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Abstract – Test bed systems are important tools for 
research and development.  They are connected to the 
physical system under test via numerous sensors and 
actuators.  Due to the ever increasing requirements in 
performance and functionality automated support in the 
configuration of the test bed’s hardware and software 
components is desired.  This paper presents our approach to 
evaluate and predict the performance of highly-configurable 
embedded software and presents a case study for a 
configuration of the PUMA Open test bed system. 
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I. INTRODUCTION 

Test bed systems are nowadays essential tools for 
research and development especially in the automotive 
domain.  Functionality and complexity of such tools have 
been significantly raised over the last years in order to 
fulfill the ever increasing requirements.  A typical test bed 
system is connected to the physical system under test via 
numerous sensors and actuators and automatically 
performs various measurements and test procedures.  The 
most challenging requirements for such a test bed system 
are, therefore, the integration of various hardware and 
software components, the real-time data processing and the 
configuration of the overall system.  Due to the complexity 
of modern AS support in the configuration of the hardware 
and software components is required.  The determination 
of performance characteristic is an important precondition 
for a configuration support. 

In this paper we present our approach to model, 
evaluate and predict the performance of highly-
configurable embedded software (HCES) in an automotive 
test bed system.  The determination of performance 
parameters such as computation time is important in order 
to check whether the (real-time) requirements have been 
satisfied.  Our performance model is based on specific 
scenarios (use cases) that are most relevant for a 
performance evaluation.  The timing properties of the 
HCES are computed using response time analysis.  
Performance data of the test bed system configuration is 
acquired by measurement and stored in a database for 
reuse. 

We have evaluated our approach on the PUMA Open 
test bed system.  PUMA Open is targeted for the design 
and test of engines, transmissions and power trains.  As the 
experimental results demonstrate we are able to model and 
evaluate the performance of the numerous PUMA Open 
configurations.  This performance estimation is now used 
in the design and implementation of new configurations 
and helps to reduce their development time. 

The remainder of this paper is organized as follows:  
Section 2 introduces the PUMA Open automation system. 
Section 3 briefly discusses related work.  Section 4 
presents our implemented performance evaluation and 
prediction method.  Section 5 presents results from a case 
study and Section 6 concludes this paper. 

 
II. PUMA OPEN AUTOMATION SYSTEM 

 
PUMA Open is an automation system (AS) (Figure 1) 

for the development and test of engines, transmissions and 
power trains.  PUMA Open has been designed as an open 
platform in the sense that it is based on standardized 
interfaces for data acquisition and communication as well 
as modular hardware and software components.  This 
supports the extension and configuration of the AS.  

 
Figure 1: The PUMA Open Instrumentation and Test 
System for Engines, Transmissions and Power Trains 

 
Figure 2 presents a part of the PUMA Open 

instrumentation interface.  It supports various bus systems 
such as IEEE1394, CAN, Profibus, RS232, T-
Link(RS485) and Ethernet to connect sensors (multi sensor 
system), actuators and several measurement devices with 
the computer system.  In a typical configuration about 50-



60 sensors and actors are attached to the engine under test. 
 Sensor connected via at the IEEE1394 include: PT100, 
several high temperature sensors NiCrNi, DMS 
measurement, current, voltage, pressure and speed sensors.  

More complex physical parameters are determined with 
measurement devices such as:  

• fuel consumption measurement 
S733 (gravimetric), PLU (density, volume), 
S735 (mass) 

• oil consumption measurement 
O403 (level) 

• diesel measurement 
S415 smokemeter 
O439 Opacimeter 
472 Smart Samples 

• Emission measurement 
CVS devices (Concentration) 
Fast response devices 

• Sensiflow air consumption measurement 
• BlowBy compression bypass amount 

 
Figure 2: Part of the PUMA Open instrumentation 

interface 
 
The PUMA Open is a complex object-oriented system 

and it combines both real-time (RT) and non real-time 
(NRT) computing on the same platform (PC solutions). 
The NRT part is based on the operating system 
Microsoft® Windows NT/2000 and the RT part is based 
on the Windows real-time extension INtime.  Its main 
components are: 

• PUMA Operating System 
• Control and Automation Functions 
• Data Acquisition and Storage 
• Multi-Level Safety Monitoring 

• Graphical User Interface 
 

 The PUMA Open real-time computer system (RTCS) 
is based on a layered architecture.  At the bottom lies the 
real-time operating system (RTOS) INtime. The next layer 
is ARTE (AVL Real-Time Environment), and on top of 
the architecture are the various PUMA sub-systems.  
ARTE provides all real-time services that are required by 
the other components.  The ARTE services can be used via 
a standardized interface.  All real-time tasks have priority 
over any non real-time processing in PUMA.   

ARTE can also be seen as a wrapper over the INtime 
RTOS.  ARTE simplifies the development of real-time 
software components for the developers by providing 
customized real-time services as a library.  Currently, 
several processes of the real-time operating system INtime 
realize ARTE.  ARTE’s main features are: 

• A task system with cyclic and acyclic tasks with up 
to 256 priorities. 

• Fast data transfer via system variables allocated in 
shared memory. 

• Non real-time access via ARTE system variables. 
• Analysis and diagnosis functions to support the 

development process. 
 We distinguish between two types of configurations of 

the PUMA Open AS.  The PUMA Open AS can be 
assembled using a (sub)set of all possible sub-systems and 
interfaces.  Since this set of components does not change 
during operation of the AS, this is referred to as static 
configuration.  During operation of the AS, several 
components may be activated and shut down, i.e., the AS 
is operated in different modes of operation.  This is 
referred to dynamic configuration of the AS.   

At a high-level view the PUMA Open AS has three 
different modes of operation. In the monitoring mode, only 
the PUMA operating system and the graphical user 
interface are activated.  In this mode, the system is 
initialized, the system parameter are checked and loaded as 
well as the I/O sub-systems are booted.  In the manual 
mode, the data acquisition and storage as well as the multi-
level safety monitoring sub-systems are also activated. In 
this mode, the test and the engine (technical process) 
parameter are checked and loaded; the engine monitoring, 
the data acquisition, the limit monitoring and the post 
processing are activated. Finally, in the automatic mode all 
sub-systems are activated and an automatic test-run is 
executed. 
 

III. STATE OF THE ART 
 

At the market multiple modeling techniques for 
computer system exist. Since a modeling techniques must 
reflect the properties of the modeled systems we 
emphasize on two up-to-date approaches that apprehend 
our requirements in the best case.  These are the software 
performance models from [SMI97] (SPE*ED) and from 
[HIG01].  

Both models are starting with an analytic performance 
model.  The analytic performance model from [SMI97] is 
based on queuing network models [JAI91].  The analytic 
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Model

Model System behavior Performance Data

[SMI97]: Analytic / Simulation performance model
(queuing network models)
[HIG01]: Analytic performance model
(similar to queuing network models)

Approach: Response time analysis

[SMI97]: Identifymajor functional scenarios that
are important from a performance perspective
[HIG01]: Primary transactions are identified

Approach: Scenarios PUMA Open UML Model
(UseCases)

[SMI97]: User specify resource requirements
(Performance specialist)
[HIG01]: Performance test database
(measured data)

Approach: measured data, WCET analysis

performance model of [HIG01] contains process service 
time, process dispatch time, queue waiting time for each 
process and I/O as function of transaction rate.   

In a second step it is necessary to model or describe 
system specifics.  In [SMI97] the users’ views of the 
system model are scenarios.  Software scenarios are 
assigned to the facilities that execute the processing steps. 
Performance data are provided from the user, which 
specify software resource requirements for each processing 
step.  In order to determine the performance of the overall 
system the following procedure can be used:  First, the 
major functional scenarios (focus scenarios), which are 
important from a performance perspective, are identified.  
Second, a model of a system workload is established using 
several focus scenarios.  From that, the different modes of 
operation can be constructed.  Finally, the focus scenarios 
are evaluated resulting in performance statements. 

[HIG01] works with a similar approach as [SMI97] on 
the topic of scenarios. The scenarios are described as 
transactions, and the user must identify and characterize 
the primary transactions from a performance perspective. 
However, the Performance data of the system are acquired 
through performance measurements and stored in a 
performance database.  

Finally the analytic performance models and the 
models of the system specifics deliver the model results. 
At [HIG01] the results predicted by the model can be 
compared to those actually measured. SPE*ED [SMI97] 
produces analytic results for the software models, and an 
approximate, analytic MVA solution of the generated 
queuing network model. The results reported by SPE*ED 
are the end-to-end response time, the elapsed time for each 
processing step, the device utilization, and the amount to 
time spent at each computer device for each processing 
step. SPE*ED is intended to model software systems under 
development.  
 

IV. PERFORMANCE EVALUATION AND PREDICTION 

 
The ideas of both methods are practical for our 

approach.  In comparison to [SMI97] and [HIG01] we start 
also with an analytic performance model.  But our analytic 
performance is not based on a queuing network models.  
With queuing network models approximate solutions can 
be calculated.  But for our project we need results as 
precise as achievable.  Our analytic performance model is 
based on a response time analysis (RTA) derived from 
Burns [BUR93], [BUR01] and Bernat [BER02].  Response 
time analysis is an effective, simple and flexible technique 
that allows the modeling of most aspects of fixed priority 
real-time systems. [BUR94] applies an engineering 
approach to calculate the worst case response time (Ri) for 
each task (τi,) at the critical instant 02 [LIU73] (all tasks 
are released together).  Our RTA model is based on the 
approach from [BER02] that considers multiple 
invocations of tasks, idle time at each priority level, task 
offsets and sporadic task invocations. We have extended 
this approach to quantify the interoperability of RT 
(INtime) and NRT (Windows) processing.  Therefore, we 

include the operating system context switching (fOSCS) of 
RT and NRT into the RTA formulation. In [PR03] we 
have evaluated the Windows-INtime interoperability.  For 
a PENTIUM II (434 MHz) configuration the OS context 
switch time (COSCS) was determined as 5 µs.  Thus, a high 
context switch rate has a significant influence on the 
system performance.  With an extension of the formulation 
from [BUT97], the CPU utilization for a specific RT-
processing (task set П) is given by: 

Equation 1: ∑ ⋅+=Π OSCSOSCS
j

j Cf
T
C

U  

Furthermore, RTA can be used to retrieve the NRT 
computation distribution in dependency on a RT 
processing load. 

Concerning the system specifics we use the same 
approach with scenarios.  Our case study PUMA Open is 
completely designed with the unified model language 
(UML) notation.  Thus, the PUMA Open requirements at 
the development time were realized using UseCases.  So 
we can derive the important scenarios from a performance 
perspective with the PUMA Open UML model.  With 
extensive performance system measurements we will 
establish a performance database.  One the one hand, we 
chose the same approach as [HIG01] to obtain 
performance data.  One the other hand, only if the input 
parameters for the model are as precise as possible the 
calculated output is useful.  Therefore, it is necessary to 
determine the worst-case execution time WCET of tasks at 
a high precision.  

One approach is to measure the worst-case execution 
time like [HIG01]. Several aspects like processor 
properties (cache, pipelining) must be considered. Another 
approach relies on the calculation of the worst-case 
execution time (e.g. from C code). The dynamic setting of 
hybrid systems requires a research focus on an improved 
determination of the WCET, possibly by combining the 
mentioned approaches.  Important aspects of WCET are 
run-time analysis (calculation methods, compiler 
integration and measurement procedure), research at the 
hardware system architecture and optimization of executed 
source code. 

 
Figure 3: Overview about the software performance 

models from [SMI97] and [HIG01] vs. own approach. 



Figure 3 illustrates an overview of the software 
performance models from [SMI97] and [HIG01] in 
comparison to our own approach. 
 

V. RESULTS 

Table 1 shows the task set for a PUMA Open scenario 
called ‘Monitor – Cyclic Calculation’. This scenario 
declares that the PUMA Open is ready and it is important 
from a performance perspective. The PUMA Open 
configuration includes the I/O subsystems EMCON, CAN 
and 1394 (F-FEM). Performance data of the system tasks 
(Cyclic time Ti, computation time Ci and offset Oi) are 
measured with the ProfileAnalyzer.  The ProfileAnalyzer 
allows a thread-based analysis of applications with RT 
(INtime) and NRT (Windows) processing on a single-
processor platform.  In [PR03] the ProfileAnalyzer is 
introduced in detail.  Due to the task offsets a critical 
instant [BUR94] of the tasks never occurs [BER02].  The 
OS context switch rate and the utilization are derived as 
fOSCS = 3.12 kHz, UΠ= 30.52 % (UΠ measured = 31.92 %).  
The RTA was calculated for a hyperperiod of 40ms and 
the calculated worst-case response times of the tasks are 
listed in the rightmost column of Table 1.  The total 
computation time of the Windows within the hyper-period 
of is ~35 ms and the maximum suspension time of 
windows is computed with 1320 µs. Given these numbers 
we can conclude that the RT processing works well and 
the Windows performance is not affected. 

Table 1:  

Name T / 
ms C / µs Priority O / µs R / 

µs 

Intr 1 34 50 0 39 

dspt 40 34 132 0 34 

tmr 10 7 134 0 80 

RxTx 1 61 135 150 61 

Read0 10 214 136 3500 214 

DEB 8 20 137 0 105 

ECAInterf 2 13 138 0 118 

CFRecorder 4 15 139 0 133 

CMyProtocol 1 7 140 0 140 

TrgTask 1 23 141 0 224 

CT1000 1 18 142 0 242 

ECAControl 2 38 143 0 280 

CT2000 2 25 144 0 305 

IohSbc01 2 35 145 200 140 

DAalive 50 29 146 0 369 

DAWatchDEx 4 23 147 0 292 

ADBDataEval 32 27 148 0 419 

CCE 8 17 149 0 436 

Sender 10 7 150 0 443 

ABXC 32 18 151 0 461 

CI 8 20 152 0 481 

CT4000 4 28 154 0 509 

CT5000 5 9 156 0 518 

CT8000 8 10 158 0 528 

CT10000 10 213 160 0 741 

CA2CAnProto 10 98 161 0 839 

CT16000 16 9 162 0 848 

CT20000 20 13 164 0 861 

CT32000 32 12 166 0 873 

CT50000 50 271 168 0 1287 

CDemoProto 50 33 169 0 1320 

 

VI. DISCUSSION 

In this paper we have presented our approach to 
evaluate and predict the performance in a complex test bed 
system.  Performance evaluation and prediction is an 
important part for the configuration support not only of 
complex test bed systems but also for general computing 
systems.  Although our performance model has been 
targeted to the PUMA Open test bed system, a general 
approach to model the performance of complex computing 
systems can be derived. 
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