

Modeling Real-Time and non Real-Time Interoperability

 Dietmar Prisching a Bernhard Rinner b
 dietmar.prisching@avl.com rinner@iti.tugraz.at

a AVL List GmbH, Graz AUSTRIA
b Institute for Technical Informatics, Graz University of Technology, AUSTRIA

Abstract

Most real-world automation systems (AS) require both
real-time (RT) as well as non real-time (NRT)
functionality. Modern AS are more frequently realized
as a single platform solution in order to reduce their
development time. This trend is driven by the advances
in processor technology. The interoperability between
RT and NRT processing is an important parameter in a
single platform solution.
This paper focuses on the modeling the performance
metrics of RT-NRT interoperability based on response
time analysis (RTA), which is extended by RT-NRT
overhead. The performance metrics are (i) the response
times of RT tasks, (ii) the CPU utilization of the RT load
and (iii) NRT timing properties. First results
demonstrate the feasibility of our approach.

Keywords: automation system; real-time; hybrid
computation; performance model;

1. Introduction

Most real-world automation systems (AS) include
also functions that do not require real-time guarantees,
i.e., they are comprised of a real-time (RT) part and a non
real-time (NRT) part. In a typical AS, the RT part is
responsible for control, data acquisition, signal
conditioning and monitoring. The NRT part is
responsible for data post processing, visualization, data
persistence, system parameter settings and, especially, for
the graphical user interfaces (GUI). Modern AS are more
frequently realized as a single platform solution, because
the development time is smaller than the development
time of the RT and NRT parts on different platforms.
This trend is also driven by the advances in processor
technology. Processing power has increased
considerably over the last years, and a single processor
may now offer sufficient power to run AS with RT and
NRT parts.

An important parameter for the combination of NRT
and RT processing is interoperability, which is defined as
the ability to run the NRT part along with the RT part and
vice-versa [6]. An important requirement for a RT-NRT
combination is that the RT part is preferred over the NRT
part, and the NRT part does not influence the RT part.
This paper focuses on a model to calculate performance
metrics of complex asynchronous and fixed priority
systems that consist of a combination of RT and NRT
processing. The performance metrics are (i) the response
times of RT tasks, (ii) the CPU utilization of the RT load
and (iii) NRT timing properties. The modeling is based
on a response time analysis (RTA) derived from Burns
[2], [3] and Bernat [1]. RTA is an effective, simple and
flexible technique that allows the modeling of most
aspects of fixed priority real-time systems. We have
extended this approach to quantify the interoperability of
RT and NRT processing. Therefore, we include the
overhead of RT and NRT processing as well as the
overhead of the RT processing itself into the RTA
formulation. Furthermore, we show that RTA can be used
to retrieve the NRT computation distribution in
dependency on a RT processing load.

In Section 2 we briefly summarize RTA. Section 3
introduces our analytic model and Section 4 describes the
implementation of our modeling approach and presents
results. Finally, Section 5 concludes this paper with a
summary and a discussion on further work.

2. Response Time Analysis (RTA)

Based on [2] and [1] is the computation of the finish time
of the kth invocation of a task τi Fi(k) the smallest ω ≥ 0
such that:

() ()ωδω iii IkkC ++= (2-1)

• Ii(ω) is the interference of tasks of higher priority
than τi during interval [0,ω) and is given by:

()
()

j
hp j

i C
T

I
ij

⋅

= ∑

∈ ττ

ωω

Ci…Computation time of task τi

Tj…Cycle time of task τj
hp(τj)… is the set of tasks of higher priority than τi

• δi(ω): The idle time at level i at ω is the amount of
time the processor can be used by tasks of lower
priority than τi during period of time [0,ω). The
amount of idle time at the arrival of each task
invocation (arrival time (Ai)) is of special interest.
Thus, it can also be written as () ()()kAk iii δδ = .

The computation of δi(t) is more complex because it can
not be computed directly1. To compute the amount of idle
time at level i between [0,t), a virtual task τv is introduced
that has a period and a deadline (Dv) equal to the time t:

()vvvv CtDtT ,, ===τ . The maximum time the
processor can be used by tasks of lower priority than τi is
the maximum computation time, Cv, that makes task τv
meet its deadline. The scheduling test is performed by
solving Eq. (2-2) for ω and checking whether ω ≤ Dv:

()ωω •+= iv IC (2-2)

where the amount of interference at level i including task
τi, denoted by ()ω•

iI , is given by:

()
()

∑
∈

• ⋅

=

iij hep
j

j
i C

T
I

ττ

ωω (2-3)

hep(τi)… is the set of tasks of higher or equal priority than
task τi

Context switch (CS) overhead is of special interest and
related work can be found at e.g. [4] and [2]. A common
approach to model CS is to introduce a fictitious task that
belongs to the periodic task with the same period T but
with computation time CCS.

3. Modeling RT-NRT Interoperability

Performance metrics of interest in this work are (i) the
response times (Ri) of RT tasks, (ii) the CPU utilization
of a RT load and (iii) NRT timing properties. We start
from a process model made up of n RT tasks and a single
NRT task. When no RT task is ready to execute, the
lowest priority task (NRT task) is scheduled.

Response times
First, the computing of the idle time distribution for a
individual level i (δi(0,T)) based on Eq. (2-2) [1] has to
be carried out. Cv is incremented from 0 to T until the

1 Due to the fact that invocations of tasks cannot always be completely
counted at time any time t, the simple equation

()
()

j
hep j

i C
T

tt
ij

⋅

−= ∑

∈ ττ

ωδ
is not sufficient for computing the idle time.

condition ω ≤ Dv fails (see Figure 3-1). The computed
values of ω can be used to derive the idle time
distribution. Each monotonic rise of ω with regard to Cv
corresponds to an idle time, and each discontinuous step
of ω corresponds to an interference at level i (see Figure
3-1). This computation is carried out for each level i.

T0
C / s

ω / s
D = T

C

Id
le

 ti
m

e
d i

st
ri

bu
ti o

n

v

v max
v

ω - Values

idle time

Figure 3-1: The distribution of the idle time at each
level can be derived from the computed values of ω.

Based on the idle time distribution the computation of
Fi(k) is done with Eq. (2-1). In order to introduce context
switch times in our approach, we also need the start times
of the multiple task invocations. We can compute these
start times with a simple modification of Eq. (2-1). We
simply set the kth computation time of task τi as the
smallest possible time unit that is used in the model.
Therefore, the computation of start time Si(k) is based on
the fact that this time is equivalent to the worst case
response time of a task with the same priority as task τi
and a computation time C = 1(smallest time unit) + (k-
1)Ci + δi(k).

() () ()ωδω iii IkCk ++−+= 11 (3-1)

Next, we introduce context switch (CS) overhead into our
model. So, for further clarification we denote a operating
system CS as NRT – RT and a thread CS within the same
process as RT-RT(SP) and a thread CS across different
processes as RT-RT(DP) (thread, process see [8]). The
time for a NRT-RT is defined as CNRT-RT, for RT-RT(SP)
as CRT-RT(SP) and for RT-RT(DP) as CRT-RT(DP). With the
calculated start and finish times of the tasks it is possible
the retrieve the kind of CS that occurs for a certain
invocation of a task τi. This happens as follows. In Figure
3-2 we see the invocations of a task set that consist of two
RT tasks (A, B). At an invocation of A an OS switch
happens (NRT – RT). Furthermore, also a thread CS
between the NRT task and A occurs. We define this as a
RT-RT(DP). At the finish of A a thread CS to B happens.
Dependent whether A or B belongs to the same or
different processes, a RT-RT(SP) or RT-RT(DP) occurs.

NRT

A

B

NRT - RT

RT - RT

Invocation 1 Invocation 2

Invocation
 k

1

1

2

2

A

B

0
0

0
0

0
0

1
1

1
1

1
1

Figure 3-2: Schematic CS example

The information whether a CS occurs prior to a certain
task, the invocation can be represented by step functions
Φ (ΦNRT-RT, ΦRT-RT(SP), ΦRT-RT(DP)) (Φ for A and B see
bottom of Figure 3-2). The interference caused by the
NRT-RT overhead at level i including CS of task i,
denoted by ()ωRTNRT

iI − , is given by:

() ()
()

∑ ∑
∈

=
−

−− ⋅Φ=
ijj

j

hep

T

k
RTNRT

RTNRT
j

RTNRT
i CkI

ττ

ω

ω
0

hep(τjj)… is set of tasks of higher or equal priority than
task τi also including task τi.

In the same way, the interference caused by the RT-
RT(SP) and RT-RT(DP) overhead respectively at level i
including CS of task i, is given by:

() ()
()

∑ ∑
∈

=
−

−− ⋅Φ=
ijj

j

hep

T

k
SPRTRT

SPRTRT
j

SPRTRT
i CkI

ττ

ω

ω
0

)(
)()(

and

() ()
()

∑ ∑
∈

=
−

−− ⋅Φ=
ijj

j

hep

T

k
DPRTRT

DPRTRT
j

DPRTRT
i CkI

ττ

ω

ω
0

)(
)()(

The interferences from CS between NRT and RT, RT-
RT(SP) and RT-RT(DP) can be summarized and we
write:

)()(DPRTRT
i

SPRTRT
i

RTNRT
i

CS
i IIII −−− ++=

Therefore, NRT-RT interference is included into the

response time calculation and Eq. (2–1) and Eq. (2-2) can
be extended by ()ωCS

iI .

CPU Utilization
With the previous results the rate (frequency) of the
appearance of certain CS is known. So we can denote
fNRT-RT as the frequency of NRT-RT, with fRT-RT(SP) as the
frequency of RT-RT(SP) and with fRT-RT(DP) as the
frequency of RT-RT(SP). Based the formulation from [5]
the CPU utilization for a specific RT-load is given by:

∑
−−

−−−−
Π

⋅+

⋅+⋅+
=

)()(

)()(

DPRTRTDPRTRT

SPRTRTSPRTRTRTNRTRTNRT
j

j

Cf

CfCf
T
C

U (3-2)

NRT Properties
The following properties of the RT-NRT interoperability
can be derived from the above calculations.
• The δi(0,T)-distribution at the lowest priority level i

is equal to the NRT computation distribution.
• The response time of the lowest priority task at the

critical instant corresponds with the longest
suspension of NRT computation.

• fNRT-RT is a crucial factor for NRT-RT
interoperability overhead. NRT update-functionality
(e.g. graphic) is disturbed by a higher fNRT-RT. Thus
the RT-NRT interoperability performance isn’t 100%
at high fNRT-RT (see [7]).

4. Implementation

Computing the timing properties
The main steps for computing the timing properties for a
RT-NRT processing can be summarized as follows:
1. The timing metrics of a RT-processing that does not

consider interoperability are calculated.
2. With the calculated start and finish times of the

tasks the step functions (ΦNRT-RT, ΦRT-RT(SP), ΦRT-

RT(DP)) are determined.
3. With our extended equations start and finish times

of the tasks are calculated that consider NRT-RT,
RT-RT(SP) and RT-RT(DP). However, these
results can change the step functions and so step 2
and step 3 have to be repeated until the step
functions do not change between the iterations.

4. Finally, the CPU utilization from the RT load based
on Eq. (3-2) is calculated as well as the NRT
properties can be determined based on the timing
metrics results (see chapter 3, NRT Properties).

Example Task Set
Up-to-date timing requirements are data acquisition,
monitoring and control with 10 kHz. So in this example,
we demonstrate the applicability of our model. We work

with three tasks (thread T1, T2 and T3) shown in Table
4-1 and each thread belong to an own process. We
compute this example excluding interoperability (EI) and
including interoperability (II). In Figure 4–1 the resulting
multiple invocations for EI and II are depicted. Table 4-2
shows the calculated timing properties for both in detail.2
Without the context switches T1, T2 and T3 keep its
deadlines. However, when context switch times are
included T3 misses its deadline (see Table 4-2).

Table 4-1: Example Task Set
Process Task T / µs C / µs D / µs Priority

A T1 100 20 100 1
B T2 200 50 100 2
C T3 400 20 100 3

Table 4-2: Timing properties of EI and II
 Excl. Interoperability

(EI)
Incl. Interoperability

(II)
Task K A / µs S / µs F / µs R / µs S / µs F / µs R / µs

1 0 0 20 20 6 26 26
2 100 100 120 20 103 123 26

T1

3 200 200 220 20 206 226 26
1 0 20 70 70 29 79 79
2 200 220 270 70 229 279 79

T2

3 400 420 470 70 429 479 79
1 0 70 90 90 82 128 128 T3
2 400 470 490 90 482 528 128

Excl. Interoperability

Incl. Interoperability

Figure 4-1: Calculated multiple invocations excluding

and including interoperability.

The calculated CPU utilization for EI is UΠ= 50 %. At II
fNRT-RT follows with 7450 Hz and fRT-RT(DP) with 19950
Hz. Therefore, the CPU utilization with Eq. (3-2) is UΠ=
60.48 %, which corresponds better to a real situation.
The longest suspension from NRT (NT_THREAD) is
128 µs which is much longer than the recommended
maximum suspension time of 7 ms for the NRT part.
Thus, an fNRT-RT with 7450 Hz disturbs the NRT update-
functionality, so that, e.g., the NRT graphical user
interface can be significantly affected.

2 For a PENTIUM II (434 MHz) CNRT-RT = 3 µs, CRT-RT(DP) = 3 µs and
CRT-RT(SP) = 2 µs (Worst case context switch time)

5. Discussion

We have presented a process model for computing
the timing properties of complex systems with real-time
(RT) and non real-time (NRT) processing. Our modeling
technique is based on the response time analysis (RTA).
We have extended the RTA formulation to include RT
and NRT interoperability overhead for the computation of
response times (Ri) of task and CPU utilization of a RT
load. Furthermore, we show that the RTA formulation
can be used to obtain NRT timing properties that are
important for the development and operation of most AS.
For further work, we will optimize and speed-up the idle
time computation δi(0,T), take offsets and sporadic tasks
formulations into for our model and finally, we will
include interrupts that are executed in the context of the
pre-empted task.

References
[1] BERNAT. G., 2002 Response Time Analysis of

Asynchronous Real-Time Systems, Uni. of York
[2] BURNS, A., 1994: Preemptive Priority-Based Scheduling:

An Appropriate Engineering Approach, Advances in
RealTime Systems, 1994 225-248.

[3] BURNS, A., WELLINGS. A., 2001: Real-Time systems
and programming languages. Addision Wesly 3rd
edition, 2001

[4] BUSQUETS, M., WELLINGS A., 1996: Adding
Instruction Cache Effect to Schedulability Analysis of
Preemptive Real Time Systems. Uni. of York

[5] BUTTAZZO, G. C., 1997: Hard Real-Time Computing
Systems, Predictable Scheduling Algorithms and
Applications, London, Kluwer Academic Publishers

[6] http://www.dedicated-systems.com
[7] PRISCHING, D., RINNER, B., 2003: Thread-based

analysis of embedded applications with real-time and non
real-time processing on a single-processor platform,
embedded world 2003 Congress, Nürnberg

[8] SILBERSCHATZ. A., GALVIN, P., GAGNE, G., 2000:
Applied Operating System Concepts, Hohn New York,
Wiley & Sons, Inc.

