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Abstract 
 
Most real-world automation systems (AS) require both 
real-time (RT) as well as non real-time (NRT) 
functionality.  Modern AS are more frequently realized 
as a single platform solution in order to reduce their 
development time.  This trend is driven by the advances 
in processor technology.  The interoperability between 
RT and NRT processing is an important parameter in a 
single platform solution.   
This paper focuses on the modeling the performance 
metrics of RT-NRT interoperability based on response 
time analysis (RTA), which is extended by RT-NRT 
overhead. The performance metrics are (i) the response 
times of RT tasks, (ii) the CPU utilization of the RT load 
and (iii) NRT timing properties.  First results 
demonstrate the feasibility of our approach. 
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1. Introduction 
 

Most real-world automation systems (AS) include 
also functions that do not require real-time guarantees, 
i.e., they are comprised of a real-time (RT) part and a non 
real-time (NRT) part.  In a typical AS, the RT part is 
responsible for control, data acquisition, signal 
conditioning and monitoring.  The NRT part is 
responsible for data post processing, visualization, data 
persistence, system parameter settings and, especially, for 
the graphical user interfaces (GUI). Modern AS are more 
frequently realized as a single platform solution, because 
the development time is smaller than the development 
time of the RT and NRT parts on different platforms.  
This trend is also driven by the advances in processor 
technology.  Processing power has increased 
considerably over the last years, and a single processor 
may now offer sufficient power to run AS with RT and 
NRT parts.   

An important parameter for the combination of NRT 
and RT processing is interoperability, which is defined as 
the ability to run the NRT part along with the RT part and 
vice-versa [6].  An important requirement for a RT-NRT 
combination is that the RT part is preferred over the NRT 
part, and the NRT part does not influence the RT part.  
This paper focuses on a model to calculate performance 
metrics of complex asynchronous and fixed priority 
systems that consist of a combination of RT and NRT 
processing.  The performance metrics are (i) the response 
times of RT tasks, (ii) the CPU utilization of the RT load 
and (iii) NRT timing properties. The modeling is based 
on a response time analysis (RTA) derived from Burns 
[2], [3] and Bernat [1].  RTA is an effective, simple and 
flexible technique that allows the modeling of most 
aspects of fixed priority real-time systems.  We have 
extended this approach to quantify the interoperability of 
RT and NRT processing.  Therefore, we include the 
overhead of RT and NRT processing as well as the 
overhead of the RT processing itself into the RTA 
formulation. Furthermore, we show that RTA can be used 
to retrieve the NRT computation distribution in 
dependency on a RT processing load. 

In Section 2 we briefly summarize RTA.  Section 3 
introduces our analytic model and Section 4 describes the 
implementation of our modeling approach and presents 
results.  Finally, Section 5 concludes this paper with a 
summary and a discussion on further work. 

 

2. Response Time Analysis (RTA) 
 
Based on [2] and [1] is the computation of the finish time 
of the kth invocation of a task τi Fi(k) the smallest ω ≥ 0 
such that:  

( ) ( )ωδω iii IkkC ++=  (2-1) 

• Ii(ω) is the interference of tasks of higher priority 
than τi during interval [0,ω) and is given by: 
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Ci…Computation time of task τi 



  

Tj…Cycle time of task τj 
hp(τj)… is the set of tasks of higher priority than τi 

• δi(ω): The idle time at level i at ω is the amount of 
time the processor can be used by tasks of lower 
priority than τi during period of time [0,ω). The 
amount of idle time at the arrival of each task 
invocation (arrival time (Ai)) is of special interest. 
Thus, it can also be written as ( ) ( )( )kAk iii δδ = . 

The computation of δi(t) is more complex because it can 
not be computed directly1. To compute the amount of idle 
time at level i between [0,t), a virtual task τv is introduced 
that has a period and a deadline (Dv) equal to the time t: 

( )vvvv CtDtT ,, ===τ . The maximum time the 
processor can be used by tasks of lower priority than τi is 
the maximum computation time, Cv, that makes task τv 
meet its deadline. The scheduling test is performed by 
solving Eq. (2-2) for ω and checking whether ω ≤ Dv: 

( )ωω •+= iv IC  (2-2) 

where the amount of interference at level i including task 
τi, denoted by ( )ω•

iI , is given by: 
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hep(τi)… is the set of tasks of higher or equal priority than 
task τi 

 
Context switch (CS) overhead is of special interest and 
related work can be found at e.g. [4] and [2].  A common 
approach to model CS is to introduce a fictitious task that 
belongs to the periodic task with the same period T but 
with computation time CCS.  
 

3. Modeling RT-NRT Interoperability  
 
Performance metrics of interest in this work are (i) the 
response times (Ri) of RT tasks, (ii) the CPU utilization 
of a RT load and (iii) NRT timing properties. We start 
from a process model made up of n RT tasks and a single 
NRT task.  When no RT task is ready to execute, the 
lowest priority task (NRT task) is scheduled.   
 
Response times 
First, the computing of the idle time distribution for a 
individual level i (δi(0,T)) based on Eq. (2-2) [1] has to 
be carried out.  Cv is incremented from 0 to T until the 
                                                 
1 Due to the fact that invocations of tasks cannot always be completely 
counted at time any time t, the simple equation 
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is not sufficient for computing the idle time. 

condition ω ≤ Dv fails (see Figure 3-1).  The computed 
values of ω can be used to derive the idle time 
distribution.  Each monotonic rise of ω with regard to Cv 
corresponds to an idle time, and each discontinuous step 
of ω corresponds to an interference at level i (see Figure 
3-1).  This computation is carried out for each level i. 
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Figure 3-1: The distribution of the idle time at each 
level can be derived from the computed values of ω. 

Based on the idle time distribution the computation of 
Fi(k) is done with Eq. (2-1).  In order to introduce context 
switch times in our approach, we also need the start times 
of the multiple task invocations.  We can compute these 
start times with a simple modification of Eq. (2-1).  We 
simply set the kth computation time of task τi as the 
smallest possible time unit that is used in the model.  
Therefore, the computation of start time Si(k) is based on 
the fact that this time is equivalent to the worst case 
response time of a task with the same priority as task τi 
and a computation time C =  1(smallest time unit) + (k-
1)Ci + δi(k). 

( ) ( ) ( )ωδω iii IkCk ++−+= 11  (3-1) 

Next, we introduce context switch (CS) overhead into our 
model. So, for further clarification we denote a operating 
system CS as NRT – RT and a thread CS within the same 
process as RT-RT(SP) and a thread CS across different 
processes as RT-RT(DP) (thread, process see [8]). The 
time for a NRT-RT is defined as CNRT-RT, for RT-RT(SP) 
as CRT-RT(SP) and for RT-RT(DP) as CRT-RT(DP). With the 
calculated start and finish times of the tasks it is possible 
the retrieve the kind of CS that occurs for a certain 
invocation of a task τi. This happens as follows. In Figure 
3-2 we see the invocations of a task set that consist of two 
RT tasks (A, B). At an invocation of A an OS switch 
happens (NRT – RT). Furthermore, also a thread CS 
between the NRT task and A occurs. We define this as a 
RT-RT(DP). At the finish of A a thread CS to B happens. 
Dependent whether A or B belongs to the same or 
different processes, a RT-RT(SP) or RT-RT(DP) occurs.  
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Figure 3-2: Schematic CS example 

The information whether a CS occurs prior to a certain 
task, the invocation can be represented by step functions 
Φ  (ΦNRT-RT, ΦRT-RT(SP), ΦRT-RT(DP)) (Φ  for A and B see 
bottom of Figure 3-2).  The interference caused by the 
NRT-RT overhead at level i including CS of task i, 
denoted by ( )ωRTNRT

iI − , is given by: 
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hep(τjj)… is set of tasks of higher or equal priority than 
task τi  also including task τi. 

 
In the same way, the interference caused by the RT-
RT(SP) and RT-RT(DP) overhead respectively at level i 
including CS of task i, is given by:  
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The interferences from CS between NRT and RT, RT-
RT(SP) and RT-RT(DP) can be summarized and we 
write: 
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Therefore, NRT-RT interference is included into the 

response time calculation and Eq. (2–1) and Eq. (2-2) can 
be extended by ( )ωCS

iI . 

 
CPU Utilization 
With the previous results the rate (frequency) of the 
appearance of certain CS is known. So we can denote 
fNRT-RT as the frequency of NRT-RT, with fRT-RT(SP) as the 
frequency of RT-RT(SP) and with fRT-RT(DP) as the 
frequency of RT-RT(SP).  Based the formulation from [5] 
the CPU utilization for a specific RT-load is given by: 
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NRT Properties 
The following properties of the RT-NRT interoperability 
can be derived from the above calculations.  
• The δi(0,T)-distribution at the lowest priority level i 

is equal to the NRT computation distribution.  
• The response time of the lowest priority task at the 

critical instant corresponds with the longest 
suspension of NRT computation.  

• fNRT-RT is a crucial factor for NRT-RT 
interoperability overhead. NRT update-functionality 
(e.g. graphic) is disturbed by a higher fNRT-RT.  Thus 
the RT-NRT interoperability performance isn’t 100% 
at high fNRT-RT (see [7]). 

 

4. Implementation  
 
Computing the timing properties 
The main steps for computing the timing properties for a 
RT-NRT processing can be summarized as follows:   
1. The timing metrics of a RT-processing that does not 

consider interoperability are calculated.  
2. With the calculated start and finish times of the 

tasks the step functions (ΦNRT-RT, ΦRT-RT(SP), ΦRT-

RT(DP)) are determined.  
3. With our extended equations start and finish times 

of the tasks are calculated that consider NRT-RT, 
RT-RT(SP) and RT-RT(DP).  However, these 
results can change the step functions and so step 2 
and step 3 have to be repeated until the step 
functions do not change between the iterations. 

4. Finally, the CPU utilization from the RT load based 
on Eq. (3-2) is calculated as well as the NRT 
properties can be determined based on the timing 
metrics results (see chapter 3, NRT Properties). 

 
Example Task Set 
Up-to-date timing requirements are data acquisition, 
monitoring and control with 10 kHz. So in this example, 
we demonstrate the applicability of our model. We work 



  

with three tasks (thread T1, T2 and T3) shown in Table 
4-1 and each thread belong to an own process. We 
compute this example excluding interoperability (EI) and 
including interoperability (II).  In Figure 4–1 the resulting 
multiple invocations for EI and II are depicted. Table 4-2 
shows the calculated timing properties for both in detail.2 
Without the context switches T1, T2 and T3 keep its 
deadlines.  However, when context switch times are 
included T3 misses its deadline (see Table 4-2).  

Table 4-1: Example Task Set 
Process Task T / µs C / µs D / µs  Priority 

A T1 100 20 100 1 
B T2 200 50 100 2 
C T3 400 20 100 3 

Table 4-2: Timing properties of EI and II  
 Excl. Interoperability 

(EI) 
Incl. Interoperability 

(II) 
Task K A / µs S / µs F / µs R / µs S / µs F / µs R / µs 

1 0 0 20 20 6 26 26 
2 100 100 120 20 103 123 26 

T1 

3 200 200 220 20 206 226 26 
1 0 20 70 70 29 79 79 
2 200 220 270 70 229 279 79 

T2 

3 400 420 470 70 429 479 79 
1 0 70 90 90 82 128 128 T3 
2 400 470 490 90 482 528 128 

 
Excl. Interoperability

Incl. Interoperability

 
Figure 4-1: Calculated multiple invocations excluding 

and including interoperability. 
 
The calculated CPU utilization for EI is UΠ= 50 %. At II 
fNRT-RT follows with 7450 Hz and fRT-RT(DP) with 19950 
Hz. Therefore, the CPU utilization with Eq. (3-2) is UΠ= 
60.48 %, which corresponds better to a real situation.  
The longest suspension from NRT (NT_THREAD) is 
128 µs which is much longer than the recommended 
maximum suspension time of 7 ms for the NRT part.  
Thus, an fNRT-RT with 7450 Hz disturbs the NRT update-
functionality, so that, e.g., the NRT graphical user 
interface can be significantly affected. 
 

                                                 
2 For a PENTIUM II (434 MHz) CNRT-RT = 3 µs, CRT-RT(DP) = 3 µs and 
CRT-RT(SP) = 2 µs (Worst case context switch time) 

5. Discussion 
 

We have presented a process model for computing 
the timing properties of complex systems with real-time 
(RT) and non real-time (NRT) processing.  Our modeling 
technique is based on the response time analysis (RTA).  
We have extended the RTA formulation to include RT 
and NRT interoperability overhead for the computation of 
response times (Ri) of task and CPU utilization of a RT 
load. Furthermore, we show that the RTA formulation 
can be used to obtain NRT timing properties that are 
important for the development and operation of most AS. 
For further work, we will optimize and speed-up the idle 
time computation δi(0,T), take offsets and sporadic tasks 
formulations into for our model and finally, we will 
include interrupts that are executed in the context of the 
pre-empted task.  
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