
Texas Instruments article page 1

A TMS320C40 based Speech Recognition System for Embedded
Applications

Bernhard Obermaier and Bernhard Rinner

Institute for Technical Informatics
Technical University of Graz, AUSTRIA

[obermaier, rinner]@iti.tu-graz.ac.at

.

ABSTRACT:

This paper describes a prototype implementation
of a speech recognition system for embedded
applications. The recognition system is
comprised of a feature extractor and a classifier.
The feature extractor is based on a 64-point Fast
Fourier Transformation (FFT); the classifier is
based on discrete-density Hidden Markov
Models (HMM) with a variable codebook size.
Training as well as classification are
implemented using the Viterbi algorithm. The
prototype is implemented on a digital signal
processor (DSP) of type TMS320C40 from
Texas Instruments. The recognition rate and the
performance are experimentally evaluated using
a test vocabulary of 20 words.

keywords: automatic speech recognition,
Hidden Markov Models, TMS320C40

1. INTRODUCTION

Automatic speech recognition (ASR) has been a
very active research area for a long time, and
much progress has been achieved within the last
years. Nowadays, many applications have been
extended by ASR techniques to enable an easy
and natural way of human computer interaction.
ASR applications can be classified into two
categories. Large vocabulary systems are capable
of understanding a large number of different
words. Such large vocabularies are required for
dictionary systems where the ASR system ideally
recognizes all words from fluently spoken
sentences [8]. On the other hand, command and
control applications [2] recognize only a few
specific words (commands) required to control

the application. Examples of command and
control applications are speech-controlled
telephone information systems and speech-
controlled user interfaces.

Command and control ASR is often integrated
into systems which are tightly coupled with their
environment, e.g., a speech-controlled robot. In
such an embedded system, speech recognition
must be performed with limited resources, like
processors and memory. Furthermore, the
recognition must be often completed within a
limited period of time.

The work presented focuses on the development
of a command and control ASR system for
embedded applications. Thus, the main
objectives of this project are (i) to recognize a
limited number of commands, (ii) to enable
speech recognition in limited time and with a
limited amount of memory, (iii) to demonstrate
the recognition online and (iv) to design a
modular system such that the individual
components can be easily changed and improved.

The remainder of this paper is organized as
follows. Section 2 introduces some background
of speech recognition. Section 3 presents the
implemented TMS320C40-based ASR system,
i.e., some design considerations and
implementation details are given, and the ASR
system is evaluated using experimental data. A
brief discussion concludes the paper.

Texas Instruments article page 2

2. AUTOMATIC SPEECH RECOGNITION

2.1 Overview

Figure 1 presents an overview of an ASR system.
In general, speech (words) are recognized using
the following procedure.

The analog speech signal is captured by a
microphone and sampled by an analog to digital
converter (ADC). To reduce the high data rate,
characteristic features are generated by the
feature extractor. These features represent the
speech signal in a very compact form. They are
used in the final step of an ASR system to
determine which word has actually been spoken.
The classifier compares the features to models
(templates) of the words of the vocabulary. The
classification is based on some distance metric
between the features and the templates. The
templates are generated during the training of the
ASR system; a template is generated for each
word.

Training

Classifier

ADC Feature
ExtractionSpeech

Figure 1: Overview of an ASR system

2.2 Classifier

The classifier is one of the most important
components of an ASR system, i.e., it compares
the unknown utterance consisting of T feature
vectors with the stored templates. We briefly
describe the two most commonly-used classifiers,
vector quantization and hidden Markov models
[5].

Vector Quantization

The idea of vector quantization (VQ) is to
represent each word of the vocabulary by a
limited number of feature vectors. Thus, the
feature vectors have to be quantized using a
given number of representative vectors
(codebook). After VQ, a feature vector is
represented by the codebook vector which has
the smallest distance to the original feature
vector. An optimal codebook is generated for
each word during the training, i.e., the codebook

vectors are determined such that the distance
between the codebook vectors and the feature
vectors is minimized. The distance for T feature
vectors is defined by

∑=
T

tt xxdD)ˆ,(,

where xt
 is the feature vector and �xt

 is the

codebook vector which has the smallest distance
to xt

.

The expected distance between the optimal
codebook and the corresponding utterance is
smaller than the distance to any other codebook.
This property leads directly to the following
classification method (Figure 2):

D1

D2

mD

Vector Quantization

C 1

Minimum

C 2

mC

Features
Vector Quantization

Vector Quantization

Figure 2 : VQ classifier

The feature vectors of the unknown utterance are
quantized using each codebook and the distances

iD to each codebook are calculated. The
codebook with the minimum distance determines
the classified (recognized) word.

Hidden Markov Model

Hidden Markov models (HMM) are used to
describe stochastic processes. The underlying
assumption for applying HMMs in ASR is
therefore that the speech signal can be well
characterized as a parametric random process
[6]. An HMM can be informally described as a
finite automaton which additionally emits feature
vectors at each state. The probability for a
transition from state i to state j is defined as

aij ; the probability for the emission of feature

vector k of a global codebook at state j is

Texas Instruments article page 3

defined as
jkb . Hence, the two matrices }{ ijaA =

and }{ jkbB = define an HMM. A typical HMM

consisting of 4 states is depicted in Figure 3.
Black arrows represent the transition
probabilities and white arrows represent the
emission probabilities.

a11 a22 a33 a44

a12 a 2 3 a34

1 2 3 4

a13 a 24Vector Vector Vector Vector

Figure 3: Hidden Markov Model with 4 states

By applying the following procedure, an HMM
can also be seen as a generator for feature
vectors: start at the initial (leftmost) state and
traverse through the HMM using A and emit a
feature vector at each state using B . The
probability of generating a specific sequence of
feature vectors can be calculated by the Viterbi
algorithm [6].

The training aims at generating an HMM for
each word, i.e., the matrices A and B .
Classifying an unknown utterance is basically the
calculation of the generation probability of the
utterance’s feature vector sequence for each
word. The word corresponding to the HMM with
the highest probability is then selected. Vector
quantization using a global codebook is applied
to limit the number of possible emission feature
vectors. An HMM classifier is shown in Figure 4.

Vector
Quantization

highest
probability

Caculate probability

HMM Word 1

Caculate probability

HMM Word 1

Caculate probability

HMM Word 1

Figure 4: HMM classifier

3. AN ASR SYSTEM FOR EMBEDDED
APPLICATIONS

In this section we describe our ASR system for
embedded systems. First, we present some design
considerations for the feature extractor and the
classifier. Then, we describe a prototype
implementation using a TMS320C40 DSP.
Finally, we present an experimental evaluation of
the recognition rates and the runtime
performance.

3.1 Design Considerations

Feature Extractor

To keep the feature extractor as simple as
possible, the feature vectors are based on the
power spectrum of the speech signal using a Fast
Fourier Transformation (FFT). However, the
energy of the recorded speech changes over time,
e.g., due to a different distance to the microphone
or a different volume of the speaker.

To make the feature extractor more robust to the
energy variation of the utterances, a logarithmic
power spectrum is used for the feature vectors,
i.e., the logarithm of the FFT coefficients [4,5].
The logarithmic power spectrum of the same
utterances with distinct energy differs only by an
offset. To get rid of this (variable) offset, the
mean value of the logarithmic power spectrum is
calculated and subtracted from the spectrum.
This results in nearly constant feature vectors of
the same utterances with different energies.

Classifier

Our ASR system is indented to be used for
command and control in embedded applications.
The vocabulary is quite small in such
applications. However, the memory and
computing restrictions might be very challenging,
and the classifier has a great influence on
required computing resources. The decision
which classifier is actually applied in our ASR
system is based on a comparison of the VQ and
HMM classifier with regard to memory and
runtime complexity.

The following comparison [3] presents first the
theoretic memory and runtime complexities and
determines then the bounds for a specific
recognition rate. Following notation is used for
this comparison: m represents the total number
of words (utterances), c defines the codebook
size and v determines the size of the feature

Texas Instruments article page 4

vectors. The number of states of the HMM is
given by N .

• VQ memory complexity

m codebooks are required to store all
utterances. Each codebook consists of c
codebook vectors each of size v. Hence, the
memory complexity is given by

)**(mvcO .

• VQ runtime complexity

The runtime performance for classifying is
determined for one feature vector. The
distance of two vectors is based on the
Euclidean metric. Thus, this distance
calculation requires v operations. Distances
are required for all codebook vectors in all
codebooks. Therefore, the total runtime is
given by)**(mvcO .

• HMM memory complexity

The HMM classifier requires one global
codebook and an HMM for each word. The
memory complexity for the codebook is

)*(vcO . One HMM model consists of the

transition probability matrix A of size
NN * and the emission probability matrix

B of size cN * . Thus, the total memory
complexity is))*(**(2 cNNmvcO ++ .

• HMM runtime complexity

The HMM classifier quantizes first each
feature vector and then calculates the
generation probability for each HMM. The
runtime complexity of VQ for one feature
vector is given by)*(vcO . The Viterbi

algorithm has a runtime complexity of
)(2NO . Therefore, the overall complexity

is)**(2NmvcO + .

To achieve a recognition rate of 97 % for m =20
words with a feature vector size of v =32, a
codebook size of c =16 is required. The HMMs
are modeled using N =4 states [3].

Classifier Memory Runtime

VQ 10240 10240
HMM 3944 1344

Table 1: Comparison of the VQ and HMM classifier

Table 1 presents a comparison of both classifiers
using these parameters. The HMM classifier
requires much less memory and runtime than the
VQ classifier. Therefore, HMM classification is
applied in our ASR system.

3.2 TMS320C40 based Implementation

Our ASR system is implemented on a PC with a
data acquisition board from ADAC (DHR5403)
and a TIM40 motherboard from Transtech
(TDMB412). The TIM40 motherboard is
equipped with one TIM40 module
(TMS320C40). Software has been mostly
developed in ANSI C using the CodeComposer
from GoDSP [7].

Level
detection

FFT
log

B

codebook

VQ BADC HMM

Figure 5: Block diagram of the prototype

A block diagram of the overall ASR system is
depicted in Figure 5. The speech signal is
sampled by the data acquisition board at a
sampling rate of 10 kHz and a resolution of 16
bit. The samples are directly transferred to the
TIM40 module via a commport of the
TMS320C40. A level detector decides whether a
word is spoken. If the short time energy of the
samples exceeds a limit, the samples from the
data acquisition board are written to a buffer for
a specific period of time. The spectrum of the
signal stored in the buffer is calculated by an
assembler-optimized 64-point FFT algorithm.
The sample frames are overlapped by 30 % for
successive Fourier transformations. The feature
vector is generated by the FFT coefficients
(compare Section 3.1) and has a size of 32. Each
feature vector is quantized using the global
codebook. Indices of the corresponding
codebook vectors are stored in a second buffer.
The HMM classifier generates finally the
probability of the sequence of indices by a
Viterbi algorithm.

Texas Instruments article page 5

The training can be divided into two tasks, the
optimization of the global codebook and the
generation of the word models . The optimization
of the codebook vectors is performed by the
binary split algorithm [6]. After the codebook
optimization, the HMM models for all words are
trained by the Viterbi algorithm. In our prototype
implementation training [1,3] is performed off-
line, i.e., the generated feature vectors of the test
data are transferred from the TMS320C40 to the
PC. The actual training is then performed on the
PC. Before our ASR system is able to recognize
words, the trained HMM models and the global
codebook have to be downloaded into the
memory of the TMS320C40 by the
CodeComposer.

In our prototype we exploit the display
capabilities of the CodeComposer for the
presentation of the classification results. The
probabilities of all words of the vocabulary are
plotted in a diagram. By this representation the
confidence of a recognition can be easily seen.
The logarithmic probabilities are actually
displayed. An example of this representation is
shown in Figure 6. The word with index 7 is
actually selected in this example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6: Presentation of the word probabilities

3.3 Experimental Results

The experimental evaluation of our prototype is
divided into two parts. First, we evaluate the
recognition rate and then we present the runtime
performance.

Recognition evaluation

The test set for our recognition evaluation
consists of a vocabulary of 20 words. Examples
for these words are simple commands, like "stop"
and "go", and the numbers "0" to "9". For each
word 10 different utterances have been recorded
during a period of 5 days. Hence, the overall
training set consists of 200 utterances. We used

only 5 different utterances per word for the
training, and we used all utterances for the
classification. Therefore, we were able to
evaluate the recognition of trained as well as
untrained data. The recognition rate was
evaluated dependent on different model
parameters, i.e., the size of the codebook c and
the number of states N .

In Figure 7, the recognition error (1-recognition
rate) of the HMM classifier is shown with
codebook sizes of 16, 32, 64 and 128.

0
2
4
6
8

10
12
14

16 32 64 128

Codebook size c

R
ec

o
g

n
it

io
n

 e
rr

o
r

[%
]

Figure 7: Recognition error vs. codebook size

Measurements were taken with different numbers
of states ranging from 1 to 9. The presented
recognition error in Figure 7 is the average of
recognition errors measured with different
numbers of stages. The recognition error
decreases monotonically with increasing
codebook size from 12 % to nearly 2 %. This
monotonic behavior is not a surprising result
because a higher number of codebook vectors
reduces the quantization error and, hence, the
distance of the feature vectors.

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9

States

R
ec

o
g

n
it

io
n

 e
rr

o
r

[%
]

Figure 8: Recognition error vs. states

Figure 8 presents the recognition error dependent
on the number of states N of the HMMs. The
codebook has a fixed size of c =128, and the
number of states N are varied from 1 to 9. In
this case the recognition error does not show
such a monotonic behavior as in Figure 7. This is

Texas Instruments article page 6

due to the fact that there is a tight relation
between the number of states and the phonems in
the words. Best recognition rates are achieved
when the number of states corresponds to the
number of phonems. Increasing the number of
states makes the recognition worse. For our
vocabulary, best results are achieved using
HMMs with 6, 7 or 9 states.

Performance evaluation

Our performance evaluation is based on runtime
measurements on our prototype. The runtimes
were measured using the timing utilities of the
CodeComposer. In our prototype the recognition
is implemented in three consecutive steps: feature
extraction, vector quantization and probability
calculation (classification).

The recognition including these three steps was
measured for a typical word of our test
vocabulary, using a codebook size =c 32 and a
number of states =N 5. 103 feature vectors were
generated for this word that is equivalent to an
utterance time of 0.6 s. The runtimes for this
word are shown in Table 2. The total time
required to recognize this word is 738 ms.

Since the runtime of all recognition steps is linear
with the number of feature vectors of the
utterance, the total recognition time can be
determined by the length of the vocabulary’s
word.

Recognition step Runtime
Feature extraction 183ms
Vector Quantization 264ms
Classifying 291ms
Total 738ms

Table 2: Runtime performance

4. CONCLUSION

We presented a prototype implementation of an
ASR system for command and control
applications. This prototype allows online
recognition with limited memory and runtime. A
recognition rate of 99 % was achieved by using a
test vocabulary of 20 words.

Future work is directed towards the improvement
of our ASR prototype, i.e., to enable speaker
independent recognition and to advance the
feature extractor and the classifier, as well as the

application in an embedded system, like the
speech control of an autonomous robot.

ACKNOWLEDGEMENTS

The authors are grateful to Alexander Haymaier
and Martin Proßnigg who implemented the
communication between the ADC and the
TMS320C40 as well as the Fourier
transformation.

REFERENCES

[1] Roland Auckenthaler. Implementing a
Hidden Markov Model for time-variant Feature
Vector Processing. Technical Report. Institute
for Technical Informatics, TU Graz. 1998.

[2] Judith A. Markowitz. Using speech
recognition. Prentice Hall. 1996.

[3] Bernhard Obermaier. Entwurf und
Implementierung eines Spracherkennungs -
systems auf einem TMS320C40. Master Thesis.
TU Graz. 1998.

[4] Alan Oppenhaim and Roland Schafer.
Zeitdiskrete Signalverarbeitung Oldenbourg
Verlag München, Wien. ISBN 3-486-22948-6.
1995.

[5] Joseph Picone. Signal Modelling Techniques
in Speech Recognition. In Procedings of the
IEEE. Vol 81, No.9. September 1993.

[6] Lawrence Rabiner und Biing-Hwang Juang.
Fundamentals of Speech Recognition. Prentice
Hall PTR. ISBN 0-13-015157-2. 1993.

 [7] Texas Instruments. TMS320 Floating Point
DSP Optimizing C Compiler. 1995.

[8] Steve Young. A Review of Large-vocabulary
Continous speech Recognition. IEEE Signal
Processing Magazine. September 1996.

