
Texas Instruments article page 1

A Multi-DSP Laboratory Course

Bernhard Rinner, Reinhard Schneider, Christian Steger and Reinhold Weiss
Institute for Technical Informatics

Technical University of Graz, AUSTRIA
{Rinner, Schneider, Steger, RWeiss}@iti.tu-graz.ac.at

ABSTRACT:

This paper describes a laboratory course at our
institute using TMS320C3x and TMS320C4x
digital signal processors (DSPs). This laboratory
course is intended for graduate students in
Electrical Engineering or Telematics. It aims at
introducing DSP processors and their special
features as well as at demonstrating the
advantages of these features, based on different
experiments. These experiments range from
simple audio processing by means of a DSP
Starter Kit to parallel image processing using a
multi-DSP system.

Keywords: TMS320C3x, TMS320C4x, PPDS,
laboratory course, parallel processing

1. INTRODUCTION

The education of digital signal processing (DSP)
in theory as well as in practice has always been a
challenging task [1]. The laboratory course
described in this paper was completely revised
for the fall semester 1997 and is indented for
graduate students in Electrical Engineering and
Telematics. (The curriculum of Telematics
combines Electronics, Communications
Engineering and Computer Science.) These
students have a basic knowledge in signal
processing and programming skills in coding
assembler and 'C'. Some of them have already
experiences in parallel processing and in
distributed systems.

This laboratory course aims at introducing DSP
processors in general, their special features. The
advantages resulting from the use of these
features are pointed out in different experiments
in the area of digital signal processing. Further
goals of this laboratory course are that students
get an understanding of simple DSP algorithms
and an introduction to parallel processing.

The remainder of this paper is organized as

follows: Section 2 presents a short overview of
the laboratory course and a preceding mandatory
lecture for this course. Section 3 introduces the
required laboratory equipment. Section 4
describes the four experiments in more detail.
Section 5 presents a course feedback. Section 6
concludes the paper with a short summary.

2. COURSE OVERVIEW

The laboratory course is preceded by the lecture
"VLSI-Prozessoren". The attendance of the
lecture is mandatory for the laboratory course.
An overview of the lecture and the laboratory
course is depicted in figure 1. The lecture deals
with technological and performance aspects of
modern VLSI processors. It is organized in three
blocks:

• The first chapter deals with performance
criteria such as pipelining and superscalar
technologies, memory hierarchies or special
instruction sets, covering high end RISC
processors such as DEC Alpha and
microcontrollers of the Mc638xx family.

• The objective of the second chapter is to
teach principles of digital signal processors
and basic digital signal processing
algorithms. Special features of DSP
architectures are described (HW loop
support, addressing modes, etc.) and
illustrated by examples. An overview of the
TMS320 DSP processor family from Texas
Instruments (TI) is given at the end.

• The third part introduces the architecture
(data path, memory architecture, instruction
set, etc.) of the TM320C3x and
TMS320C4x processors. The design of the
boards used in the laboratory are described
at the end of the lecture.

The laboratory course, immediately following
the lecture, is organized in four experiments:

• Experiment #1 introduces DSP processors

Texas Instruments article page 2

and is based on the TMS320C3x DSP
Starter Kit (C30 DSK) and a simple ‘audio
box' with a function generator and a loud-
speaker. The equipment is made available to
enable home training for the students.

• Experiment #2 is based on the TMS320C30
Evaluation Module (C30 EVM) and the
Code Composer software as programming
environment. This experiment shows how to
take advantage of the DSP processor
features by programming in assembler. For
that, the students optimize typical DSP
algorithms like FIR and IIR filters.

• Experiment #3 deals with more complex
DSP tasks in the area of image processing.
The image processing algorithms are
implemented in 'C' using the Code
Composer and the Parallel Programming

Development System (PPDS) based on four
TMS320C40 processors.

• Experiment #4 introduces the parallel
processing capabilities of the TMS320C40
DSP. In this experiment the image
processing algorithms of experiment #3 are
parallelized using up to four processors of
the PPDS.

2.1 RELATED DSP-COURSES

DSP courses are prepared by educators in
electrical and computer engineering departments
all over the world. Most of them [3],[4],[5] are
using boards employing TMS320C3x and
TMS320C5x processors. TMS320C4x
processors are rarely used in DSP related
education of students. For example, in [2] an
educational development environment for
parallel image processing is presented.

3. LABORATORY EQUIPMENT

Since the objective of this laboratory is to
impressively demonstrate the advantage the
special features of DSPs, appropriate equipment
is required to be able to explore these features.
Support for parallel processing can only be
demonstrated on a parallel platform. Other
features, like hardware loop control etc., can
easily be shown by means of a single processor
platform like the DSK. Thus, the equipment
changes according to the requirements of the
respective goals of experiments.

3. 1 HARDWARE

The first experiment is intended for individual
home training. A PC acting as host is available
to each student. Students, who do not have a PC
at home, can work in public laboratories at our
university. The special equipment for
experiment #1 consists of a complete C30 DSK
package, a simple ‘audio box’ with a function
generator and a loudspeaker, a power supply for
both devices and cables (see figure 2, lower left
corner). All the equipment is made available by
the institute for every student. The other
experiments are made in the laboratory in
groups. For experiment #2 a host PC with a
C30 EVM board inside is connected to a
function generator and an oscilloscope to test the

as
se

m
bl

er
ho

m
ew

or
k

in
di

vi
du

al #1

#3

#4

#2

low-pass filter

parallel image
processing

image processing

implementation
efficiency

edge detection

simple audio
processing

introduction into
assembler

digital filtering

parallelization strategies,

TMS320C3x and TMS320C4x:

Boards: DSK, EVM, PPDS

FFT), addressing modes, HW support
architecture, algorithm (FIR, IIR,

VLSI Processor Architectures:

Digital Signal Processing:

for DSPs, DSPs from TI (C2x, C3x,
C4x, C5x, C6x, C8x)

i860, microcontroller (Motorola)

CICS, RISC, pipelining, superscalar
performance parameters, SPARC,

control, pipelining,

data path, memory architecture,
addressing, instruction set, execution

L
ec

tu
re

L
ab

or
at

or
y

C

PP
D

S

su
pe

rv
is

ed
 g

ro
up

 w
or

k communication (DMA, ports)

time

E
V

M

D
SK

Figure 1: Overview of the lecture and laboratory
course "VLSI Prozessoren"

Texas Instruments article page 3

implemented filters (see figure 2, right side).
Experiment #3 and #4 require a PPDS
connected via a XDS510 without any further
external devices (see figure 2, top). The
development software is responsible for data
input and output for these experiments.

3. 2 SOFTWARE

During the first experiment, the students should
become acquainted with the assembly
instructions of the TMS320 floating point DSP
family of TI. The software tools shipped with the
C30 DSK (assembler, debugger) are perfectly
suited for this purpose. From the second
experiment on, the Code Composer development
environment from Go-DSP and the high level
language tools (HLL tools) of TI are used. This
easily allows to compile and map the programs
onto different memory hierarchies. Experiments
#3 and #4 make strongly use of the I/O features
of Code Composer (e.g., for image view).

4. EXPERIMENTS

4. 1 EXPERIMENT #1

The goal of experiment #1 is to introduce DSP
processors and to become familiar with the
C30/C40 assembly language. The students have
to do this at home individually. This is a
challenging fact, as for most of them it is the

first contact with DSP processors. The objective
is reached in four steps, starting from scratch,
with increasing difficulty. The time available for
this experiment is two weeks. All problems deal
with audio processing. As an analog front-end
for the DSK, the students get an ‘audio box’
with a function generator (sinus, triangle and
square signals) and a loudspeaker with an
amplifier.

Step 1:
The goal of this step is to become acquainted
with the DSK hard- and software and the audio
box. The first program (loopaic.dsk) has to be
loaded and started with the debugger. The
students act as measuring instrument by hearing
the different sounds of the wave forms.
Intentionally, the volume of the amplifier can
not be changed manually and it is set up to be
very loud. The first problem is to change the
volume of the audio signal by changing the
amplifying factor in the code.

Step 2:
In this step, a short code element has to be
analyzed. The goal of this step is to start to work
with the TI manuals. By examining some
assembler instructions, the students learn how to
use the manuals.

Step 3:
In this step, programming in assembly language
is learned by changing existing programs. The
analog signal must be changed in different ways
in the time domain. Changes to the signal like
amplification, clipping, rectification or squaring
are easy to implement because only some
additional instructions are needed. Differenti-
ation, integration or amplitude modulation are
more difficult to implement because they need at
least one storage element.

Step 4:
The last step of the homework is dedicated to
FIR – filters. First, the “fir.dsk“ program
shipped with the DSK has to be examined. The
sampling rate has to be programmed and the
effects on the filter have to be described. Then, a
filter with 57 coefficients is developed and
assessed. Main topics to be investigated are the
characteristic of the filter, the connection
between sampling rate and filter frequencies as
well as an experimental analysis of the
computation time by gradually increasing the

Experim ent #3,
Experim ent #4:

PPDS

Experim ent #1:
C 30 D SK +
A udio Box

Experim ent #2:
 C 30 EVM

Experim ent #2:
function generator,

oscilloscope

Figure 2: Hardware equipment used for the
laboratory course

Texas Instruments article page 4

sampling rate.

As the equipment does not contain an
oscilloscope, the programs have to be tested by
analyzing the audible effects of the signal
changes (frequency doubling, frequency
dependent volume, etc.).

4. 2 EXPERIMENT #2

Experiment #2 is the first of three experiments
done in the laboratory under supervision. All
these experiments have to be solved within four
hours. Experiment #2 deals with a fundamental
assessment of a standard FIR – filter in terms of
performance and hardware utilization. The C30
EVM and the Code Composer are used as
programming environment. A FIR – filter is
implemented in assembly language in an
optimized and non-optimized way, as well as in
‘C’. The performance of these implementations
running on different kinds of memory (internal /
external) is assessed. The goal of this
experiment is to impressively show the
differences in terms of performance.

Step 1:
A FIR – filter with given coefficients is
implemented and the sampling rate is set to a
given value. The characteristic and cutoff
frequencies of the filter are measured.

Step 2:
The execution time of the inner filter loop
without I/O is calculated from the assembly code
and measured with the profiler. A filter with all
useable DSP features like circular addressing,
hardware loop, parallel instructions or delayed
branches is implemented, as well as one with
none of these features. Again, execution cycles
are calculated and measured. The different
implementations are tested with different
mappings to internal and external memory to
show the effect of the memory hierarchies on
execution time. The maximum possible order of
the filter is calculated for each configuration.

Step 3:
The filter from step 2 is implemented in ‘C’.
The assembly codes compiled with and without
optimization are compared to the
implementations of step 2. This step shows the
difficulty of using special hardware features by
high – level programming languages.

4. 3 EXPERIMENT #3

Experiment #3 deals with more complex DSP
tasks in the area of image processing. The image
processing algorithms are implemented in 'C'
using the Code Composer and the PPDS. The
effects of the implemented image processing
algorithms, e.g., low-pass filter and edge
detection, are easily visualized by the Code
Composer. The download of the pictures
(black/white, 8 bit) into the memory of the
TMS320C40 take place via the function "Data-
Load" of the Code Composer. For viewing the
results on the screen the function "View-Graph-
Image" is used.

Step1:
To get an experience with the developing
environment two simple pixel manipulation
function are to be implemented by the students.

One image-processing technique is
thresholding, in which the points of an image at
or near a particular value are highlighted. In a
gray-scale image, this highlighting can be done
by converting all pixels below a given value to
black, and all pixels above that value to white,
producing a threshold edge between black and
white regions. Then a function for brightness
manipulation is programmed by the students.

The execution time for these functions is
determined using the profiler of the Code
Composer.

Step 2:
Window-based image processing is another
technique for analyzing the information of an
image. Step 2 focuses on the development of a

box-filter which calculates each pixel based on
the following equation:
The matrix (mask) size h depends upon the
degree of detail in the image but is normally
limited by processing speed to quite small (e.g.,
3x3 to 5x5) values. The matrix h represents a
box which moves over the entire image.

∑ ∑
−

−−=

−

−−=

−−=
2

1

2

1

2

1

2

1

),(*),(),('

m

m
l

m

m
r

rlhrylxsyxs

Texas Instruments article page 5

The filtertyp is determined by the coefficients,
e.g.,:

The students are using different coefficients and
images to see the effects. Additionally, they have
to measure the execution time of the filter-
function dependent on the dimension of the
matrix size.

4. 4 EXPERIMENT #4

Experiment #4 of our laboratory course deals
with parallel processing based on the image
processing algorithms developed during
experiment #3, i.e., the box-filter algorithm. The
box-filter algorithm is parallelized by exploiting
its data-parallelism and is implemented on the
PPDS using the Code Composer. Thus, the
students use the same development environment
as in the previous experiment.

The goals of this experiment are (i) to introduce
parallel processing using a distributed memory
architecture, (ii) to investigate the effect of
parallel processing in terms of speedup and
efficiency and (iii) to explore the multi-
processor capabilities of the TMS320C40
processor. Please note that the PPDS offers
shared as well as distributed memory. Due to the
limited time for this experiment, we restrict the
parallel implementation to a distributed memory
architecture.

The experiment is organized into three
successive steps.

Step 1:
The data transfer via the communication ports of
the TMS320C40 is introduced in the first step,
i.e., the image filtering is performed like a
remote procedure call using two processors.
First, the complete image is sent from the first
processor to second processor. Then the box-
filter algorithm is executed on the second
processor, and finally the filtered image is sent
back to the first processor. The data transfer is

implemented using the functions out_msg() and
in_msg() from the parallel runtime support
library (PRTS).

The students have to measure the
communication times and to determine the
transfer rate as well as the communication to
computation ratio.

Step 2:
In this step, the box-filter algorithm is
parallelized using two processors. This is simply
achieved by dividing the image into two
partitions (including an overlap section at the
dividing line) and filtering both partitions in
parallel. This parallel algorithm is implemented
using a master and a slave processor.

The master processor divides the image into two
partitions, sends one partition to the slave
processor, filters the other partition and receives
the filtered partition from the slave processor.
The slave processor receives the image partition,
filters it and sends the result back to the sender
(compare to step 1).

Data transfer is also implemented by DMA
using the functions send_msg() and
receive_msg() from the PRTS library. Thus, the
students can investigate the effect of DMA
transfer. The runtime of the parallel
implementation is also compared to the single-
processor runtime of experiment #3, and the

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

111

111

111

9

1
h

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

121

000

121

8
1

h

 low-pass sobel

slave 2slave 1 slave 3

brigthness low-pass threshold

outputinput

master

edge-detection

Figure 3: Image partitioning for parallel
image processing on four TMS320C40 DSPs.

Texas Instruments article page 6

speedup and efficiency of the parallel
implementation are determined.

Step 3:
In the last step of this experiment the
parallelization strategy of step 2 is generalized
to an arbitrary number of processors. Thus, the
master processor divides the image into n
partitions, sends n-1 partitions to the slave
processors, filters 1 partition and receives n-1
filtered partitions from the slave processors. In
figure 3 an example with four slaves is shown.

The speedups for 2 to 4 processors are
determined and compared to a simple speedup
model using the communication to computation
ratio. The students can also experiment with the
image partitioning (uniform or non-uniform) in
order to achieve a high speedup.

5. COURSE FEEDBACK

At the end of the course, a feedback form was
filled out by the students. The questions were
divided into four sections: (i) prior knowledge of
the students, (ii) detailed comments on the
experiments, (iii) equipment and tools and (iv)
general impression.

The knowledge of the students about DSP in
general and DSP processors was low before the
course. Thus, special attention will be given to
promote additional courses at our university in
future.

The results concerning the individual
experiments reassured our concept (see figure
4). None of the students rated the demands as
heavy. The modal value was “average” for each
exercise. Also the time the students had to solve

the problems are rated as optimal.

The direct connection between the assembly
code and the human ear as a measuring
instrument instead of an oscilloscope was a great
challenge for the students. The average mark for
lab equipment and tools was good. Only those
who had difficulties to be a measuring
instrument themselves (see experiment #1)
wished to have an oscilloscope.

The general impression was very good, 95 % of
the students are likely to recommend this course
to others.

6. CONCLUSION

In this paper a laboratory course using
TMS320C3x and TMX320C4x DSPs is
presented. It is intended for graduate students in
Electrical Engineering or Telematics. The
course structure allows to get deep insight into
DSP processor architecture, even starting from
scratch. After a lecture part, architectural
aspects and performance of the TMS320 DSP
processor family are assessed by four
experiments with increasing difficulty, ranging
from simple audio processing to parallel image
processing. The students feedback confirmed the
successful implementation of this laboratory
course.

ACKNOWLEDGEMENTS

The authors are grateful to Texas Instruments
for the donations and, especially, to Robert C.W.
Owen and Richard Oed for their support.

REFERENCES

[1] R.C.W. Owen, M.B. Akhan, and I. Munro.
Designing Teaching Material for DSPs, Texas
Instruments: Sixth Annual TM320 Educators
Conference, Houston, Texas, USA, 1996

[2] J.H. Saito and M.L. Mucheroni. ArchMDSP:
using C40 for parallel image processing, Texas
Instruments: Sixth Annual TM320 Educators
Conference, Houston, Texas, USA, 1996

[3] A.B. Barreto. A TMS320C50 DSP-based
Real-Time DSP Implementation Course, Texas
Instruments: Sixth Annual TM320 Educators
Conference, Houston, Texas, USA, 1996

ava ila ble time

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

s hor t o ptimal lo ng

difficulty

0%

10%

2 0%

3 0%

4 0%

5 0%

6 0%

7 0%

8 0%

eas y medium h eav y

exp er im en t # 1 e xpe r im en t # 2

exp er im en t # 3 e xpe r im en t # 4

ave rag e

Figure 4: Survey results concerning:
• available time for each experiment and
• difficulty of each experiment

Texas Instruments article page 7

[4] K. Hoover. TMS320C30 DSP Laboratory
Course Taken Concurrently with a DSP Theory
Course, Texas Instruments: Sixth Annual
TM320 Educators Conference, Houston, Texas,
USA, 1996

[5] F.J. Taylor. SPECtra: A Signal Processing
Engineering Curriculum, IEEE Transactions on
Education, vol. 39, pp. 180-185, May 1996.

