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Abstract

We present a model�based monitoring method for dy�
namic systems that exhibit both discrete and contin�
uous behaviors� MIMIC �Dvorak � Kuipers �����
uses qualitative and semi�quantitative models to mon�
itor dynamic systems even with incomplete knowl�
edge� Recent advances have improved the quality of
semi�quantitative behavior predictions	 used observa�
tions to re
ne static envelopes around monotonic func�
tions	 and provided a semi�quantitative system identi
�
cation method� Using these	 we reformulate and extend
MIMIC to handle discontinuous changes between mod�
els� Each hypothesis being monitored is embodied as a
tracker	 which uses the observation stream to re
ne its
behavioral predictions	 its underlying model	 and the
time uncertainty of any discontinuous transitions�

Introduction

Physical systems are by nature continuous	 However�
it is natural to simplify models by abstracting isolated
regions of rapid change to instantaneous discontinuities
separating regions of continuous behavior 
Iwasaki et
al� ����
 Nishida � Doshita �����	 Systems which ex�
hibit both continuous and discrete behaviors are called
hybrid systems � where a continuous segment of the sys�
tem�s behavior is called a mode of operation and a dis�
continuous change is called a transition between modes	

Model�based monitoring relies on a comparison be�
tween the predicted behavior of a model and the ob�
served behavior of a physical system	 Traditional mon�
itoring approaches typically use a single precise model
of the physical system	 However� even if the system is
behaving properly� precise parameter values and func�
tional relationships are often not known	 More impor�
tantly� monitoring systems are designed to detect un�
expected events or faults� after which knowledge of the
system is by de�nition incomplete	 A reliance on precise
models leads to overly�speci�c predictions� sacri�cing
accuracy and coverage exactly when it is most impor�
tant for the monitoring system to consider all possible
scenarios	

The MIMIC framework 
Dvorak � Kuipers ����� ad�
dresses this need� �rst by using qualitative and semi�
quantitative 
SQ� models in the QSIM representation


Kuipers ����� to express incomplete knowledge with
a guarantee that all possible real�valued behaviors are
covered
 and second� by tracking multiple qualitatively�
distinct hypotheses in parallel	 SQSIM 
Kay ����� ex�
tends the semi�quantitative inference power of QSIM by
deriving and reasoning with dynamic envelopes guaran�
teed to bound the real behaviors consistent with an SQ
model	 SQUID 
Kay ����
 ����� is a semi�quantitative
system identi�cation method based on SQSIM that as�
similates a set of observations to an SQ model over a
single continuous mode	

Time uncertainty at a mode transition has a par�
ticularly explosive e�ect on the uncertainty of predic�
tions from the SQ model after the transition	 There�
fore� we focus our attention �rst on getting the most
out of SQUID�based tracking of a continuous mode hy�
pothesis� and second� on detecting the mode transition
and re�ning its time uncertainty	 In our approach� the
monitoring system starts with a coarse description of
the physical system and uses the observation stream
to re�ne the behavior prediction� its underlying model�
and the time uncertainty of any discontinuous transi�
tion	 After presenting the details of our extension and
reformulation of MIMIC� we present a non�trivial ex�
ample and discuss related work	

Tracking Piecewise Continuous

Behaviors

A tracker embodies a continuous mode hypothesis and
con�rms or refutes the hypothesis by unifying its pre�
dictions with the observed behavior	 When the obser�
vations provide su�cient new information� the tracker
may be able to re�ne the uncertainty in the underlying
model� and thus make more precise predictions in the
future	

SQ System Identi�cation

A tracker is based on SQUID� which re�nes an impre�
cise model 
SQDE� by a process called trend matching 	
Uncertainty in the SQDE is represented by numerical
intervals bounding possible values of unknown param�
eters� and by static envelopes � functions bounding the
possible graphs of unknown monotonic functions	
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Figure �� Abstracted description used by trend match�
ing	 SQSIM derives a behavior description at the qual�
itative� segment and dynamic envelope level	 Trends
describe the observed data at the same levels	

Trend matching compares semi�quantitative trajec�
tory descriptions derived by SQSIM 
the SQ prediction�
and the corresponding properties of the observations

the SQ trend�	 To re�ne the underlying model� por�
tions of the model space which cannot plausibly gener�
ate the observations are excluded	

There are three levels of abstracted properties of the
trajectories� corresponding to the level of detail derived
by the components of SQSIM� qualitative 
QSIM�� seg�
ment 
Q��� and dynamic envelope 
NSIM� descriptions

Figure ��	 The qualitative description is de�ned by
a sequence of symbols 
�� � and �� representing the
derivative�s sign 
qdir� of the trajectory at time points
and intervals between time points	 The segment de�
scription speci�es intervals bounding the trajectory at
particular time points� i	e	� magnitude and time ranges	
The dynamic envelope description bounds the trajec�
tory by a lower and an upper envelope	 A trend rep�
resents the abstracted properties of the observed data

Figure ��� i	e	� symbols representing the qdir� bound�
ing intervals on extrema and bounding envelopes for
monotonic segments	

Tracker Architecture

Figure � presents the architecture of a tracker	 The
tracker is initialized with the SQ prediction and the
underlying SQDE of the current mode	 Information
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Figure �� Tracker architecture	

about the time boundary and the time uncertainty of
the current mode may be given	 The tracker consumes
an observation stream and it either produces a re�ned
SQ prediction and SQDE� or detects a discrepancy be�
tween the observation and the prediction	 The obser�
vation stream is a sequence of samples� numeric val�
ues for variables at speci�ed times derived by possibly
noisy sensors	 Samples do not necessarily appear at
a constant rate� and need not be synchronized across
variables	
Trend forming generates an SQ trend describing

each variable in the observation stream by breaking the
samples into monotonic segments 
Kay �����	 The seg�
ments are determined by computing the slope of a lin�
ear least�squares �t to the data within a sliding win�
dow over the samples	 Dynamic envelope descriptions
for the � and � segments are generated by MSQUID�
a neural network�based estimator for monotonic func�
tions 
Kay � Ungar ������ out to any given con�dence
bound	 Each � segment is described by time and mag�
nitude ranges	

The goal is to detect the qualitative dynamics of
the underlying signal in the noisy observation	 In the
current implementation it is assumed that Gaussian
noise of �xed mean and variance is superimposed on
the �pure� signal	 Each observed variable has an error
model that speci�es bounds on mean and variance for
noise	
Trend mapping compares the SQ trend derived

from the observations with the SQ predictions by step�
ping through both sequences	 If an inconsistency is
detected between the trend and the prediction� the cur�
rent hypothesis is refuted� so the mapping process and
the current tracker are aborted	

Qualitative mapping generates a correspondence be�
tween the qdirs in the SQ prediction and the SQ



trend	 A successful correspondence may fail to be
one�to�one because 
a� the samples in the observa�
tion stream may end before some of the qualitative
changes in the SQ prediction take place
 
b� the SQ
prediction terminates with a mode change before the
end of the current SQ trend� leaving data to corre�
spond to the next mode
 or 
c� the SQ prediction may
include small qdir changes which are not detectable
in a noisy observation stream	

Segment mapping ensures consistency of corresponding
behavior segments in the SQ trend and the SQ pre�
diction� in the sense that their time and magnitude
bounds overlap	 Consistency of segments is checked
by asserting the segment boundaries of the SQ trend
to the corresponding segments of the SQ prediction
and propagating these boundaries to the other vari�
ables in the SQDE using Q��s interval propagation	

Dynamic envelope mapping ensures consistency by in�
tersecting the dynamic envelopes for corresponding
monotonic segments of the trend and the prediction�
and propagating using Q�	

Model re�nement takes place when trend mapping
decreases the bounds on some variables in the SQDE	
Parameter uncertainty is re�ned by using Q� to derive
bounds on independent variables from dependent ones	
Functional uncertainty is re�ned by excluding portions
from the static envelopes that are inconsistent with the

re�ned� variable bounds	 The trend mapping tech�
niques guarantee that portions of the model space are
ruled out only when they are inconsistent with the ob�
servations 
Kay �����	

If a mode change is manifested by a discontinuous
change of an observed variable or a sudden sign change
of its slope� the change becomes explicit in the purely
qualitative trend� and is easy to detect	 Otherwise�
segment and dynamic envelope trend mapping should
eventually refute the current model� but this depends
on the amount of uncertainty in both data and model	

Once a mode change has been detected� segment and
dynamic envelope mapping and model re�nement are
limited to the 
qualitatively� mapped segments	 The
tracker for the next mode is initialized with the un�
mapped segments	 The time estimate on the mode
change speci�es the set of trend segments that corre�
spond to each mode	 Time uncertainty in the mode
change a�ects the current tracker and more dramati�
cally the following tracker� in an important way	

Re�ning the Time Uncertainty of

Discontinuous Changes

We assume that there are three possible causes for dis�
continuous changes in the model of a complex system�

i� the autonomous operation of the plant moves from
one operating mode to another
 
ii� the plant operator
takes a known action
 and 
iii� an unexpected and ex�
ternally caused event such as a failure takes place	 In
the �rst two cases� the current and following modes are

known	 In the third case� we assume that a separate di�
agnosis engine proposes a set of fault hypotheses� which
MIMIC tracks in parallel	

A discontinuous change happens in an instant	 Un�
fortunately� with imprecise models and noisy and
�nitely sampled observations� we may never be able to
determine the precise instant when the change takes
place	 The best we can do is determine time bounds on
the instant when the change occurred	

For matching a piecewise continuous model to a
stream of observations� it is particularly important to
make the time bounds on discontinuous changes as pre�
cise as possible	 Time uncertainty on a mode change af�
fects the entire correspondence between prediction and
observation in the following mode� resulting in propa�
gating uncertainty	 Figure �
c� shows how weak time
bounds on a discontinuous change can result in ex�
tremely weak bounds on the prediction of the follow�
ing mode	 Therefore� we focus on improving these time
bounds	

Intersecting Trend and Prediction

We focus here on re�ning time uncertainty of a mode
change based on the intersection of SQ trend and SQ
prediction	 After semi�quantitative reasoning has pro�
vided bounds on the transition time� advanced �ltering
techniques based on statistical or digital signal process�
ing may be applicable	

When there is time uncertainty� the mapping between
the SQ trend and the SQ prediction is not �xed	 The
SQ prediction can be shifted relative to the SQ trend
by any o�set within the range of the time uncertainty	

However� a mapping is only valid if the SQ trend seg�
ment and the SQ prediction segment have a non�empty
intersection for every time�point t in the SQ trend	 This
is exploited to derive re�ned bounds on the time uncer�
tainty of discontinuous changes 
Figure ��	

For � segments� the mapping is valid as long as 
i� the
upper envelope of the trend is above the lower envelope
of the prediction and 
ii� the lower envelope of the trend
is below the upper envelope of the prediction	 More
formally� we can determine the lower bound tcmin and
the upper bound tcmax� respectively� as follows�

tcmin � minfts � �t� xtr
t� � xpr
t� ts�g
tcmax � maxfts � �t� xtr
t� � xpr
t� ts�g

where xtr
t� is the observed trend for x
t�� xpr
t�ts� is
the prediction� shifted by ts	 Over� and under�bars rep�
resent the upper and lower dynamic envelopes� respec�
tively	 Similar conditions hold for � and � segments	

This intersection process is applied to all segments of
the mode	 Improvements in time uncertainty propagate
from segment to segment by interval arithmetic and
intersection of bounding intervals	

Incremental Re�nement

When there is a great deal of time uncertainty about the
transition from one mode to another� many samples in
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Figure �� Deriving bounds on the time uncertainty by
intersecting the SQ prediction and the SQ trend	

the observation stream fall within the uncertainty inter�
val� and thus cannot be unambiguously assigned to one
of the adjacent segments of monotonic change	 After
time uncertainty is decreased� some samples can now
be assigned to a de�nite adjacent segment	 The addi�
tional information helps re�ne the mode the segment
belongs to� and its underlying model	 Improvements
to the adjacent modes can� in turn� lead to further de�
creases in time uncertainty of the transition	 And so on
until no further improvement results 
Figure ��	

Overall Monitoring System

The overall monitoring system tracks multiple hypothe�
ses in parallel	 The hypotheses may represent di�er�
ent nominal or fault models of the plant� or they may
represent di�erent qualitative behaviors predicted from
semi�quantitative simulation of a particular model	

A particular hypothesis is a sequence of modes
�H�
t�� t��
H�
t�� t��
 � � � 
Hn
tn��� tn��	 The monitor�
ing system alternates between tracking a particular
mode Hi
ti��� ti� and re�ning the time uncertainty of
the mode transition at ti	 Model re�nements such as
improved variable bounds or static envelopes may be
inherited from one model Hi to the next Hi�� across
the mode transition	 In the current implementation�
the user speci�es the variables and functional relations
whose re�nements can be inherited	

Experimental Results

We demonstrate the re�nement capabilities of our mon�
itoring system using a two tank system	 In this ex�
ample 
Figure �
a��� we start with a �lled upper tank
and an empty lower tank
 the drains of both tanks are
open and the upper tank is �lled at a constant in�ow
rate	 When the amount in the upper tank drops below a

� Behavior prediction for modei��
Inherit the model re
nements �variable bounds and
static envelopes� from modei to modei���
Determine the SQ prediction for modei�� by SQSIM�

� Time uncertainty re�nement of modei��
Perform a qualitative mapping of modei�� to ensure
consistency between the SQ trend and the SQ prediction�
Apply trend�prediction intersection to re
ne the
time uncertainty tc�

� If the time uncertainty tc has been decreased
Goto �
otherwise stop and return tc

� Re�tracking of modei
Re�map the samples outside the uncertainty interval to
modei and modei���
Re�track modei and re
ne its model�
Goto �

Figure �� Incremental re�nement of the time uncer�
tainty tc of the transition between modei and modei��	

limit the in�ow rate is increased	 This scenario is mod�
eled as a transition between two operating modes 
Fig�
ure �
b��	 Only imprecise information is known about
this scenario� i	e	� intervals for variables and bounding
envelopes for functional relations	 Since both tanks re�
main unchanged� the re�nements of the variables a and
b as well as of the functional relations f and g are in�
herited from the �rst to the second mode	

SQSIM predicts � di�erent behaviors for the two tank
scenario
 � of them include the region transition	 Only
one is consistent with the SQ trend
 the other track�
ers are refuted	 Figure �
c� shows the predicted dy�
namic envelopes for the amount in the lower tank for
the surviving prediction	 SQSIM predicts the time of
the region transition as ������ inf �	

The observations are generated by numeric simula�
tion of an ODE� adding Gaussian noise with �xed mean
and variance to the samples	 The exact model for de�
riving the samples is given as a� � ifa � �

p
a� b� �

�
p
a � �

p
b with a
t�� � ��� b
t�� � �� c � � and an

in�ow rate ifa � �� before and ifa � �� after the
transition	 The samples are derived at a rate of �� Hz	

Figure �
d� shows the samples and bounding en�
velopes derived by trend forming for the variable b	
MSQUID constructs the bounding envelopes around
the observations to achieve a certainty of ���	 This
�gure also presents the �nal re�nement achieved by the
monitoring system	 The dynamic envelopes for b are
re�ned to ��� of their initial area and the time un�
certainty is re�ned to ������ ����� after two iterations
of the re�nement algorithm	 Observations for a� b� ofa
and ofb� with noise � � � and var � �� are used in
this case	 Note the propagation of re�nements through
the SQDE� i	e	� the dynamic envelopes in the �rst seg�
ment are narrower than the bounding envelopes of the
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Tank A outflow ofa

(a) Two tank scenario

inflow ifa

Tank B outflow ofb

amount b

amount a

limit c

Switch

(d) Refined behavior and time uncertainty

(c) Predicted behavior

(b) Imprecise model with region transition

a’  =  ifa - f(a)

b’  =  f(a) - g(b)

a(t0) = [90, 100]

f(a) = [8*sqrt(a), 12*sqrt(a)]  = ofa

g(b) = [8*sqrt(b), 12*sqrt(b)]  = ofb

ifa = {[24, 26]

[60, 65]

if a<c

otherwise

b(t0) = [0, 0] c = [8, 12]

Figure �� A two tank scenario 
a�� modeled as a region transition 
b�� its prediction 
c� of the upper and lower
bounds 
dynamic envelopes� for b� and the re�ned bounds and time uncertainty 
d�	 In both graphs� the solid lines
present the predicted or re�ned dynamic envelopes	 The dotted box represents the time uncertainty of the mode
change
 the dashed lines represent the bounding envelopes of the observations 
d�	 Due to the time uncertainty of
the discontinuous change the prediction of the second mode can start at any time within the dashed box	 For the
sake of readability� they start in the middle 
c� and at the right end 
d� of the dashed box� respectively	

observation of b	 Due to time uncertainty� the dynamic
envelopes in the second mode are wider than the bound�
ing envelopes of the observation	

The e�ect of observability is shown in Table �	 This
table presents the achieved re�nements dependent on
the observed variables	 The degree of re�nement is de�
�ned by the ratio of the predicted and re�ned areas for
variables and functional relations	 For the variables a
and b� the area is speci�ed by the dynamic envelopes
over the observation time	 For the functional relations
f and g� the area is speci�ed by the bounding func�
tions 
static envelopes� over the range of f and g	 The
achieved re�nement of the time uncertainty is repre�
sented by tc	 As the number of observed variables in�
creases the re�nement improves and extends to more
variables and functional relations	 Table � presents the

obs� vars� a�t� b�t� f g tc
none � � � � 
����	 inf�
b � ���� � � 
����	 �����

a� b ���� ���� ���� � 
����	 �����
a� b� ofa� ofb ���� ���� ���� ���� 
����	 �����

Table �� Achieved re�nements dependent on the ob�
served variables including noise with � � � and var � �	

reduced re�nements caused by an increase of noise in
the observation	

Conclusion

We have presented a method for monitoring dynamic
systems that exhibit both discrete and continuous be�



obs� vars� a�t� b�t� f g tc
b � ���� � � 
����	 �����

a� b ���� ���� ���� � 
����	 �����
a� b� ofa� ofb ���� ���� ���� ���� 
����	 �����

Table �� Achieved re�nements dependent on the ob�
served variables including noise with � � � and var � �	

haviors	 The monitoring system re�nes the behavior
prediction� the underlying model and the time uncer�
tainty of discontinuous changes	 The hypothesis is re�
futed and pruned from the tracking set when re�nement
eliminates all possible values for any parameter	

Trend matching uses a statistical best �t to observed
data� plus bounding envelopes out to any desired con��
dence bound	 Portions of the model space are removed
only when they are inconsistent with these bounds	
This gives a good 
and adjustable� compromise between
aggressiveness and robustness in handling noise and un�
informative data	

Related work has been done by 
Mosterman et al�
�����	 In their framework for model�based diagnosis
the physical system is modeled by a temporal causal
graph derived from a bond graph representation	 Rea�
soning is only performed at the qualitative level and no
model re�nement is done	 TrenDx 
Haimowitz � Ko�
hane ����� is a monitoring system which uses a semi�
quantitative representation of behavior and attempts to
�t data to this behavior representation	 Since TrenDx
uses pre�de�ned behavior templates no re�nement can
be performed	 PRET 
Bradley � Stolle ����� auto�
matically constructs a precise ODE model of a physical
system	 PRET focuses on system identi�cation and not
on monitoring	

Furthermore� our monitoring method is directly ap�
plicable to fault diagnosis in dynamic systems	 Fault
hypotheses can be proposed for monitoring based on
initial weak information such as the signs of discrepan�
cies between observations and predictions� by using ex�
isting methods such as 
de Kleer � Williams ����
 Ng
�����	 Automatic model�building methods can select
relevant model�fragments from a background knowledge
base to express initially weak knowledge about a fault
as an SQDE 
Crawford� Farquhar� � Kuipers ����

Rickel � Porter �����	 The observation stream is then
used to re�ne or refute each proposed model	
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