
Design and Implementation of a Parallel Constraint

Satisfaction Algorithm

Marco Platzner and Bernhard Rinner

Institute for Technical Informatics� Graz University of Technology� AUSTRIA

Abstract

Constraint satisfaction techniques are applied in areas like design� diagnosis�

truth maintenance and scheduling� This paper describes the design and imple�

mentation of a parallel constraint satisfaction algorithm for qualitative simulation�

In qualitative simulation� constraint satisfaction problems �CSPs� must be solved

very often which in turn dominates the runtime of the most prominent qualitative

simulator QSim�

The presented parallel algorithm is based on partitioning the search space of a

CSP into independent subspaces� These subspaces are then searched for solutions

in parallel with a backtracking algorithm� Finally� the solutions of the subspaces

are used to generate the overall result of the CSP�

We introduce a new partitioning method� called variable�based partitioning �VBP��

This method discards many subspaces from further processing by revealing local

inconsistencies in the subspaces� Speedup limits for the parallel algorithm are an�

alytically derived and proved by experimental results� The parallel CSP algorithm

is implemented on a MIMD multiprocessor system and evaluated using benchmark�

CSPs derived from the qualitative simulator QSim�

keywords� parallel constraint satisfaction�

search space partitioning�

qualitative simulator QSim

�

� Introduction

Constraint satisfaction is a well�known term for a variety of techniques used in arti�cial

intelligence �AI� and related disciplines� Constraint satisfaction techniques are applied in

areas like design� diagnosis� truth maintenance and scheduling 	
�� One of the applica�

tion areas is qualitative simulation 	�� which is a rather new and challenging simulation

paradigm� In qualitative simulation� physical systems are modeled on a higher level of

abstraction than in other simulation paradigms� like in continuous simulation� Qualita�

tive simulation is mainly used in applications where a detailed description of a physical

system is not required or not known
 major application areas are design� monitoring and

fault diagnosis� QSim is the most prominent algorithm for qualitative simulation and was

developed by Kuipers 	��� One drawback of current QSim implementations is poor execu�

tion speed� In our research project 	��� 	��� 	���� a special�purpose computer architecture

has been developed to improve the performance ofQSim� This is achieved by parallelizing

the constraint satisfaction algorithm of QSim and mapping the parallel algorithm onto

a multiprocessor system� This paper describes the design and implementation of this

parallel constraint satisfaction algorithm�

A constraint�satisfaction problem �CSP� is de�ned as a triple hV�D�Ci consisting of

� a set V � fv�� � � � � vlg of variables�

� a set D � fD�� � � � � Dlg of domains� such that each Di is a set of values for the

variable vi and

� a set C � fc�� � � � � cmg of constraint relations� where each cj refers to some subset of

the variables V � The constraint relations determine subsets of the Cartesian product

of the domains of the variables involved� Every vi in V appears in some cj in C�

The assignment of a unique domain value to each variable of some subset of variables

�

is called instantiation� An instantiation is said to be legal if it does not violate any of

the relevant constraints� A legal instantiation of all variables V is called a solution of the

CSP� Therefore� a solution is one element in the search space S � D� � � � � � Dl of the

CSP�

CSPs are often represented as constraint networks� In these networks� the nodes

correspond to the variables� and the edges correspond to the constraints between the

variables� Figure ��a� shows the constraint network of a simple CSP consisting of �

variables and � constraints� Each constraint relation refers to � variables� Hence� the

arity of these constraints is two� Constraints which share a variable are adjacent
 these

constraints are attached to the shared variable� In Figure ��b�� the dual constraint network

of the CSP is shown� In this representation� the nodes correspond to the constraints�

and the edges correspond to the shared variables� The domain of node i in the dual

representation is the Cartesian product of the domains of the attached variables� This

set is called set of tuples Ti� Hence� the overall tuple set of the CSP is T � fT�� � � � � Tmg�

The domain of node i can be reduced by applying the constraint relation Ci to the tuple

set Ti
 a CSP with reduced tuple sets is said to be node�consistent� An instantiation of

tuples of adjacent nodes is only valid� if the value of the shared variable is the same in all

tuples� Table � summarizes the relationship between a constraint network and its dual

representation�

In general� �nding a solution of a CSP is NP�complete 	���� CSPs are often solved

by backtracking algorithms which explore the search space of the CSP by a depth��rst

search� Many improvements to simple backtracking algorithms have been developed to

solve CSPs more e�ciently� These improvements range from preprocessing steps� like arc�

and path�consistency algorithms 	��� 	�
�� to advanced search techniques 	���� In QSim�

the basic algorithm to solve the CSP is simple backtracking 	���� Increased performance is

achieved by an arc�consistency algorithm that reduces the search space and by a heuristic

�

1
1

v
1

(a) constraint network

2
v

v

4
v

5

v
4

v
5

v
3

v
2

(b) dual constraint network

c
6

c
2

c
4

c
5

c
2

c
1

c
3

c
6

c
5

c
4

v
3

v
1

D
3

D
5

D
4

D
2

T
2

T

T
6

T
5

T
4

3

c
1

3
c

TD

Figure �� A CSP is graphically represented as constraint network �a� consisting of � nodes
v�� � � � � v� and � constraint relations c�� � � � � c�� Each node is assigned with the domain of
the variable D�� � � � � D�� In the dual constraint network �b�� the nodes correspond to the
constraint relations and the edges to the variables� respectively� In this representation�
the nodes are assigned with the sets of tuples T�� � � � � T��

constraint network dual representation

nodes V C

edges C V

domains D T

search space D� � � � � �Dl T� � � � � � Tm

Table �� Relationship between a constraint network and its dual representation�

ordering of the constraint relations for the backtracking step� The CSP in QSim has

some speci�c properties which make it di�erent from many other CSPs� These properties

in�uence the parallel implementation�

� The backtracking algorithm in QSim solves the CSP by �nding the solutions of the

dual constraint network� Therefore� the overall search space of the QSim CSP is

given by S � T� � � � � � Tm�

� Constraint satisfaction in QSim requires all solutions of the CSP�

� In QSim� the arity of the constraint relations ranges from � to �� and the domain

of the variables is limited by
� Therefore� the maximum number of tuples per

constraint is given by
� �� and �
� respectively�

The remaining part of this paper is organized into the following sections� Section �

reviews closely related work in the area of parallel constraint satisfaction� Section � intro�

duces a partitioning algorithm for QSim CSPs using four di�erent heuristics� Section

presents an analytical estimation of the speedup limits and a comparison of the di�erent

partitioning heuristics� In Section �� the parallel implementation and the experimental

results are presented� A discussion of the results concludes the paper�

� Related Work

��� Classi�cation of Parallel CSP Algorithms

Luo� Hendry and Buchanan 	��� have classi�ed the most common parallel CSP algorithms

as distributed�agent�based �DAB�� parallel�agent�based �PAB� and function�agent�based

�FAB�� In all these strategies� the CSP is split into a number of subproblems that are

distributed over a number of processors� Important features of these strategies can be

summarized as follows�

�

DAB� In the distributed�agent�based strategy� the CSP is split by assigning one or more

variables with their complete domains to the individual processors� All processors

work together in one shared search space� During the search� the processors have

to communicate to satisfy the constraint relations� i�e�� to resolve con�icts between

variables located in di�erent processors� The control mechanisms to resolve these

con�icts can be centralized or decentralized� A serious drawback of DAB is that the

control mechanism usually introduces a lot of communication overhead�

PAB� In the parallel�agent�based strategy� the CSP is split by partitioning the domains of

the variables� Each processor solves a part of the complete search space that involves

all variables and is independent of other partial search spaces� Therefore� each

processor solves a unique CSP� and no con�icts between processors must be resolved�

PAB can directly use any sequential CSP algorithm� requires little communication

overhead and is amenable to established global heuristic search strategies�

FAB� The function�agent�based strategy exploits the control�parallelism of constraint

satisfaction� Luo� Hendry and Buchanan describe this strategy based on a paral�

lel implementation of a forward�checking algorithm� In this implementation� the

complex forward�check operation is partitioned into several processing elements by

spawning individual subprocesses� These subprocesses manipulate the data� i�e�� the

variables� values� of the parent process�

Figure � presents the two most important parallelization strategies DAB and PAB� The

inherent communication of the DAB strategy �a� is visualized by the edges �constraints�

connecting variables assigned to di�erent processors� The independent subproblems of

the PAB strategy are shown in �b�� Due to the reduced domain sizes of some variables�

each of the individual subspaces is smaller than the original search space� As described

by 	���� a FAB strategy is only suitable where complex �forward�� check operations can be

�

D

(b) Parallel-agent-based(a) Distributed-agent-based

= U

PE1 PE2 PE1

D5

D4D1’D4

2
v

v

4
v

5

v
1

D1

v
3

2
v

v

4
v

5

v
1

v
3

3D
2D

5D

2D

3D

D1 D1’ ’’1D

1’’D

PE2

2
v

v

4
v

5

v
1

v
3

D5

D4

3D
2

Figure �� Two important parallelization strategies for CSPs� Two processing elements
PE� and PE� are used to solve the CSP� In the DAB strategy �a�� the CSP is partitioned
into two subproblems based on the variables� In the PAB strategy �b�� independent
subspaces of the overall search space of the CSP are generated based on the domains of
the variables�

�

partitioned� The checks in QSim�s backtracking algorithm are simple comparisons� In the

following section� the PAB strategy is investigated in more detail because it is well suited

for parallel constraint satisfaction where all solutions are required and the scalability of

the parallel implementation is important 	����

��� Parallel Algorithms Using Search Space Partitioning

A lot of results have been published in the area of parallel constraint satisfaction� Some

of the papers deal with the parallelization of the preprocessing steps� i�e�� arc�consistency

algorithms� The approaches in these papers range from a massively parallel implementa�

tion based on VLSI 	�� to more theoretical ones 	�� 	���� In the remainder of this section�

closely related work in the area of parallel algorithms using search space partitioning by

PAB strategies is described in some detail�

In Burg 	��� the search space is divided among a set of processors each executing a

sequential forward checking �FC� algorithm 	���� The search space is partitioned into

the same number of subspaces as processors are available� The number of processors

of the used multiprocessor system is a power of two� Due to static load balancing� no

communication between the processors is required� An extension which utilizes dynamic

load balancing is given in 	��� However� dynamic load balancing introduces communication

among the processors�

In Lin and Yang 	�� 	���� a forward checking algorithm is executed on each processor�

The partitioning strategy di�ers from Burg�s in that the search space is divided into d

partitions� where d is the domain size of the �rst variable of the CSP� Only one variable is

considered for the partitioning� The subspaces are statically mapped onto the processing

elements� To achieve a balanced mapping� a simple probabilistic analysis is used to esti�

mate the amount of search required in each subspace� The parallel algorithm is evaluated

by simulation on a single�processor system�

�

Rao and Kumar 	��� have evaluated the e�ciency of parallel backtracking algorithms�

They have presented analytical models and experimental results on the average case be�

havior of two parallel backtracking algorithms � simple backtracking and ordered back�

tracking� The di�erence between these two algorithms is that ordered backtracking uses

heuristics for ordering the variables and pruning nodes of the search space� Dynamic load

balancing is applied to reduce processor idle times�

The related work di�ers from the work presented in this paper in �i� the partitioning

method and �ii� the number of generated subspaces� In the related work� the number

of subspaces is restricted � either by the number of processing elements which has to

be a power of two or by the domain size of the �rst variable� Restricting the number of

subspaces and processing elements to a power of two is impractical for our work� This

is because QSim�s CSPs do not naturally split up into a number of subspaces that is

a power of two and the resulting multiprocessor would only be scalable in very coarse

steps� Furthermore� as the domain size of a variable in qualitative simulation is limited

by
� the partitioning method of Lin and Yang would lead to a multiprocessor with at

most
 processing elements� The results of Rao and Kumar also do not directly apply to

constraint satisfaction in qualitative simulation� Their evaluation is based on CSPs which

require only one solution� i�e�� the CSP algorithm terminates when a solution is found in

any subspace� On average� a solution is found earlier in a subspace with many solutions

than in a subspace with few solutions� When the solutions are nonuniformly distributed

among the subspaces� the average speedup is superlinear� However� qualitative simulation

requires all solutions of the CSP� i�e�� all subspaces must be completely processed� If no

subspace can be discarded a priori� at most a linear speedup can be achieved independent

of the distribution of solutions in the subspaces�

�

� The Parallel Constraint Satisfaction Algorithm

This section presents the design of the parallel constraint satisfaction algorithm for qual�

itative simulation� First� we give a general outline of the algorithm
 then we present our

new partitioning method� Issues concerning scheduling and the workload distribution are

discussed� and �nally� four di�erent partitioning heuristics are presented�

��� Algorithm Outline

In our work� a PAB strategy consisting of the following three consecutive steps is used�

�� Partitioning the overall search space into independent subproblems�

�� Solving the subproblems in parallel�

�� Merging the results of the subproblems to the overall result�

As already stated in the previous section� a subproblem in the PAB strategy can be

solved by any sequential CSP algorithm� To allow a fair evaluation of our parallel imple�

mentation� the same simple backtracking algorithm as in the original QSim implementa�

tion is used� The overall result of the CSP is the union of all results of the subproblems�

The essential part for achieving a high performance of the parallel implementation is

therefore step �� the partitioning of the search space�

In QSim� the backtracking algorithm �nds the solutions of the CSP based on the dual

constraint network� Therefore� in our PAB algorithm the tuple sets must be split for the

partitioning� A subproblem is de�ned as

Pi � T�i � � � � � Tmi� ���

where Tki represents a subset of Tk� For a valid partitioning� the union of all p subproblems

must be the overall search space S of the CSP� Hence� the following equation must hold�

��

p�
i��

Pi � T� � � � � � Tm � S ���

��� Variable�Based Partitioning �VBP�

In general� the tuple sets can be divided into subsets in an arbitrary manner� However�

our method for partitioning the tuple sets takes into account the dependencies between

adjacent constraints� The tuple sets of adjacent constraints are connected by the domain

of the constraints� shared variables� A partitioning of the domain of a shared variable

automatically induces a partitioning of the tuple sets of all attached constraints� We call

this partitioning method variable�based partitioning �VBP�
 it is depicted in Figure �� By

dividing the domain of variable va into k subdomains� the tuple sets of all attached con�

straints are divided into k subsets� In this advantageous partitioning� each subproblem

of the CSP is characterized by the considered subdomains of the variables� All individual

tuple subsets of one subproblem consist only of tuples using exactly those variable values

given by the characterizing subdomain� The advantage of VBP compared to partitioning

the tuple sets in an arbitrary manner is that many subproblems can be discarded from

further processing� VBP avoids the generation of subproblems with tuple subsets using

mutually exclusive variable values� These subproblems violate local consistency condi�

tions� i�e�� arc�consistency 	���� There cannot be any solution in these subproblems� The

number of subproblems which must be searched with VBP is given by the number of

subdomains� If k subdomains are generated for a variable with q attached constraints�

only k subproblems must be searched for solutions� In contrast� if each tuple set of q

constraints is partitioned into k subsets in an arbitrary manner� no subproblem can be

discarded a priori� In this case� qk subproblems must be processed� To generate more

subproblems than the domain size of one variable� VBP is extended to other variables of

the constraint network�

��

y

TykTy1 }Ty= {

... TzkTz1 }Tz= {... TxkTx1 }Tx= {

v

ak
D

a

D
a1

... }D
a
= {

czcx

c

...

Figure �� Variable�based partitioning� The partitioning of the domain Da �
fDa�� � � � � Dakg of the shared variable va induces a partitioning of the tuple sets of all
attached constraints cx� cy and cz�

��

The VBP method is described in more detail based on a pseudo code representation�

VBP consists of two procedures� The �rst procedure vbp recursively divides the complete

search space into candidate subspaces� The second procedure generate�subproblem

checks each candidate subspace for local consistency and stores the corresponding tuple

sets for each consistent subspace to generate a subproblem�

VBP uses the following global data structures� the variable maxsub stores the num�

ber of requested subproblems� the variable gensub stores the number of generated sub�

problems and the array actval stores the subdomains of all processed variables� The

initialization of these data structures and the �rst call of the procedure vbp is shown in

Figure
� The pseudo code for the procedures vbp and generate�subproblem is pre�

sented in Figure � and Figure �� The recursive procedure vbp uses the actual variable

var and the number of already generated candidate subspaces nsub as parameters� The

terminal condition for the recursion is the comparison in line �� If a further partitioning

is required� nsub is increased �line
� and a subdomain is generated for each value of the

actual variable var� In line �� vbp is called recursively with the next variable and nsub

as parameters� If a su�cient number of candidate subspaces has been generated or no

further partitioning is possible� each candidate subspace is checked for local consistency

in line ��� and the number of generated subproblems is updated �line ����

In lines ���� of generate�subproblem� the tuple set of each constraint is �ltered

using the array actval� For this �ltering� the function tuple�val�tup�var� is used

which returns the value of the variable var in the tuple tup� In line ��� each consistent

tuple is stored to generate the subproblem� If no tuple of a constraint survives� �ltering

is aborted� the subproblem is discarded and FALSE is returned �lines �������

There may be some cases in which the VBP method generates less than maxsub sub�

problems� This is caused for two reasons� First� vbp generates only maxsub candidate

subspaces� if the product of the domain sizes of all processed variables equals maxsub�

��

Second� the procedure generate�subproblem discards candidate subspaces that violate

local consistency conditions�

����� Example

The VBP method is demonstrated in the following example� The variables and constraints

are given by the constraint network of Figure � �V � fv�� � � � � v�g� C � fc�� � � � � c�g�� The

tuple sets are de�ned as follows�

T� � fa�d�� a�d�� a�d�g

T� � fa�b�� a�b�� a�b�� a�b�g

T� � fa�c�� a�c�� a�c�� a�c�g

T� � fb�c�� b�c�g

T� � fc�e�� c�e�� c�e�� c�e�g

T� � fd�e�� d�e�� d�e�� d�e�g

The CSP results in
 solutions�

L� � fa�b�c�d�e�g

L� � fa�b�c�d�e�g

L� � fa�b�c�d�e�g

L� � fa�b�c�d�e�g

In this example� the complete search space of the CSP� �T�� � � ��T��� is partitioned by

VBP into at most � subproblems �maxsub���
 the order of the variables is determined by

their indices� i�e�� v� to v�� Thus� the procedure vbp is initially called with the parameters

v� and ��

Because variable v� has � values� vbp is called recursively three times with the pa�

rameters v� and �� Recursion continues until variable v�� At this point� the number of

generated candidate subspaces equals maxsub� and the procedure generate�subproblem

starts to generate the partitioned tuple sets� Overall� this procedure is called � times�

�

� maxsub � requested number of subproblems
	 gensub �

� for all constraints con do

� for all variables var do

 actval�con�var� � NIL

� endfor

� endfor

� vbp�first�var��� ��

Figure
� Pseudo code for the initialization of the data structures and �rst call of the
procedure vbp�

� procedure vbp�var� nsub�

	 begin

� if ��var �� NIL� � �nsub � maxsub�� then

� nsub � nsub��domain size of var�

 for all values val of variable var do

� for all attached constraints con of var do

� actval�con�var� � val

� endfor

� vbp�next�var�var�� nsub�

�
 endfor

�� else

�	 if �generate�subproblem�� � TRUE� then

�� gensub � gensub � �

�� endif

�
 endif

�� end

Figure �� Pseudo code for the procedure vbp�

candidate subspace subdomains tuple sets solutions

i D�i D�i T�i T�i T�i T�i Lj

� a� b� a�d� a�b� a�c�� a�c� b�c� L�� L�

� a� b� a�d� a�b� a�c�� a�c� �

	 a� b� a�d� a�b� a�c�� a�c� b�c� L�� L�

 a� b� a�d� a�b� a�c�� a�c� �

� a� b� a�d� �

� a� b� a�d� �

Table �� Candidate subspaces� subdomains of the partitioned variables� tuple sets and
solutions for Example ������ Dividing the domains of variables v� and v� into subdomains
causes a partitioning of the tuple sets of all attached constraints� The tuple sets T� and
T� remain unchanged�

��

� procedure generate�subproblem��

	 begin

� for all constraints con do

� tuple�found � FALSE

 for all tuples tup of con do

� tuple�ok � TRUE

� for all variables var of tup do

� aval � actval�con�var�

� if ��aval �� NIL� � �aval �� tuple�val�tup�var���

�
 tuple�ok � FALSE

�� endif

�	 endfor

�� if �tuple�ok � TRUE� then

�� tuple�found � TRUE

�
 save tuple for subproblem
�� endif

�� endfor

�� if �tuple�found � FALSE� then

�� discard subproblem
	
 return FALSE

	� endif

		 endfor

	� return TRUE

	� end

Figure �� Pseudo code for the procedure generate�subproblem�

��

However� generate�subproblem returns only � subproblems for further processing

candidate subspaces are discarded� Table � summarizes the subdomains and partitioned

tuple sets for all � candidate subspaces�

��� Scheduling and Workload Distribution

For a generated number of subproblems� the overall parallel execution time is mainly

in�uenced by the schedule of the individual subproblems� The execution times of the

subproblems cannot be exactly determined in advance� Only a worst�case estimation can

be given� but this estimation normally di�ers from the the actual execution time by or�

ders of magnitude� Therefore� the scheduling algorithm cannot utilize execution times to

generate the schedule� In our parallel implementation� task attraction scheduling is used�

Whenever a processing element is idle� the next subproblem is assigned to this processing

element and it runs there without interruption� An unbalanced workload distribution

occurs� when subproblems with extraordinary long execution times are scheduled at the

end� Our scheduling strategy does not allow the improvement of an unbalanced work�

load by an additional partitioning and redistribution of subproblems already running on

processing elements� Furthermore� due to redundancies in the independent subproblems�

the total workload of all subproblems can be greater than the workload of the unpar�

titioned search space� These considerations lead to two important requirements for the

partitioning method� An e�cient partitioning method keeps the total workload small and

generates equally sized subproblems�

The choice of VBP is a �rst step in keeping the total workload small� because VBP

avoids the generation of subproblems that obviously do not lead to solutions� Due to the

rejection of these subproblems� the total workload of all subproblems can even be smaller

than the workload of the unpartitioned search space� Another point to be investigated is

the order in which the variables are processed by VBP�

��

��	 Partitioning Heuristics

The order in which the variables are processed in�uences the number and the work�

load of the generated subproblems and� in turn� the achievable speedup of the parallel

implementation� To access the �rst and next variable� the functions first�var�� and

next�var�var� are used �see pseudo code in Figure ��� The actual implementation of

these functions re�ects the chosen order of the variables� We consider four di�erent

heuristics�

VBP�INST� This heuristic processes the variables in the same order as the sequential

QSim algorithm instantiates the variables� The original QSim algorithm reorders

the constraints to avoid backtracking at early stages of the CSP algorithm � i�e��

variables with one value are instantiated �rst� VBP�INST starts with splitting the

domains of variables that are instantiated directly after the one�value variables of

the original QSim algorithm�

VBP�CON� The number of attached constraints of a given variable de�nes the order of

this heuristic� The domains of variables which are shared by many constraints are

partitioned �rst� Thus� many tuple sets are divided into subsets�

VBP�DOM� The cardinalities of the domains determine the order of the variables� The

tuple sets of constraints attached to variables with large domains are partitioned

�rst� This results in the generation of many subsets of the tuple sets�

VBP�TUP� The order of variables is based on the total number of tuples of all attached

constraints� This heuristic divides the largest tuple sets �rst�

All four of these heuristics are advantageous for certain types of CSPs� However�

we are interested in an e�cient parallel algorithm for qualitative simulation� Hence� we

must determine which heuristic results in both a minimum total workload and equally

��

sized subproblems for typical CSPs of qualitative simulation� The next section includes a

comparison of the partitioning heuristics based on speedup estimations using QSim CSPs�

� Complexity Analysis and Speedup Estimation

	�� Complexity Analysis

The asymptotic complexity of our parallel constraint satisfaction algorithm is determined

by the complexities of the three consecutive steps of this algorithm� partitioning the

search space with VBP� solving the subproblems in parallel and merging the results of

the subproblems to the overall result� The complexity of solving a CSP or a polynomial

number of subproblems in parallel is NP�complete 	���� The complexity of the �nal step

is linear with the number of solutions� since the overall result is simply merged by the

union of the results of the subproblems�

For VBP� we �rst derive the worst�case complexity for general CSPs and then re�

�ne the results by taking into account the properties of QSim CSPs� The elementary

operation in this complexity analysis is de�ned as the local check in the procedure

generate�subproblem �lines ���� in Figure ��� Hence� the number of local checks is

given by

�calls to generate�subproblem� � �local checks in generate�subproblem��

generate�subproblem is called by the procedure vbp to check a candidate subspace�

The number of recursion levels in vbp is limited by jV j
 at each level a variable vi is

partitioned which induces jDij recursive calls� Hence� the number of candidate subspaces

cannot exceed
QjV j

i�� jDij�

The number of local checks within generate�subproblem is given by

jCj � �no� of tuples per constraint� � �no� of variables per constraint��

��

For general CSPs� the number of variables attached to a constraint cannot be restricted�

i�e�� the worst�case constraint arity equals jV j� Thus� the number of local checks is given

by

jCj � �
jV jY
i��

jDij� � jV j� ���

The total number of local checks for general CSPs is determined by combining the

number of candidate subspaces and the number of local checks per procedure call�

jCj � jV j � �
jV jY
i��

Di�
� �
�

In QSim CSPs� the constraint arity is limited by � and the domain size is limited by

� This means� a QSim constraint has at most �
 tuples and a maximum of � variables

are attached to it� The maximum number of candidate subspaces is given by
jV j which

leads to a total number of local checks of�

��� � jCj �
jV j ���

This exponential complexity is caused by our worst�case assumption that vbp parti�

tions the domains of all variables� In such a case� the generated candidate subspaces are

already candidate solutions� i�e�� the domain size of each variable equals �� These candi�

dates are then checked by generate�subproblem
 the successive backtracking algorithm

becomes obsolete� This situation is comparable to solving the original CSP by enumerat�

ing all possible combinations of variable values and then checking each combination for

local consistency�

The key to our implementation of the VBP method is that we control the number of

candidate subspaces by the parameter maxsub� This parameter is de�ned by the user and

the choice is mainly in�uenced by the number of processing elements� Particularly� maxsub

is independent of the properties of the CSP� e�g�� jCj and jV j� Hence� the complexity of

our VBP method is given as

��� � maxsub � jCj� ���

��

which is linear in the number of constraints and in the number of requested subproblems�

	�� Speedup Model

The speedup estimation of the parallel constraint satisfaction algorithm is based on worst�

case and best�case execution times of the parallel implementation� In this section� we

derive analytically a model for the speedup� In the next section� we compare the four

partitioning heuristics using execution times from partitioning and running QSim CSPs

on one processing element as input for this model�

The speedup is de�ned as the ratio of the sequential execution time tseq and the parallel

execution time tpar using n processors�

S�n� �
tseq

tpar�n�
���

The parallel execution time is the sum of the execution time of the partitioning algorithm

tvbp� the overall execution time of all subproblems on n processors texe and the execution

time of merging the partial results tmerge�

tpar�n� � tvbp � texe�n� � tmerge ���

In this speedup model� no communication times are considered� To achieve high speedups

with the parallel CSP algorithm� the sequential parts of the overall runtime� tvbp and

tmerge� must be small compared to texe� In such a case� a further simpli�cation of our

model by neglecting tvbp and tmerge� i�e�� tvbp � tmerge � �� is justi�ed� The analysis of the

asymptotic complexity in Section
�� supports this simpli�cation�

The parallel execution time of all subproblems texe is determined by the order in which

the subproblems are executed� Worst�case and best�case parallel execution times� texe�wc

and texe�bc� can be derived from the sequential execution time of the unpartitioned CSP

tseq and the execution time of all its subproblems ti� We de�ne the following execution

��

times�

tseq execution time of the unpartitioned problem

ttot �
Pp

i�� ti total execution time of all p subproblems

tmax � max
p
i��ftig execution time of the subproblem with the maximum workload

���

The worst�case order is given if the subproblem with the maximum workload is sched�

uled last and all other subproblems are equally distributed among the processors� If the

number of processors is large� i�e�� n � p� the parallel execution time is limited by tmax�

The worst�case execution time texe�wc using n processors is given as

texe�wc�n� �

����
���

ttot�tmax

n
� tmax if n � p

tmax otherwise�
����

The best�case execution time texe�bc is determined as follows� If the number of proces�

sors is smaller than d ttot
tmax

e� all subproblems are equally distributed among the processors�

Otherwise the parallel execution time is limited by tmax� More formally� the best�case

execution time is given as

texe�bc�n� �

����
���

ttot
n

if n � d ttot
tmax

e

tmax otherwise�
����

The parallel execution time tpar on n processors is limited by

texe�bc�n� 	 tpar�n� 	 texe�wc�n�� ����

The resulting limits for the speedup S�n� are

tseq

texe�wc�n�
	 S�n� 	

tseq

texe�bc�n�
� ����

By substituting the parallel execution times� the speedup limits can be expressed only by

tseq� ttot and tmax�

��

n�tseq
ttot�	n��
�tmax

if n � p

tseq

tmax
otherwise

����
���

	 S�n� 	

����
���

n � tseq

ttot
if n � d ttot

tmax
e

tseq

tmax
otherwise

��
�

Given a CSP with the sequential execution time tseq and a pair of parameters hpartitioning

heuristic� maxsubi determining ttot and tmax� the speedup model in Equation �
 estimates

the range of the achievable speedup as a function of n� the number of processors�

	�� Comparison of the Partitioning Heuristics

The partitioning heuristics are compared using simulation models from QSim� These

models are called Starling �STLG� 	�� and RCS 	�� and represent CSPs with di�erent

complexities� Simulation of the STLG model results in less complex CSPs ��� variables

and �� constraints�
 simulation of the RCS model results in more complex CSPs �
�

variables and
� constraints�� The execution times of the CSPs from these two models

di�er by orders of magnitude 	����

The execution times tseq� ttot and tmax are determined by the following procedure using

one processing element �digital signal processor TMS���C
� from Texas Instruments��

First� the execution time of the unpartitioned CSP tseq is measured� After the partitioning

of the CSP� the individual execution times for searching each subspace ti are measured�

With these individual execution times� ttot and tmax are determined�

Table � shows the execution times ttot and tmax for the di�erent heuristics of the VBP

method for ��� �
 and ��� requested subproblems� The sequential execution times of the

CSPs are tseq � ���� ms for the STLG model and tseq � ������ ms for the RCS model�

The execution times from Table � are derived by summing up the execution times from

several CSPs of the simulation models� As discussed in Section ���� the requirements for

a good partitioning heuristic are �i� to keep the total workload small and �ii� to generate

equally sized subproblems� It can be seen from Table � that VBP�DOM leads in all

��

maxsub
 �� maxsub
 �
 maxsub
 ���
heuristic model ttot �ms� tmax �ms� ttot �ms� tmax �ms� ttot �ms� tmax �ms�

VBP�INST STLG ���� 	�
� ���� 	��� ��	
 	���
RCS �	��
�
����	 �
��

���
� ����
� ������

VBP�CON STLG ���� 	��� ���� ���� ��
� ���	
RCS �	����	 ��
��� ������ ����� ������ 	����

VBP�DOM STLG 	
��� 	��� �
��	 ���� ����� ����
RCS 	�	���� ������ �������� ������
�	��	� �

���

VBP�TUP STLG ���� ���� ���� ���� ��
� ���	
RCS �
����� ��	�	� ����
� ����� ������

���

Table �� Comparison of the four heuristics of the variable�based partitioning� The execu�
tion times of the partitioned subproblems ttot and tmax are given in ms�

�

cases to remarkably higher total workloads than the other partitioning heuristics� For

the other heuristics� ttot is in some cases smaller than tseq� On the basis of the �rst

requirement� a small total workload� only VBP�DOM can be discarded� The in�uence of

the number of requested subproblems on ttot and tmax is interesting� While an increased

number of requested subproblems reduces tmax in all cases� the total execution time ttot

does not show such regular behavior� Moreover� in a parallel implementation a high

number of subproblems increases the communication� Hence� the parameter maxsub has

to be adjusted in relation to the number of processors and cannot be used to select or

discard a partitioning heuristic in general� Concerning the second requirement� equally

sized subproblems� our investigations revealed that the heuristic VBP�CON performs best

on the widest range of QSim CSPs� Although for some particular CSPs� VBP�TUB and

even VBP�INST also perform well� For the implementation of the parallel CSP algorithm�

the partitioning heuristic VBP�CON was chosen�

A graphical comparison of the speedup limits of the heuristics VBP�INST and VBP�

CON for the model RCS is shown in Figure �� The speedups are presented for up to �

processors and for ��� �
 and ��� requested subproblems� Figure � shows clearly that

VBP�INST leads to a saturation of the achievable speedup due to the high values of tmax�

� Multi�Processor Implementation

�� MIMD Architecture

The parallel constraint satisfaction algorithm for QSim is implemented on a MIMD mul�

tiprocessor system consisting of digital signal processors �DSP� of type TMS���C
� 	����

The processing elements are connected in a tree structure via their communication ports�

Each processing element is operated at a clock frequency of �� MHz and is equipped with

a local memory of � MByte� The root processing element of the tree structure �master

��

VBP-CON: RCS (64 requested subproblems)

Smin

Smax
Smin

Smax

Smin

Smax

Smin

Smax

Smin

Smax

Smin

Smax

VBP-INST: RCS (16 requested subproblems)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8
n

S(
n)

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8
n

VBP-CON: RCS (16 requested subproblems)

S(
n)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8
n

VBP-INST: RCS (64 requested subproblems)

S(
n)

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8
n

VBP-INST: RCS (256 requested subproblems)

S(
n)

S(
n)

S(
n)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
n

VBP-CON: RCS (256 requested subproblems)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
n

Figure �� Speedup limits of VBP for the RCS model� Speedup limits for the partitioning
heuristics VBP�INST and VBP�CON are shown in the left and right column plots�

��

processor� executes the �rst and the last step of the parallel CSP algorithm� i�e�� the par�

titioning of the CSP and the merging of the partial results� All other processing elements

�slave processors� are responsible for solving the subproblems� Hence� the subproblems

are sent from and their results are received by the master processor
 no communication is

required between slave processors� Software is implemented in �C� using the distributed

real�time operating system Virtuoso 	���� This operating system is specially designed for

multi�DSP architectures and allows a �exible and portable implementation�

In QSim� CSPs with the same constraint network are often solved successively� In

these CSPs� the sets of variables V and constraints C remain the same
 only the set

of domains D and� thus� the set of tuples T change� To reduce the communication

overhead of the parallel implementation� the subproblems are transferred to the individual

processing elements in two steps� In the initial step� the sets of variables and constraints

are broadcasted to all slave processors� After CSP partitioning� only the sets of tuples of

each subproblem are sent to the individual slave processors� This avoids retransmission

of the unchanged constraint network�

�� Experimental Results

The parallel implementation of constraint satisfaction in QSim is evaluated using input

data from the QSim simulation models STLG� RCS and QSEA� Simulation of the QSEA

model ��� variables and �� constraints� results in CSPs with the longest sequential execu�

tion times 	���� Table
 presents the execution times and the speedups measured for one

CSP � as opposed to the summarized execution times in Table � � during the simulation

of each model� Table
 shows the sequential execution time tseq� the time required for

the partitioning algorithm VBP�CON tvbp and the parallel execution time of all subprob�

lems texe�merge� The time required for broadcasting the sets of variables and constraints�

for merging the partial results and for transmitting the subproblems and their results is

��

included in the execution time texe�merge� The total parallel execution time tpar is the

sum of tvbp and texe�merge� The execution times of the parallel algorithm were measured

using � to � slave processors� and �� subproblems were requested from the partitioning

algorithm VBP�CON�

Parallel execution of the STLG CSP reveals an interesting behavior� First� superlinear

speedup is observed� This occurs because the partitioning algorithm discards many incon�

sistent subproblems� The total execution time of the remaining consistent subproblems

is smaller than the execution time of the unpartitioned problem �ttot � tseq�� Second� the

speedup decreases with the number of slave processors� This occurs because the rejection

of subproblems of VBP�CON is so e�ective for this CSP that only one subproblem can

be generated� The overhead increases with the number of slave processors due to the

broadcasting of the sets of variables and constraints� Therefore� the speedup decreases�

A speedup greater than � using one slave processor is also observed for the RCS model�

In this case� the partitioning algorithm also discards many inconsistent subproblems� but

more than one subproblem is generated� Therefore� the speedup increases with the num�

ber of slave processors� Figure � presents graphically the speedups for these models� The

speedup of the parallel backtracking implementation is shown for � to � slave processors�

� Discussion

This paper presented a parallel constraint satisfaction algorithm for the qualitative simu�

latorQSim� This parallel algorithm is based on a parallel�agent�based strategy which par�

titions the overall search space of the CSP into independent subproblems� The variable�

based�partitioning �VBP� method was introduced to generate the independent subprob�

lems� Based on an analytical speedup model� four di�erent heuristics of VBP were evalu�

ated and compared� The partitioning heuristic VBP�CON achieves the best results for the

��

model tseq tvbp �slaves texe�merge S�n�

� ����� ms ����
� ����� ms ����
	 ����� ms ����

STLG
���� ms ����� ms
 ��
�� ms ���

� ���
� ms ����
� ����� ms ����
� ����� ms ����

� ���
�� ms ��
�
� ������ ms ����
	 ���
�	 ms ����

RCS
��	�� ms ����� ms
 ����� ms 	���
� ����� ms 	���
� ��
�
 ms 	�	�
� ����� ms 	�
	

� �	������ ms ����
� �����
� ms ����
	

����� ms ����

QSEA ������

 ms ����� ms
 	����
� ms 	���
� ��
���� ms
�	�
� ������� ms
���
� �
����
 ms ����

Table
� Execution times and speedups of the parallel CSP algorithm for theQSimmodels
STLG� RCS and QSEA using � to � slave processors� The total parallel execution time
tpar is the sum of tvbp and texe�merge�

7
n

S(
n)

STLG
RCS

QSEA

0

1

2

3

4

5

6

1 2 3 4 5 6

Figure �� Speedup S�n� of the parallel CSP implementation for the models STLG� RCS
and QSEA using n � � � � � � slave processors�

��

QSim CSPs� The parallel algorithm was implemented on a MIMD processor architecture

where the speedup of three CSPs from QSim models were measured�

With a speedup of S � ���� for � slave processors for the CSP of the QSEA model

and S � ��
� for the RCS model� the experimental results proved that our partition�

ing method VBP and the chosen heuristic VBP�CON are e�cient� The actual achieved

speedup depends strongly on the input simulation model of QSim� i�e�� the CSPs derived

from these models� In general� CSPs with long sequential execution times achieve higher

speedups� From the viewpoint of �real�world� applications of qualitative simulation� simu�

lation models with many variables and constraints must be expected � resulting in CSPs

with long execution times� We expect that our parallel CSP algorithm will perform even

better with these �real�world� models than with the �experimental� models used in this

evaluation�

The speedup limits derived from our analytical model match in most cases with the

measured speedups of the parallel implementation� However� the speedup model is based

on the assumption that the times for partitioning� merging and communicating are negli�

gible compared to the parallel execution time� If this assumption is violated� the achieved

speedup can di�er from the estimations� This happens� for example� for the RCS model

with �
 requested subproblems� In this case� the achieved speedup for more than � slave

processors is smaller than the estimated worst�case� However� for the most complex CSP�

the CSP of the QSEA model� and also for the CSPs of the expected �real�world� QSim

models� the partitioning time is clearly negligible compared to the parallel execution time

�compare Table
�� This validates our speedup model and� hence� con�rms the chosen

partitioning heuristic�

The application of the parallel CSP algorithm presented in this paper is not limited

to the qualitative simulator QSim� Our algorithm can be applied to any CSP that is

described by sets of constraints� variables and domains as de�ned in Section � and where all

��

solutions of the CSP are required� The use of the dual constraint network representation

in this algorithm is actually no restriction� since CSPs can be transformed between the

di�erent representations� The limitations on the constraint arity and the domain size in

QSim CSPs in�uence the choice of the partitioning heuristic� For other types of CSPs�

partitioning heuristics other than VBP�CON may be more e�ective� The partitioning

strategy VBP itself does not pose any limitation on the constraint arity and the domain

size� Therefore� the presented parallel CSP algorithm will probably not only signi�cantly

reduce the runtimes of �real�world� applications in qualitative simulation but will also be

applicable to a wide range of constraint satisfaction tasks�

Acknowledgment

This research project was partially supported by the Austrian Science Fund Fonds zur

F�orderung der wissenschaftlichen Forschung under grant number P��
���MAT�

References

	�� B� Burg� �Parallel Forward Checking� First part�� Technical Report TR���
� Insti�

tute for New Generation Computer Technology� September �����

	�� B� Burg� �Parallel Forward Checking� Second part�� Technical Report TR�����

Institute for New Generation Computer Technology� September �����

	�� P� R� Cooper and M� J� Swain� �Arc consistency� parallelism and domain depen�

dence�� Arti�cial Intelligence� ����������� �����

	
� R� Dechter� �Constraint Networks�� In Stuart C� Shapiro� editor� Encyclopedia of

Arti�cial Intelligence� volume �� pages �������� John Wiley Sons� Inc�� �����

��

	�� S� Kasif� �On the Parallel Complexity of Discrete Relaxation in Constraint Satisfac�

tion Networks�� Arti�cial Intelligence�
���������� �����

	�� H� Kay� �A qualitative model of the space shuttle reaction control system�� Technical

Report AI������� Arti�cial Intelligence Laboratory� University of Texas� September

�����

	�� B� Kuipers� �Qualitative Simulation�� Arti�cial Intelligence� ����������� �����

	�� B� Kuipers� �Qualitative Reasoning� Modeling and Simulation with Incomplete

Knowledge	� Arti�cial Intelligence� MIT Press� ���
�

	�� W� Lin and B� Yang� �Fast Parallel Tree Search with Static Load�Balancing For�

ward Checking Technique�� In Proceedings of the ISCA International Conference on

Parallel and Distributed Computing Systems� pages ������ Orlando� Florida U�S�A��

September �����

	��� W� Lin and B� Yang� �Probablistic Performance Analysis for Parallel Search Tech�

niques�� International Journal of Parallel Programming� �����

	��� Q� P� Luo� P� G� Hendry� and J� T� Buchanan� Strategies for Distributed Constraint

Satisfaction Problems� In Proceedings
�th International DAI Workshop� Seattle�

WA� ���
� DAI�

	��� A� K� Mackworth� �Constraint Satisfaction�� In Stuart C� Shapiro� editor� Encyclo�

pedia of Arti�cial Intelligence� volume �� pages �������� John Wiley Sons� Inc��

�����

	��� A� K� Mackworth and E� C� Freuder� �The Complexity of Some Polynomial Network

Consistency Algorithms for Constraint Satisfaction Problems�� Arti�cial Intelligence�

�������
� �����

��

	�
� R� Mohr and T� C� Henderson� �Arc and Path Consistency Revisited�� Arti�cial

Intelligence� ����������� �����

	��� M� Platzner and B� Rinner� �Improving Performance of the Qualitative Simulator

QSIM � Design and Implementation of a Specialized Computer Architecture�� In

Proceedings of the ISCA International Conference on Parallel and Distributed Com�

puting Systems� pages
�
����� Orlando� USA� September �����

	��� M� Platzner� B� Rinner� and R� Weiss� �Exploiting Parallelism in Constraint Sat�

isfaction for Qualitative Simulation�� J�UCS The Journal of Universal Computer

Science� �������������� December �����

	��� M� Platzner� B� Rinner� and R� Weiss� �Parallel Qualitative Simulation�� Simu�

lation Practice and Theory
 International Journal of the Federation of European

Simulation Societies� ��������������� ����� Elsevier Science Publishers B�V�

	��� P� Prosser� �Hybrid Algorithms for the Constraint Satisfaction Problem�� Compu�

tational Intelligence� ������������� �����

	��� V� N� Rao and V� Kumar� �On the E�ciency of Parallel Backtracking�� IEEE

Transactions on Parallel and Distributed Systems�
�
��
���
��� April �����

	��� B� Rinner� �Design� Implementation and Experimental Evaluation of a Scalable Mul�

tiprocessor Architecture for Qualitative Simulation	� PhD thesis� Graz University of

Technology� �����

	��� R� Simar� P� Koeppen� J� Leach� S� Marshall� D� Francis� G� Mekras� J� Rosenstrauch�

and S� Anderson� �Floating�Point Processors Join Forces in Parallel Processing Ar�

chitectures�� IEEE Micro� pages ������ August �����

��

	��� E� Verhulst� �Virtuoso� A virtual single processor programming system for dis�

tributed real�time applications�� Microprocessing and Microprogramming�
������

���� ���
�

	��� Y� Zhang and A� K� Mackworth� �Parallel and Distributed Finate Constraint Satis�

faction� Complexity� Algorithms and Experiments�� In L� Kanal� V� Kumar� H� Ki�

tano� and C� Suttner� editors� Parallel Processing for Arti�cial Intelligence� chapter ��

Elsevier Sience Publishers B�V�� �����

�

