulation process is aborted and
states already in the agenda are excluded from further
processing.

The designed computer architecture eases real-time
applications for two reasons. Firstly, maximum exe-
cution times are reduced due to the improved per-
formance. Secondly, analysis of maximum execution

3 12

Table 1: Runtime ratio of QsIM-functions measured on a TI-Explorer LISP workstation. The total runtime and
the runtime ratios of kernel functions, global filters, and initial processing (Init) are shown. The used models are
included in the QSIM package.

times is simplified. This is achieved by mapping ite-
rations from time domain into space domain [8].

2.3 Kernel functions

The qualitative simulator QSIM is a very complex
algorithm and has a lot of optional functions. De-
sign considerations of this computer architecture are
restricted to QSIM kernel functions. Kernel functions
are essential in calculating one simulation step. They
are shown ir Figure 1. The kernel fulfills the basic
functionality of qualitative simulation and it domina-
tes the runtime of the overall algorithm [9]. Table 1
presents the runtime ratios of kernel functions, global
filters, and initial processing.

Several model-based fault diagnosis and monitoring
systems use qualitative simulation [6] [11. These sy-
stems normally do not require the functionality of the
entire simulator - basically, QSIM kernel functions
are sufficient.

3 QSIM computer architecture

Developing new computer architectures is a com-
plex and challenging task. In this paper only the de-
sign of a part of the entire computer architecture is
presented. We demonstrate this in more detail in the
next section based on the constraint-check-function
(CCF) - an essential function of the constraint fil-
ter. The limited complexity of the CCF enables a
direct hardware implementation of this function. Soft-
ware/hardware migration is applied to increase the
performance.

The parallelism of the remaining kernel functions
is exploited. The hierarchical structure of the kernel
functions is mapped onto a hierarchical processor to-
pology. Individual kernel functions are executed in

parallel on several processors. Figure 2 represents an
overview of the overall architecture.

4 Constraint-check-function

The constraint-check-function checks one tuple of
the tuple set of a given constraint for consistency. A
tuple set is the product space of all possible values for
the considered constraint.

4.1 CCF analysis

Analysis shows that CCFs can generally be par-
titioned into two groups of sub-functions. Figure 3
presents this partitioning for the MULT-CCF. The
first group consists of a fixed number of sub-functions.
They take a tuple of possible values (pval-tuple) as
input data and produce a boolean result. In case of
the MULT-CCF these sub-functions are labeled qdir,
sign, and inf. The second group is formed by several
identical sub-functions, labeled cvaZsfi]. Each cval[i]
sub-function takes the pval-tuple and one tuple of COT-

responding values as input data (labeled cval-tuples).
The sub-functions of the second group return a boo-
lean result. The cval-tuples are created dynamically
outside the QSIM kernel. The number of cvals[i] sub-
functions can increase monotonically during simula-
tion. However, the creation of a cval-tuple is a very
rare process compared with the number of CCF execu-
tions. All sub-functions of an individual CCF are mu-
tually independent. The boolean results are combined
to the total result by a logical AND-operation. Shod
circuit evaluation can be used to implement this ope-
ration. Whenever one sub-function returns a negative
result, the entire calculation is aborted. A negative
result is returned to the calling function.

313

host

/uI TMS320C40

A TMS320C40 8 coprocessor

P I TMS320C40

coprocessor CCF I
Figure 2: Example of the overall computer architecture. Five processing elements are connected in a tree-structure.
Two processing elements are equipped with specialized CCF-coprocessors.

pval-tuple cval-tuples[i]

Figure 3: Sub-functions of the MULT-CCF

Two methods of complexity estimation are used.
A mathematical approach (0-notation) results in a
quite trivial estimation. More suitable results can be
provided by experimental measurements. We have im-
plemented the CCFs in software on the target proces-
sor TMS320C40 and measured runtimes with different
input data. Figure 4 presents the results of the run-
time measurements of the MULT-CCF.

4.2 Design of a CCF coprocessor

Analysis brings up low complexity of the CCF sub-
functions. This encourages a direct hardware imple-

mentation of the whole CCF. Hardware implemen-
tation also supports fast communication mechanisms
between the sub-functions. This is required for an ef-
ficient exploitation of the parallelism. The hardware
implemented CCF can be considered as application-
specific coprocessor. Following points are of special
interest for the design.

Number of cval[i] elements Two strategies for
the implementation of cval[i] sub-functions are con-
sidered. Firstly, one sub-function is implemented in
hardware and the cval-tuples are checked sequenti-
ally. The second alternative is to implement several
cval[i] processing elements and to check the cval-tuples
in parallel. The number of cval-tuples is an import-
ant parameter for design considerations. It limits the
number of processing elements. Although the number
of cval-tuples is generally unbounded, experience re-
veals that in most cases only a few cval-tuples are used.
Results from tracing a QSIM system are presented in
Figure 5 . Cval-tuples of all constraints have been
counted while several models have been simulated.
Even with complex models at most four cval-tuples
have been traced for a given constraint. A coproces-
sor with four cval[i] elements can calculate the CCFs
of the traced models in one step.

3 14

(?e

qdir sign inf

CCF ~ b - f ~ c t i o ~

139

cvals[i]

Figure 4: Runtimes (number of clock cycles) of CCF sub-functions measured on a TMS320C40. The labels qdir,
sign, and inf represent sub-functions which take the pval-tuple as input data. The sub-function cvals[i] requires
the pvalfuple and one cval-tuple as input data.

Customised memory architecture The memory
which holds the cvalfuples is split into as many banks
as cval[i] processing elements are implemented. This
leads to a parallel memory access for all cval[i] ele-
ments. The disadvantage of this memory architec-
ture is a more complex update procedure for the
cval-tuples. Since the memory is updated outside the
QSIM kernel, the complex update operation can be to-
lerated.

Coprocessor interface The interface between co-
processor and host processor is essential for the perfor-
mance of the overall architecture. A high speed inter-
face with low communication setup time is required.
The amount of transferred data has to be minimized.
For example, a better throughput can be achieved by
packing several results into one message. This avo-
ids redundancy in communication. However, the com-
plexity of the coprocessor design is increased. Ano-
ther technique to improve the throughput is to over-
lap computation and communication phases whenever
possible. This can be supported by the use of buffer
registers in the coprocessor.

4.3 Implementation and experimental
evaluation

The design of the coprocessor is based on Xilinx
XC40xx FPGAs to allow a fast and flexible deve-
lopment. The DSP TMS320C40 has been chosen as
host processor. This DSP fulfills several requirements

which are necessary for both, an efficient interface to
the coprocessor and the implementation of a multi
DSP system.

0 Fast communication ports

0 Independent communication channels

0 Simultaneous 1/0 and CPU processing

0 Multiprocessor support

Some special features of this DSP, like hardware
multiplier and special addressing modes, are of minor
interest to this project. Other simulators developed a t
the institute have also been implemented on the DSP
TMS320C40 [lo] [ll].

A proposed computer architecture is presented in
Figure 6. Data flow between host processor, FPGA,
and cval-tuples memory is shown. Data transfer bet-
ween DSP and CCF coprocessor is established via two
separate communication ports. Unidirectional data
transfer is preferred due to less communication setup
time and less complex FPGA design.

Figure 7 defines three phases of CCF execution.
There are two communication phases (A and C) and
one computation phase (B). A sequential procedure
for CCF execution is shown in Figure 7a. Increased
throughput can be achieved by packing results into
one communication (example in 7b) and by overlap
ping communication and computation phases (exam-
ple in 7c).

315

Number of corresponding values (cval-tuples)

4

3.5

3

z - 2,s
P
*I 2 a e 1,s *

1

0s

0

4

3

2

M+

Model: Starling

M- D/DT ADD

Constraint type
MULT

Figure 5: Average and maximum number of cvalfuples for individual types of constraints. The maximum number
of cval-tuples does not exceed the moderate value 4, even in complex models.

8 bit

host processor

(TMS320C40)

Figure 6: Example of a CCF-coprocessor system. Data paths between host processor, CCF-coprocessor, and
cval-tuples memory are shown. The cvalfuples memory is partitioned into two banks.

316

Sequential execution
9

one CCF execution j time
a m

Packed communication

I

time

Overlapped execution

Phases

A

B Computauon (CCF-copmcessor)

C Data transfer CCFcopmcessor->’C40

Data transfer ’C40 -> CCF-copmssor

time

Figure 7: Phases of execution of the CCF-coprocessor system. Two communication phases (A, C) and one
computation phase (B) are defined. A sequential execution is presented in (a). Two techniques for increasing the
throughput are shown: Packing several results into one data transfer (b) and overlapping several phases (c).

Evaluation of this application-specific computer ar-
chitecture is based on an experimental multiprocessor
system consisting of several DSPs and FPGAs. A soft-
ware implementation on a DSP is used as a reference
system for the evaluation of the CCF coprocessor. We
do not compare runtimes of this special-purpose sy-
stem with runtimes of a LISP environment.

Two kinds of parameters are considered for evalua-
tion. Firstly, the execution time of one CCF and se-
condly, the execution time of the tuple filter. The tuple
filter checks the whole tuple set of a given constraint
for consistency. It consists of 1 up to 64 CCF execu-
tions. Therefore, execution time measured in [sec] of
one CCF and throaghput measured in [CCFs/sec] are
important parameters.

Development of the FPGA-based CCF coproces-
sor is in progress. The instruction set of the copro-
cessor is currently being defined. The sub-functions
of the MULT-CCF coprocessor are being implemen-
ted. First preliminary results show that a MULT-
CCF with one cval[i] processing element fits easily into
one XC4013 FPGA. We will present experimental re-
sults in the near future.

5 Summary and future work

An application-specific computer architecture for
the qualitative simulation algorithm QSIM is presen-

ted. Design considerations are mainly influenced by
requirements for technical applications. The main ob-
jective is to improve the performance. This is achie-
ved by two strategies - exploiting parallelism and
software/hardware migration. These two strategies
are illustrated by the example of the constraint-check-
function - a function of the QSIM kernel. This func-
tion is analyzed, the computation and communication
requirements are defined. An architecture consisting
of a host processor and a coprocessor for CCFs is pre-
sented. Parameters for the experimental evaluation
are discussed.

Implementation of several kernel functions is in pro-
gress (i.e. functions for CCF, constraint filter, and
CSP). Computer architectures for these functions are
independently developed and evaluated. The entire
parallelism and best performance is exploited by com-
bining these individual architectures.

References

Daniel Dvorak and Benjamin Kuipers. Process
Monitoring and Diagnosis: A Model-Based Ap-
proach. IEEE Expert, pages 67-74, June 1991.

IEEE Computer, May 1992. Computer Architec-
tures for Intelligent Systems.

IEEE Computer, January 1994.

317

[4] IEEE Micro, August 1994. Pulling Together:
Hardware/Software Codesign.

[5] Benjamin Kuipers. Qualitative Simulation. Arti-
ficial Intelligence, 29:289-338, 1986.

[6] Franz Lackinger and Wolfgang Nejdl. Diamon:
A Model-Based Troubleshooter Based on Quali-
tative Reasoning. IEEE Expert, pages 33-40, Fe-
bruary 1993.

[7] Alan K. Mackworth. Consistency in Networks of
Relations. Artificial Intelligence, 8:99-118, 1977.

[8] Dan I. Moldovan. Parallel processing from app-
lications to systems. Morgan Kaufmann Publis-
hers, 1993.

[9] Bernhard Rinner. Konzepte zur Parallelisierung
des qualitativen Simulators QSIM. Diplomar-
beit, Institut fur Technische Informatik, Techni-
sche Universitit Graz, Oktober 1993.

[lo] Christian Steger. Implementation of a Petri-Net
Simulator on TMS320C40. In Proceedings of the
Hungarian Tmnsputer Users Group’s Workshop
on Parallel Processing an Education, pages 115-
119, Miskolc, March 1993.

[ll] Christian Steger, Marco Platzner, and Reinhold
Weij3. Performance Measurements on a Multi-
DSP Architecture with TMS320C40. In Interna-
tional Conference on Signal Processing Applicati-
ons €4 Technology, Santa Clara, California, USA,
September 1993.

1121 Reinhold WeiB, et al. Ein verteiltes Echtzeit-
Expertensystem auf Transputerbasis zur Fehler-
diagnose in technischen Prozessen. In Workshop
Gber Parallelverarbeitung, Graz, Austria, June
1990.

[13] Reinhold WeiB, et al. Design and Implementation
of a Distributed Real-Time Expert-System for
Fault Diagnosis in Modular Manufacturing Sy-
stems. In EUTO~ZCTO 1991, pages 799-806, Vi-
enna, September 1991.

318

