
An Embedded Smart Camera on a
Scalable Heterogeneous Multi-DSP System

Michael Bramberger, Bernhard Rinner
Institute for Technical Informatics

Graz University of Technology, AUSTRIA
{bramberger, rinner}@iti.tugraz.at

Helmut Schwabach
Video & Safety Technology

ARC seibersdorf research, AUSTRIA
helmut.schwabach@arcs.ac.at

Abstract

A smart camera combines video sensing, high-level video
processing and communication within a single embedded de-
vice. These devices a core components of novel surveillance
systems.

This paper reports on a heterogeneous smart camera
targeting traffic surveillance. It is comprised of a CMOS
image-sensor, several digital-signal processors and a net-
work processor. We present its scalable and reconfigurable
two-fold software framework, which enables the dynamic al-
location of algorithmic tasks (“applications”) to the DSPs.
This framework provides middleware-like service like ab-
straction of data sources and communication channels. We
introduce a resource manager, which manages and keeps
track of the DSP’s on-chip resources like memory utilization,
direct memory-access (DMA) channels and interrupts. Us-
ing the resource manager, applications can be distributed to
DSPs with the lowest system load.

Experiments with our prototype show the system’s usabil-
ity using an MPEG-4 encoder and a sophisticated video-
analysis algorithm.
Keywords: smart camera; traffic surveillance; embedded
system; digital signal processor;

1. INTRODUCTION

A smart camera combines video sensing, high-level video
processing and communication within a single embedded de-
vice. Such cameras will be key components in next genera-
tion video application including entertainment, ambient in-
telligence or surveillance [6].

In this paper we present several extensions and improve-
ments to our smart camera targeted for traffic surveillance
[2]. The major improvements include (i) a scalable multi-
processor architecture consisting of an Intel XScale network
processor and several TMS320C64x digital signal proces-
sors (DSP), (ii) an expanded communication unit enabling
TCP/IP as well as GPRS communication, and (iii) a modu-
lar and flexible software architecture. These extensions to our
initial smart camera have been motivated by (i) the quest for

more on-board functionality (several video analysis tasks),
(ii) the need for dynamic reconfiguration during operation of
the smart camera, and (iii) improved and alternative commu-
nication paths.

Sophisticated video analysis in smart cameras have been
introduced by Wolf et al. [6] and Foresti et al. [3]. An eval-
uation of static distribution of tasks to two processors on
instruction-level has been presented by Lv et al. [4]. In [5]
Soldatini et al. introduced a network management system
within a hierarchical surveillance system, which controls the
distribution of tasks between smart cameras and worksta-
tions, based on processing load and communication parame-
ters.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly sketches the main requirements for our smart
camera and Section 3 presents the hardware architecture.
Section 4 presents the overall software architecture – both
for the DSP and the network processor. Section 5 presents
some performance data and Section 6 concludes this paper
with a short discussion.

2. REQUIREMENTS

Traffic surveillance applications are demanding for both
hardware and software. In novel surveillance systems much
functionality and, thus, processing is migrated from central
workstations to individual (smart) cameras. Hence, the re-
quirements for smart cameras are dramatically increasing
compared to standard analog cameras.

The functional requirements of the smart camera include
the transmission of a MPEG-4 compressed, high-quality (full
PAL-D1 resolution @ 25 fps) live video stream of the mon-
itored scene using an IP-based network interface. Addition-
ally, the smart camera has to perform real-time video analy-
sis tasks such as accident detection, detection of wrong-way
drivers, vehicle tracking and the determination of traffic pa-
rameters – just to mention a few. Due to the dynamic na-
ture of the monitored scene it is not possible to determine
which analysis tasks have to be run at which camera a pri-
ori. Therefore, it is desired to map, start and stop analysis
tasks (“applications”) on cameras as required. As a side ef-
fect, using this dynamic task allocation the system’s fault tol-



erance is increased, since the system can be reconfigured due
to the breakdown of system components.

Software The algorithmic tasks have to be designed as high
performance, dynamically reconfigurable software modules,
which allow video analysis to be performed in real-time.
Therefore, these applications require a software framework,
which supports the reconfiguration and allocation of tasks
within our smart camera. Additionally, this software frame-
work has to provide an abstraction of communication chan-
nels and hardware to allow applications to be run on plat-
forms differently equipped.

Hardware Computing performance is a major hardware re-
quirement due to the high demand for on-board processing
on our smart camera.1

However, power-awareness, reconfigurability and scala-
bility are also important design issues. The smart camera
may be installed at locations with limited power (solar pan-
els or power over Ethernet). Reconfigurability and scalabil-
ity should be supported by providing mechanisms to simply
add and remove processing components of the camera. As
a consequence, the communication between system compo-
nents has to be flexible and scalable, too. This scalable hard-
ware architecture should be as transparent as possible for the
camera’s software architecture.

3. HARDWARE ARCHITECTURE

To fulfill the previously mentioned requirements, the
smart camera has been designed as a low-power embed-
ded system. Figure 1 depicts the hardware architecture
of our smart camera. It consists of three basic build-
ing blocks: (1) the sensing unit, (2) the processing unit, and
(3) the communication unit.

Sensing The heart of the sensing unit is the high-dynamic,
monochrome CMOS image-sensor LM9618 from National
Semiconductor. To cope with the high-dynamics of sunlight
vs. night, optics equipped with a controllable iris are used.
These two subunits are connected via a generic interface to
the processing unit.

Processing DSPs have been chosen as processing elements
because they provide high computing performance while
keeping power dissipation low. The TMS320C6415 DSP
from Texas Instruments serves as processing element and
provides 4.800 MIPS at 600 MHz. Our basic camera sys-
tem is equipped with two of these DSPs providing almost 10
GIPS. The number of DSPs in the camera is scalable and is
basically limited by the communication unit (up to 4 DSPs
can be connected without additional hardware effort). Each
DSP features 1 MB of internal memory which is vital for
image processing algorithms as well as a set of on-chip pe-
ripherals such as a multi-channel DMA controller or buffered
serial ports. Each DSP is equipped with 128 MB of local

1 Note that MPEG-4 compression (full PAL-D1 @ 25 fps) requires al-
most 5 GIPS. High-level video analysis tasks for traffic surveillance re-
quire a computing performance in the same order of magnitude.

memory separated into two banks, each connected to one of
the two DSP’s memory interfaces. This separation increases
the achievable data throughput essentially. All DSPs are con-
nected via the on-board PCI bus. A PCI interface is provided
by each DSP, so no additional hardware is required.

Communication The communication unit provides access
for the processing unit to the outer world (and vice-versa).
In principle, the communication of the smart camera is two-
fold: (1) The communication unit manages the internal com-
munication, where it is used as the host node of the PCI bus
and therefore controls the PCI-communication of the DSPs.
(2) The external communication channels are usually IP-
based like Ethernet, wireless LAN, or GPRS. Although IP-
stacks are available for DSPs, the implementation of com-
munication channels on the used Intel XScale IXP422 pro-
cessor provides higher performance and data throughput at
lower processing loads than DSP implementations.

4. SOFTWARE ARCHITECTURE

According to the hardware design, our smart camera fea-
tures two main software architectures. First, the DSP Frame-
work is running on each DSP and provides the environment
for the video tasks (compression and analysis) as well as the
hardware abstraction and advanced resource management to
support reconfiguration and scalability. Second, the Smart-
Cam Framework is executed on the network processor and
acts as a bridge between the DSPs and provides access to the
outer world. Additionally, it collects performance status in-
formation of the DSP Frameworks to enable a load depen-
dent allocation of tasks to the DSPs.

4.1. DSP Framework

Figure 2 shows the basic structure of the DSP-based soft-
ware architecture of the smart camera. As mentioned in Sec-
tion 2, the architecture is divided into the core layer which
provides abstraction and services to the application layer.

Dynamic Loading Operating systems for DSPs are designed
to be fast, reliable, and lightweight. Consequently, applica-
tions to be run on the DSP are statically linked to the operat-
ing system, resulting in a single binary. To switch to another
application, not contained in the currently used binary, the
system has to be stopped, the new binary has to be down-
loaded, and finally the new system is started up. Since it
is inherently important for reconfigurable and scalable sys-
tems to be able to load and unload software modules (ap-
plications, drivers) during runtime, we have chosen to im-
plement the dynamic loader from Texas Instruments into the
DSP-Framework.

The dynamic loader is an integral part of the core-drivers
layer and enables in conjunction with the PCI messaging
driver, the download and execution of software modules.
Therefore the module’s binary code is downloaded to the
DSP. Then the dynamic loader is invoked, which loads the



Ethernet WLAN

Serial GPRS

Communication

Cam Control

µC

Interfaces

In
te

r
fa

c
e



Sensing

(Infrared -)
Flash

PTZ / Dome
Interface

PCI

RAM (EMIF-A)

Processing

.

.

.

RAM (EMIF-B)

CMOS-
Sensor

RAM (EMIF-A)

RAM (EMIF-B)

C6415

IR
IS



C6415

Figure 1. The hardware architecture of the smart camera

binary to its destination memory (on/off-chip memory), re-
solves the symbols of the module and the running modules,
and finally launches the module. Since there is no restric-
tion of which modules can be dynamic loaded or not, our
system uses the functionality for core-layer components like
dynamic, second-class drivers (video-, audio-, communica-
tion drivers) as well as for applications.

Therefore the operating system (DSP/BIOS), and the ba-
sic functionality including PCI messaging drivers and
dynamic loading support (Core Drivers / Functional-
ity) is linked statically and represents the base system. Any
other components are loaded dynamically and are exchange-
able during runtime.

Resource Management Low-level management of on-chip
resources, like DMA channels, DMA interrupts and hard-
ware interrupts is implemented by the chip-support library
(CSL) as part of DSP/BIOS. However, changing resource re-
quirements due to added and removed applications require an
enhanced resource management including reservation, mon-
itoring and selection of allocatable resources.

Video-based real-time computing requires a high amount
of data to be transferred, therefore the utilization of the DMA
subsystem is high. Thus one of the tasks of the resource man-
ager is the efficient allocation of DMA channels and inter-
rupts.

For an efficient allocation of tasks on the DSPs, the re-
source manager additionally monitors the utilization of the
processor core and the system memory. Previous work [1]
shows that memory transfers are crucial for the performance
of DSP-based systems. Therefore the resource manager also
keeps track of the current utilization of the memory bus since
an overload would result in reduced performance and as a

consequence in violations of the real-time deadlines. The fol-
lowing resources are managed and monitored by the resource
manager. Note that the monitoring results are transferred to
the SmartCam framework (see section 4.2), which collects
and utilizes the gathered results.

- CPU load,

- memory utilization (considering memory hierarchy),

- memory bus utilization,

- DMA channels,

- DMA completion codes,

- interrupts,

- timers.

Data Services Various DSP subsystems may be equipped
with different off-chip resources, therefore applications must
may not access hardware resources directly. Even the ac-
cess to the resource’s driver introduces a problem, since non-
existent resources will not require a driver not be present.
Therefore application communicate with the service man-
ager run on every DSP system, which provides access to
the resources. To receive data from a resource (eg. an im-
age sensor), the application subscribes to services provided
by the service manager, which subsequently supplies the
application with the required data. Therfore data endpoint
drivers like video sensors or audio codecs inform the local
service manager during startup of the data it is able to pro-
vide or accept, respectively. As soon as an application sub-
scribes to a service (e.g. raw image data at a certain reso-
lution and frame rate), the service manager checks if this
service is available locally. In case of success, it forwards



Core Layer

DSP/BIOS

Core Drivers / Functionality
(PCI, Dynamic Loader, Messaging)

Dynamic Drivers
(Video Interface, Audio, Sec. Communication)

Extended RF-5 Service Manager
Resource
Manager

Application Layer

App 1
MPEG-4 Encode

App 2
App 3

Tracking

Figure 2. The DSP Framework

the request to the driver, which subsequently initiates a di-
rect communication with the application. To enable other
DSPs access to the local services, the service manager an-
nounces its service to the SmartCam-Framework (see sec-
tion 4.2). Consequently, requests to services which are not
locally available, cause the service manager to send a query
to the SmartCam-Framework, if the service is available on
the smart camera. Supposing the service is available, the
SmartCam-Framework forwards the request to the service
manager providing the service, which then initiates a direct
connection to the requesting service manager (via PCI).

As the application unsubscribes the service, the local ser-
vice manager, and, if applicable the remote service manager
terminates the service for that application.

4.2. SmartCam - Framework

The system control and the interface to the outer world is
handled by the SmartCam-Framework, which is run on the
network processor. To guarantee short reaction times as well
as comprehensive functional support this framework is di-
vided into two layers (cp. figure 3): (i) The kernel-mode layer
and (ii) the user-mode layer.

Kernel-Mode Layer The kernel layer is the base layer of the
Linux DSP integration. Since this layer is part of the operat-
ing system kernel, it is inevitable that the kernel layer is fast
and reliable. Therefore the functionality of the kernel layer

SmartCam Framework
User-Mode Layer

App
App

RTP-Serv

App

DSP Monitor

SmartCam Framework
Kernel-Mode Layer

Linux Kernel

Figure 3. The SmartCam Framework

includes basic and time-critical functionality. Since various
DSPs can be used (TMS320C64x or TMS320DM64x), the
main purpose of this layer is the abstraction of the DSPs to
provide a common interface to the upper layers. Addition-
ally, the kernel layer provides functionality for access con-
trol of the DSPs to guarantee mutually exclusive access ei-
ther from the network processor and the DSPs.

User-Mode Layer Based on the kernel-mode layer, the user-
mode layer provides a DSP access library (DSPlib), which
extends the hardware abstraction and communication func-
tionality of the kernel-mode layer. This includes a pub-
lisher/subscriber messaging system, that enables applications
to register for certain messages, which are received and dis-
patched by the DSP access library. Additionally, the manage-
ment of dynamically loaded applications which includes the
monitoring and control (start/stop) of the tasks is part of this
layer. The integrated performance monitoring unit is the base
for selective allocation of applications to the DSPs. It col-
lects the current system state of the system’s DSPs and pro-
vides the data to applications. This way an application can be
launched on the DSP with the lowest system load.

Based on the DSP access library, the SmartCam frame-
work includes a set of user-level applications like (1) a bridg-
ing service, which listens for service announcements of ser-
vice managers and subsequently relays incoming requests to
the appropriate service managers.

Beside the DSP services, the SmartCam framework also
provides services for the Linux platform, like monitoring of
the system status, and the network connection. This way the
smart camera can establish a GPRS connection in case of
breakdown of the Ethernet interface. Consequently all tasks
would have to be notified in such case to reduce the network
traffic due to the reduced bandwidth of the GPRS connec-
tion.

5. EXPERIMENTAL RESULTS

5.1. Prototype

The proposed software framework has been implemented
and evaluated on the prototype of our smart camera (see fig-
ure 4). This prototype consists of an Intel IXDP425 Devel-
opment board, which is equipped with an Intel IXP425 XS-



Figure 4. The prototype of the smart camera

cale processor running at 533 MHz. This processor features
on-chip Ethernet MACs, serial communication ports and a
PCI host controller. The board is operated with Linux Kernel
2.6.8.1, which allows the usage of standard software pack-
ages, and enables interoperability with PC-based Linux sys-
tems. The system is currently able to be equipped with four
DSP boards, however our prototype is equipped with two
Network Video Development Kits (NVDK) from ATEME.
Each board consists of a TMS320C6416 DSP from Texas In-
struments, running at 600 MHz, with a total of 264 MB of
on-board memory. Image acquisition is done using the Na-
tional Semiconductor LM9618 monochrome CMOS image
sensor, which is connected to one of the DSP boards.

5.2. Results

We have tested our setup using two algorithms, which are
loaded dynamically to the DSPs of the prototype:

1. The MPEG-4 encoder has been configured to encode
VGA-resolution frames at 15 frames per second. The re-
sulting encoded bitstream is transferred to the network
processor, which transmits the video-stream using the
real-time protocol (RTP). In this configuration the en-
coder demands approximately 50% CPU load.

2. The stationary vehicle detection [1] requires in-
put frames with 320x240 pixels resolution at 7 frames
per second. The CPU load for this configuration is ap-
proximately 40%.

The MPEG-4 encoder has been run on the DSP featuring
the image sensor, since it requires the higher amount of in-
put data (VGA @ 15 fps). The mentioned performance data
implies that both algorithms can be run on one DSP. How-
ever, the conversion of the input frames to suit the system
and the shutter control for the image sensor raise the base
load of the system to approximately 40%. Therefore it is not
possible to run both applications on one single DSP. After
evaluating the current system status (CPU load, memory uti-
lization, etc.), reported by the SmartCam framework, the sta-

tionary vehicle detection has been launched on the second
DSP. The CPU load on the network processor has been ap-
prox. 13%, whereas the major part of the processing load is
required by the RTP streaming task,

Memory Footprint Table 1 enlists the memory requirements
of the DSP- and the SmartCam framework and the footprints
of the frameworks including the operating system.

SmartCam Framework DSP Framework
Framework 400 kB 70 kB
System 16 MB 210 kB

Table 1. Footprints of the frameworks

Data Throughput Raw video has the highest bandwidth de-
mands of up to 32 MB per second (full PAL resolution
(752x576) at 25 fps). Therefore the communication chan-
nel between the processors has to be able to cope with these
bandwidth requirements. We have analyzed the data through-
put between either the DSPs, and a DSP and the network
processor. Therefore we have transmitted data chunks with
64 kB size each, while measuring the time required to trans-
fer the data. The values denoted in table 2 represent the ex-
trapolated values. They show that the achievable transfer rate
between the DSPs is sufficient to transport more than two
raw video streams in parallel, while the connection to the net-
work processor is slower due to hardware implementation is-
sues of the Intel XScale processor.

DSP ↔ DSP DSP ↔ XScale
Throughput 75 MB/sec 15 MB/sec

Table 2. Achievable transfer rates via PCI bus

Dynamic Loader We have also determined the time it re-
quires to start the stationary vehicle detection as a dynamic
module (cp. table 3). The major part of the required time is
used to download the module (46 ms) to the DSP, while the
start of the module took only 17 ms.

Size Download Registration & Start
190 kb 46 ms 17 ms

Table 3. Dynamic loading

6. CONCLUSION

In this paper we have presented a smart camera targeting
traffic surveillance. The high functional and environmental
requirements lead to a heterogeneous embedded system con-
sisting of digital-signal processors to accomplish the video



surveillance tasks, and a network processor for system con-
trol and communication management. The migration from
static mapping of algorithms to DSPs to dynamic allocation
of tasks introduces a significantly increased flexibility and
fault-tolerance. However, to support the dynamic allocation
of tasks, a software framework has to be implemented on the
network processor and the DSPs which abstracts the hard-
ware and the communication channels. To distribute data be-
tween the DSPs, the framework features subscription based
data-services which are transparent to the applications. To
demonstrate the functionality of the system, we have imple-
mented two applications, which make use of the proposed
software framework. Experiments with this system demon-
strate the functionality and the moderate requirements of the
system.

Future work includes (i) the further evaluation of the sys-
tem using more DSPs and a larger set of applications, (ii)
the automated allocation of tasks to DSPs using the applica-
tion’s requirements and the current system state, (iii) the au-
tomated distribution of tasks in groups of smart cameras us-
ing mobile agents, and (iv) the improvement of the communi-
cation between DSPs to reduce the required processing load.
We are also interested in the implementation of the conver-
sion of the input frames (from image sensor) to the system’s
required format in programmable hardware.

References

[1] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach.
Real-Time Video Analysis on an Embedded Smart Camera for
Traffic Surveillance. In Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applications Symposium,
pages 174–181, 2004.

[2] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner,
B. Strobl, and H. Schwabach. A smart camera for traffic
surveillance. In Proceedings of the First Workshop on Intel-
ligent Solutions in Embedded Systems, pages 153–164, June
2003.

[3] G. L. Foresti, P. Mähönen, and C. S. Regazzoni, editors. Mul-
timedia video-based surveillance systems. Kluwer Academic
Publishers, Boston, 2000.

[4] T. Lv, B. Ozer, and W. Wolf. Parallel Architecture for Video
Processing in a Smart Camera System. In Proceedings of the
IEEE Workshop on Signal Processing Systems, pages 9–14,
2002.

[5] F. Soldatini, P. Mähönen, M. Saaranen, and C. Regazzoni. Net-
work Management Within an Architecture for Distributed Hier-
archial Digital Surveillance Systems, chapter 4.4. Kluwer Aca-
demic Publishers, Boston, 2000.

[6] W. Wolf, B. Ozer, and T. Lv. Smart Cameras as Embedded Sys-
tems. IEEE Computer, 35(9):48–53, September 2002.


