
10 Telematik 3-4/2004

Thema

Synthesis of Embedded Image Processing
Applications from Simulink Models
Andreas Doblander*, Dietmar Gösseringer*, Bernhard Rinner* and Helmut Schwabach+

* Institute for Technical Informatics, Graz University of Technology
+ Video & Safety Technologies, ARC seibersdorf research GmbH

In next generation video surveillance systems
there is a trend towards embedded solutions. A
significant amount of processing power is needed
for such complex applications. Therefore, digi-
tal signal processors (DSP) are often used to
provide the necessary computational capabilities.
But resources in embedded DSP systems are
typically very limited which imposes significant
challenges for software development.
Resource constraints must be met while facing
increasing application complexity and pressing
time-to-market demands. Recent advances in
synthesis tools for Simulink suggest a feasible
high-level approach to algorithm implementation
for embedded DSP systems. The model-based
visual development process of Simulink
facilitates host-side simulation and validation,
as well as synthesis of target specific code. Furt-
hermore, legacy code written in Matlab or ANSI
C can be reused in custom blocks. However, the
code generated for DSP platforms is often not
very efficient.
In this work the modeling and code generation
capabilities within Simulink are evaluated with
respect to image processing algorithms. A motion
detection algorithm is synthesized from a
corresponding model. The resulting code targeted
at a Texas Instruments TMS320C6416 DSP is
compared to a hand-optimized reference
implementation for the same processor. Results
show that an ad hoc approach to synthesize
complex image processing algorithms hardly
yields optimal code for DSPs. However, several
methods are presented that can improve
performance of synthesized code.

1 Introduction
In modern application domains digital signal
processors (DSP) play an increasingly important
role. This is due to a significant increase in DSP
processing power which allows for increasingly
complex applications. Video surveillance

applications, e.g., show a trend of integrating
image acquisition and analysis with compression
and network communication functionality into a
single embedded device [1, 2]. High performance
DSPs are often used to provide the needed
processing power. Such complex configurations
impose significant challenges on software
development. Tight resource constraints have to
be met while facing increasing application
complexity and pressing time-to-market
demands. Most image analysis algorithms in vi-
deo surveillance systems are very resource in-
tensive. Additionally, several of such algorithms
have to be integrated into one embedded device.
Although modern DSPs offer substantial
computational resources code optimization is
mostly crucial for media applications [3].

Currently, image analysis algorithms are mostly
explored using Matlab. After that they are
manually recoded in C or assembly language to
meet performance goals on the target DSP. This
is an error prone and cumbersome iterative
process. Being rather time-consuming this
recoding approach also directly conflicts with
tight time-to-market objectives.

General purpose computing may give some hints
to overcome most of these hindering matters. In
hardware design as well as in software
development commercial-off-the-shelf (COTS)
components are extensively used. This approach
substantially improves reuse and decreases
application integration time. Furthermore,
sophisticated tools support developers in routine
tasks or even automate entire development steps.
Reuse, validation, and verification have to be
facilitated also in embedded software
development. A holistic approach based on
validated and certified software components is
promoted by [4]. The major challenge is to
increase the level of abstraction in software

development while meeting tight resource
constraints.

Recently added support for DSP targets in the
synthesis tools for Simulink simplifies high-level
development for embedded DSP systems. The
block-oriented modeling in Simulink is some kind
of a light-weight component framework. It
supports hierarchical modeling and, therefore,
promotes reuse and addresses algorithmic
complexity. Early validation of designs can be
achieved by the simulation capabilities of
Simulink. Additionally, the visual development
environment boosts comprehensibility of large
designs. To fully exploit model-based
development synthesis tools are used to translate
models to efficient code for the target platform.
Special target specific blocks promise to
synthesize rather efficient production code.

In this paper model-based development and
synthesis using the Simulink environment are
explored. The main focus of this investigation is
on the development of image processing
algorithms for embedded DSP applications. An
evaluation of the quality of DSP code synthesized
using the Real-Time Workshop Embedded Coder
for Simulink is the main contribution of this work.
It is shown that high-level modeling in Simulink
is a feasible approach to software development
for embedded DSP applications. Nevertheless,
complex image processing algorithms still pose
performance problems. This is because maximum
control and flexibility of low-level programming
languages are traded for an abstract system
modeling approach. Furthermore, decisions
concerning the implementation format (i.e.
generic programming ensuring portability vs.
target specific implementations yielding
maximum efficiency) or modularization
granularity also have a significant influence on
performance. It is also shown that the lack of

11Telematik 3-4/2004

Thema

optimized block libraries most compromises
performance. Furthermore, modularization and
integration of algorithms written in C or M-script
(language of Matlab) as custom Simulink blocks
(i.e. as S-functions) is introduced as an interesting
possibility to reuse legacy code.

The presented evaluation is limited to image
processing applications on COTS DSP chips.
Only single-processor settings are considered.
To achieve comparable setups this work
considers only a single algorithm system.
Multitasking and multi-DSP systems are left out
for future exploration.

The remainder of this paper is organized as
follows. The next section presents related work
concerning model-based development,
component-based approaches, and code
generation for embedded systems. In „High-Le-
vel Development“ the model-based development
process is introduced . Basic development steps
and their mutual interactions are sketched.
Specifics of modeling in Simulink are illustrated.
An evaluation of the development process for
embedded image processing applications in
Simulink is presented in the section about „Ex-
perimental Evaluation“. Modeling capabilities for
image processing and the quality of the generated
code are scrutinized. For the evaluation we used
a simple motion detection algorithm to be run on
a commercial DSP board. The code generated by
Simulink was compared to a manually optimized
C implementation of the same algorithm. Perfor-
mance and memory usage of the two
implementations are presented. A discussion of
the experimental results and an analysis of
possible improvements ends the section. A brief
summary of this work and some concluding
remarks conclude the paper in Section
„Conclusion“.

2 Related Work
Modeling and synthesis of digital signal
processing algorithms and underlying models of
computation (MoC) have been investigated
extensively (e.g. in [5]). Data flow models are
considered to best match the needs for digital
signal processing applications.

In order to ease embedded software development
the notion of platform-based development has
been introduced [6]. This approach suggests a
uniform development process for embedded
software. Every system layer is built upon other
grounding layers. All such layers can be seen as
platforms for the layers using them (thus the
term platform-based). Hierarchical modeling

using abstract blocks as in Simulink is to some
degree similar to this concept.

Component-based principles for embedded
systems are developed by Schmidt et al. [7] in
their CIAO framework. They present a RT-
CORBA implementation for distributed real time
and embedded (DRE) systems. The focus of their
work is on aiding the programming of distributed
systems and automatic component interface
generation. In contrast to that the approach
presented in this paper concentrates on code
reuse and synthesis of algorithmic code. But both
concepts provide some kind of a component
framework.

Another component framework for real-time
systems is suggested in [8]. They focus on reuse
of legacy code which is also a major issue in this
work. However, their approach also supports
code generation only for component interfaces.

A rapid application development approach in
the automotive domain is presented in [9]. There
the authors describe the modeling of Time
Triggered Architecture (TTA) using Simulink.
In [10] the authors evaluate the synthesis
capabilities of Simulink for automotive
powertrain control. Although in automotive
applications they have to meet hard real-time
deadlines their overall performance requirements
are far less than in image processing algorithms.
An integrated modeling approach for audio signal
processing using Simulink and TI DSPs is
discussed in [11].

Semiconductor vendors are also pressed to
provide a significant software basis to ease
application development for their processor
chips. Texas Instruments, for example,
introduced the eXpressDSP Software Initiative
with a standard for
algorithm development
(XDAIS) [12]. XDAIS
defines a framework
which enables easy
integration of compliant
COTS algorithms from
third parties. Such
XDAIS algorithms are
optimal candidates for
use as custom blocks in
Simulink.

Besides the synthesis
tools related to
Simulink (i.e. Real-
Time Workshop) there

is, among others, another commercial product
that supports code synthesis for TI DSPs.
Hypersignal RIDE by Hyperception, Inc. is a
visual block-oriented environment, too. It
synthesizes code by linking optimized and pre-
compiled target specific object code to an
executable program [13]. In Simulink ANSI C is
used as an intermediate language in the synthesis
process.

3 High-Level Development for Em-
bedded Image Processing

New development approaches are needed to
tackle increasing application complexity while
following pressing time-to-market requirements.
Software reuse and easy integration of complex
applications have to be encouraged. In this
section model-based development in general and
its application using the Matlab/Simulink
environment are presented. The applicability for
image processing algorithms and suggested
optimization techniques are illustrated.

3.1 The Model-Based Design Process
Generally, the model-based design approach is a
generic development paradigm for embedded
systems. It addresses system specification,
synthesis of implementation, model analysis,
validation and simulation, test and design
evolution. Facing the various fields of
applications of embedded systems—e.g. decision
control systems, physical processes, signal
processing—a single modeling language cannot
be suitable for all systems. Rather, different more
specific modeling approaches offering methods
and syntaxes that are close enough to the
particular application domain are employed [14,
15]. This heterogeneity of applications brought
about the notion of domain-specific languages
(DSLs).

Fig.1: Development steps of a model-based design process

12 Telematik 3-4/2004

Thema

For the domain of signal processing dataflow
models are well suited and commonly used as
the DSL. Modeling systems typically use a visual
design approach such that modeling can be
understood as visual programming where
computational units are represented as blocks
and data flow interconnections are represented
as edges.

Figure 1 depicts the sequence of basic
development phases of a design process for signal
processing applications. Algorithmic design
corresponds to the research phase and is usually
done using a development environment for
technical computing such as Matlab that provides
a high-level language for algorithm and data
exploration. System level design starts with a
well-defined and parameterized algorithm and
transfers the specification into the domain of the
modeling-language. This step corresponds to a
generic implementation for embedded systems
and replaces the coding phase of conventional
software development process. Since the model
is not only descriptive but also executable,
continuous simulation helps to attain a validated
reference. The aspect of having the semantics
captured for both, the host and the target, is
fundamental to model based-design. In the next
phase the model can optionally be instrumented
for target-side testing. Finally, the automatically
generated program can be run on the target from
within the model development environment. Test
data can be parameterized and output data can
be visualized on the fly. Criteria such as profiling
results (i.e. CPU load and code size) determine if
further model optimization steps are required.
(For details on optimization techniques refer to
Section 3.4.) This would entail the last design
process steps to be performed iteratively until
performance requirements are met.

3.2 Algorithm Development and Code
Generation in SIMULINK

This section gives an insight of how the
previously described development process is
performed using MATLAB/SIMULINK and
related tools by The Mathworks. Basically, all
development phases as depicted in Figure 1, are
performed using MATLAB, SIMULINK and
the REAL-TIME WORKSHOP EMBEDDED
CODER and EMBEDDED TARGET,
respectively.

Image and video processing algorithms are
elaborated using MATLAB as it is considered
industry standard for this field of research. Furt-
her, environment variables containing simulation
and test data such as images or videos which

were prepared during algorithm development are
directly accessible from SIMULINK. This fact
eases the start into system level design where
SIMULINK serves as modeling and simulation
environment. Models are composed of blocks
that have inputs and outputs, parameters and
states. Inputs and outputs can be interconnected
if data format and bus width match. At any time
during model-composition the model can be
validated by simulation. A validation step
preceding the simulation checks the model for
syntactical correctness and logical integrity.
During simulation the model’s semantic behavior
is tested on the host. Code generation for target
side testing is the main step of the implementation
/ verification phase. The synthesis is performed
by the REAL-TIME WORKSHOP EM-
BEDDED CODER and EMBEDDED TAR-
GET. If testing from within the MATLAB/
SIMULINK environment is desired, the model
can optionally be instrumented for target-to-host
communication. This is simply done by replacing
data sources and sinks in the model by inputs
and outputs provided by a target specific block
library. Thereby testing is strongly simplified
because test data can be uploaded onto the target,
parameterization can be performed on the fly,
and the calculated results can be visualized in
MATLAB/SIMULINK. Model optimizations
are realized via integration of optimized C code
using the S-function interface. S-functions are a
description of SIMULINK blocks. Their defined
interface permits implementation in various
programming languages such as C [16]. Generic
ANSI C code optimizations require a wrapper
S-Function as an interface to SIMULINK. Tar-
get-specific embedded C optimizations need to
be fully integrated into the generated code via the
in-lining mechanism provided by the Target
Language Compiler (TLC). Its input files (TLC
files) contain instructions that control code
generation with the REAL-TIME WORKSHOP.
Two implementations are necessary, one for
simulation in SIMULINK as S-function and one
for code generation by the REAL-TIME WORK-
SHOP as TLC file [17].

3.3 Applicability to Image Processing
Component-based development in embedded
video and image processing is in its early stages.
Taking into account the naturally high system
resource requirements of algorithms in that
domain, highly efficient implementations are
needed to meet timing constraints of real-time
systems. Unfortunately, the current state of
modeling systems is that such highly efficient
basic image processing functions are not or only
sparsely provided. Due to the sequentiality of

the data flow driven modeling approach,
necessary functionality can hardly be efficiently
modeled out of existing blocks. Lack of flexibility
in modeling control flow and insufficient
expression folding capabilities impose substantial
limitations on the modeler. Regarding
performance aspects loops are considered the
most critical code segments. Most basic image
processing operations are composed of loops or
even nested loop constructs. Therefore dramatic
performance losses can be expected from
modeling those missing functions. Typically,
powerful control structures and advanced
memory indexing inside nested loop kernels
would be needed to attain the desired
performance.

An example for the deficiency of image
processing support of the system design language
is data processing on multiple image segments.
That is that operations are not performed globally
in one step on the whole image but individually
on the tiled image segments. Those non-
overlapping equally-sized regions of the image
are called pixel blocks in the following. Simple
operations such as average pixel value calculation
- which corresponds to image downsampling by
factors of powers of 2 - require modeling
workarounds.

Proposed work-around strategies for
implementing repeated loop-like invocation of
functional kernels include:

Employment of control structure blocks
realizing loops (if available).
Implementation of a multi-rate system with
the usage of helper blocks bearing the
functional kernel, executing at subdivisions
of the model’s base rate.
Matrix re-arrangement and re-composition
with subsequent row- or column-wise data
processing (if applicable).

All work-around variants cause significant
performance losses in comparison to an
implementation written in a traditional procedural
programming language.

3.4 Model Optimization Techniques
The previous section illustrates the need to
optimize models and to avoid work-around
implementations in the domain of image and vi-
deo processing. Optimizations performed
directly on the output code are not a satisfactory
choice since that would break the coherent
mapping between model and generated code. All
convenient development tools would not be

13Telematik 3-4/2004

Thema

applicable anymore and the model-based design
process would be corrupted. Thus, output code
modifications are not an option. As an alternati-
ve modeling systems like Simulink allow the
system designer to add custom blocks to extend
the built-in functionality. These blocks can be
written in another programming language. This
degree of freedom respects the rules of the
development paradigm that need to be adhered
to.

When implementing custom modules in
programming languages such as C, some
considerations about functional granularity and
optimization level have to be taken into account.

Function granularity
Fine-grained modules with very basic
functionality ensure high flexibility and
reusability. Coarser-grained modules with
naturally more specific functionality give the
developer more possibilities for optimizations
since high-level dependencies can be exploited.
This becomes especially important for VLIW
(very long instruction set) processors with their
multiple parallel execution units. Very short
functions often do not exhibit enough parallelism
to utilize all execution units and therefore
processing resources are wasted. Only functions
with a certain quantity of (independent)
instructions can utilize the whole processor.

Optimization level
Generic optimization concentrates on hardware
independent model modifications. As the
modeling environment does not support efficient
means for control flow modeling it is essential to
have custom blocks for frequently used loops in
an algorithm. Otherwise the generated code
comprises many sequential loops which could
be combined to a single loop. Such a single loop
leaves more optimization margin to the compiler.
For some image analysis algorithms, e.g., it is
more efficient to do all processing steps on a
pixel-per-pixel basis. Instead of commonly used
image-based processing [18].
Additionally, by appropriate data structuring for
the algorithm many redundant memory accesses
can be avoided. Data representation (e.g. fixed-
point) is also an important consideration to aid
the compiler for the target processor.
Target specific modifications, on the other hand,
are not easily portable to different hardware any
more. But they yield the most performance
improvements in the synthesized code. One
possible approach is to embed processor
instructions (e.g. intrinsics) directly in the code
for custom blocks. An example for the motion

detection algorithm would be to use processor
instructions for packed-data processing (i.e.
SIMD). Another possibility for target specific
optimizations is referencing existing (object)
libraries of optimized primitive functions (e.g.
FFT, convolution filter). These libraries then have
to be linked to the application. An important
decision here is optimization granularity. That
is, using very primitive optimized functions or
specialized domain specific modules of larger
scale. For VLIW processor compilers it is
important to use not too fine grained primitive
functions with only a few instructions. They are
likely to be less efficient than well designed larger
modules which expose substantial instruction-
level parallelism. However, such larger scale
modules are then potentially more specific to
one particular application domain.
To maximize the use of custom optimizations a
mostly domain specific library of custom blocks
can be created and reused for several similar
products.

4 Experimental Evaluation of the
Simulink Development Tools

4.1 Experimental Setup
The practical experiments on which this section
is based were performed using The Mathworks
Matlab/Simulink Release 13 modeling
environment. As a code generator the Real-Time
Workshop Embedded Target was used. A Texas
Instruments C6416 DSP Starter Kit was used as
the target hardware platform.

The comparative profiling results presented in
Section 4.2 were performed on different
implementations of a motion detection algorithm
based on frame differencing. For the evaluation
we compared four different cases:

(i) Reference. A hand-optimized C
implementation exploiting the TI ’C64x
DSP’s special capabilities. This
implementation was taken as performance
reference. Optimization was achieved by
directly addressing the DSP’s instruction set
using intrinsic commands, its architecture
using data packing for maximizing bus width
usage and data throughput, and software
pipelining through specifying loop
properties.

 (ii) Unoptimized model. The synthesized
implementation of the ad hoc algorithm
modeling, corresponding to the modeling
results after the first iteration of the
development process presented in Section
3.1. No optimizations were applied.

(iii) Generic optimizations. The synthesized
implementation from the model where
generic optimizations were applied. Target
independent ANSI C S-functions were
integrated.

(iv) Target-specific optimizations. The
synthesized implementation of the model
where target specific blocks were used.
Adapted code segments from the reference
(i) written in C were integrated.

In order to sketch the algorithm used for
evaluation, the major building blocks of the
algorithm can be identified as:

(a) Image downsampling by calculating the
average of pixel blocks (i.e. regions of an
image).

(b) Buffering the current and unbuffering the
previous downsampled image for comparison
of consecutive video frames.

(c) Detecting blocks where motion has occurred,
i.e., blocks where the sum of absolute
differences (SAD) is greater than a pre-
defined threshold.

(d) Determining if a pre-alarm has to be set.
That is, summing up the number of motion
blocks, considering only those blocks which
are set active by a parameter mask, and
comparing the result with a threshold.

4.2 Code Profiling Results
Profiling was performed using a video format
with a resolution of 368 x 272 pixels and a block
size of 8 x 8 pixels. Results are presented in
Table 1 and Table 2. The overall consumed CPU
cycles are broken down into functional modules
for a more detailed view.
We measured a tremendous performance loss of
factor 44 for the generated code of the initial
unoptimized model (ii) compared to the reference
(i). This made clear that further optimization
was necessary. With the first level of
optimization employing ANSI C S-functions (iii)
the execution time could be reduced to 18% in
comparison to the unoptimized model (ii). Still,
a performance degradation of about a factor of 8
remains as compared to the reference (i). With
the second level of optimization utilizing
embedded C segments from the reference we
obtained performance results close to those of
the reference (i). We measured a 2% overhead
between these two implementations. The
performance speedup towards the generic
optimization (iii) amounts to a factor of 7,88.
The reasons for the poor performance of the
generated implementation from the unoptimized
model (ii) are mainly due to the limitations of the

14 Telematik 3-4/2004

Thema

modeling language. Operations are performed
sequentially in multiple loops, whereas they are
folded within one loop in the optimized version.
Expression folding within loops enables
compilers for single instruction multiple data
(SIMD) processors such as the TI C6416 DSP
to parallelize instructions resulting in further
performance gain. Output code of an unoptimized
model is not suitable for compiler optimizations.
Additionally, blocks that are only used to
interface special function blocks in the model
often result in unnecessary code in the synthesis
process. For example, a matrix reshape block
that is only needed to couple blocks with diffe-
rent data dimensions results in creation of a
replicate. For the algorithm this operation is re-
dundant and can impose significant performance
overhead. Another reason for the observed
inefficiency is that memory copying is performed
in an element-by-element manner. Therefore,
even simple functional blocks such as buffering
and unbuffering —although not relevant for the
overall performance— result in an enormous
performance loss of about factor 24.

Data memory consumption of the different
examined cases differs only slightly. In all
implementations memory for the input video
frames makes up about 85% of the total data
memory consumption. The rest is divided among
several buffers holding downsampled video
frames for performing the frame differencing.
Contrary to data memory, program code size
differs significantly between the reference
implementation and the automatically generated
versions. The generated model executables
require more than two times the amount of pro-
gram memory needed by the reference
implementation.

4.3 Discussion
The profiling results of non-optimized models
illustrate the weakness of today’s modeling
systems in the field of image processing. As
already stated previously, the lack of domain
specific function libraries and the limitations in
modeling low-level functions efficiently
necessitate extensibility of the modeling system
by integrating custom code. We find that the
performance differences between the reference
and the optimized models are acceptable in favor
of the advantages of the system-level design-
flow that provides a good framework for modu-
lar design. Further it ensures reusability, serves
as test and simulation environment and furnishes
executable specifications. The component-based
development paradigm also takes development
of embedded systems one step further as it meets

increasingly pressing time-to-market demands.
Still many constructs are missing that possibly
have the potential to improve performance of
image and video processing on embedded DSP
platforms. Nevertheless, we believe that the
current deficiencies together with the market’s
needs will boost developments in this field.

5 Conclusion
Increasing application complexity and time-to-
market requirements in the domain of embedded
image processing demand for efficient software
development strategies. Recently, the synthesis
tools for Simulink were extended to support code
generation for Texas Instruments DSPs.
Motivated by their availability an evaluation of
these tools for design and implementation of
image processing algorithms was conducted.

It was indicated in this paper that model-based
design is a feasible approach for embedded DSP
applications. Reusability and maintainability of
the software are promoted by the high-level
design. Combined with automatic synthesis
capabilities overall development time can be
reduced. However, complex embedded video
surveillance appli-
cations require rather
efficient algorithm
implementations. A
demand that often
cannot be satisfied by
automatic synthesis
from simple models. To
meet tight resource
constraints on the target
optimization of the
model is essential.
Expressing special
DSP features directly in
the model can boost
performance dramat-
ically.

Of course, automatically
generated code will not
yield the same degree of
optimization that an
experienced developer
can reach manually. But
establishing a compre-
hensive library of
domain specific
functional blocks allows
synthesis of code that
at least exhibits only
little performance
degradation.

To retain reusability and portability, however,
additional work has to be done. Blocks have to
be implemented in both, a generic and a target
specific version, respectively. The latter serves
for taking full advantage of the DSP’s architecture
while the former allows simulation and preserves
portability between different target platforms.
Platform specific details have to be adapted only
if a different target hardware is used and
performance optimizations are needed.
Otherwise no major modifications are necessary.

Code profiling experiments were conducted to
evaluate the synthesis capabilities of Simulink
for Texas Instruments TMS320C64x DSPs (i.e.
REAL-TIME WORKSHOP EMBEDDED
TARGET). A manually optimized implementa-
tion of a simple motion detection algorithm was
compared to code generated from SIMULINK
models. Several model variants were examined
to illustrate possible optimization techniques in
the model that improve the synthesized code.

5.1 FurtherWork
Future work includes further investigation of code
generation capabilities of the REALTIME

Tab.1: Profiling results in CPU cycles

eludoM
ecnerefeR

-itatnemelpmi
)i(no

dezimitpo-noN
)ii(ledom

yllacireneG
dezimitpo
)iii(ledom

-ficeps-tegraT
dezimitpoci
)vi(ledom

)a(gnilpmasnwoD 257826 88056672 6100305 410936

)b(reffubnU/reffuB 8041 67873 2951 2951

)c(skcolBnoitoMtceted 0251 42058 23862 6351

)d(mralAerp 234 61144 6923 844

llarevO 211236 40123872 6371605 095246

Tab.2: Comparison of profiling results (ratios of CPU cycles)

ecnerefeR
-itatnemelpmi

)i(no

dezimitpo-noN
)ii(ledom

yllacireneG
dezimitpo
)iii(ledom

-ficeps-tegraT
dezimitpoci
)vi(ledom

ecnerefeR
)i(noitatnemelpmi 00,1 20,0 21,0 89,0

dezimitpo-noN
)ii(ledom 30,44 00,1 05,5 53,34

dezimitpoyllacireneG
)iii(ledom 10,8 81,0 00,1 88,7

cificeps-tegraT
)vi(ledomdezimitpo 20,1 20,0 31,0 00,1

Tab.3: Memory consumption in KB

eludoM
ecnerefeR

-itatnemelpmi
)i(no

dezimitpo-noN
)ii(ledom

yllacireneG
dezimitpo
)iii(ledom

-ficeps-tegraT
dezimitpoci
)vi(ledom

ezisedoC 841 543 643 643

yromemataD 111 511 611 611

15Telematik 3-4/2004

Thema

WORKSHOP EMBEDDED CODER. Plans are
to implement several higher level image
processing algorithms, e.g. a stationary vehicle
detection algorithm (StVD), as custom
SIMULINK blocks. These blocks can be
combined to build more complex image processing
applications. A high-level framework for
integrating several XDAIS algorithms (That is,
algorithm implementations compliant with the
Texas Instruments interface definitions for
reusable software components. For more details
refer to [12].) into a single system is desired.

Furthermore, the implementation of specialized
blocks for target resource management (e.g.
DMA) are needed to allow better memory and
bus transfer management. A significant speed-
up in image data transfers is anticipated using
such target specific blocks. As a further extension
to current modeling capabilities multi-DSP
support can be imagined to be incorporated.
Therefore, some means for distributing specific
algorithms to different processors have to be
provided in the modeling environment. A possible
approach could again be specialized blocks. In
this case they would have to represent linking
and loading of target code rather than algorithmic
computation.

References
[1] W. Wolf, B. Ozer, and T. Lv, Smart cameras

as embedded systems, IEEE Computer,
35(9):48–53, September 2002.

[2] C. S. Regazzoni, V. Ramesh, and G. L.
Foresti, Introduction of the special issue,
Proceedings of the IEEE, 89(10), October
2001.

[3] Kerem Karaday, Vishal Markandey, Robert
J. Gove, and Yongmin Kim, Strategies
for mapping algorithms to media-
processors for high performance, IEEE
Micro, 23(4):58–70, July–August 2003.

[4] Alberto Sangiovanni-Vincentelli and Grant
Martin, A vision for embedded software,
In Proceedings of the International
Conference on Compilers, Architecture,
and Synthesis for Embedded Systems
(CASES 2001), Atlanta, Georgia, USA,
2001.

[5] Marco Sgroi, Luciano Lavagno, and Alberto
Sangiovanni-Vincentelli, Formal models
for embedded system design, IEEE De-
sign & Test of Computers, 17(2):14–27,
April–June 2000.

[6] Alberto Sangiovanni-Vincentelli, Defining
platform-based design, EEDesign Ma-
gazine of EETimes (EEDesign.com),
February 2002.

[7] Krishnakumar Balasubramanian, Nanbor
Wang, Chris Gill, and Douglas C.
Schmidt, Towards composable
distributed real-time and embedded
software, In Proceedings of the 8th IEEE
International Workshop on Object-
Oriented Real-Time Dependable Systems
(WORDS 2003), Guadalajara, Mexico,
2003.

[8] Egon Teiniker, Stefan Mitterdorfer, Christi-
an Kreiner, Zsolt Kovacs, and Reinhold
Weiss, Local components and reuse of
legacy code in the corba component
model, In Proceedings of the 28th

Euromicro Conference (EURO-
MICRO’02), Institute for Technical
Informatics, Graz University of
Technology, IEEE, 2002.

[9] R. Obermaisser and P. Peti, A framework
for rapid application development of
distributed embedded real-time systems,
In Proceedings of the IEEE Region 8
EUROCON 2003, Computer as a Tool,
Ljubljana, Slovenia, 2003.

[10] DavidWybo and David Putti, A qualitative
analysis of automatic code generation
tools for automotive powertrain
applications, In Proceedings of the 1999
IEEE International Symposium on Com-
puter Aided Control System Design,
Kohala Coast-Island of Hawaii, Hawaii,
USA, 1999.

[11] K.H. Hong, W.S. Gan, Y.K. Chong, K.K.
Chew, C.M. Lee, and T.Y. Koh, An
integrated environment for rapid
prototyping of dsp algorithms using
Matlab and texas instruments’
TMS320C30, Microprocessors and
Microsystems, 24(7):349–363, Novem-
ber 2000.

[12] Texas Instruments, TMS320 Algorithm
Standard - Rules and Guidelines, Texas
Instruments, October 2002, Literature
Number: SPRU352E.

[13] Hyperception, Inc., Hypersignal ride
product website, 2004, http://
www.hyperception.com/RIDE/

[14] G. Karsai, J. Sztipanovits, A. Ledeczi, and
T. Bapty, Model-integrated development
of embedded software, Proceedings of
the IEEE, 91(1):145–164, January 2003.

[15] S. Sastry, J. Sztipanovits, R. Bajcsy, and
H. Gill, Scanning the issue - special issue
on modeling and design of embedded
software, Proceedings of the IEEE, 91(1),
January 2003.

[16] The Mathworks, Simulink—Model-Based
and System-Based Design, The

Mathworks, September 2003, Writing
S-Functions - Version 5.

[17] The Mathworks, Target Language Com-
piler - For Use with Real-Time Work-
shop, The Mathworks, July 2002.
Reference Guide - Version 5.

[18] Michael Bramberger, Josef Brunner,
Bernhard Rinner, and Helmut Schwa-
bach, Real-time video analysis on an
embedded smart camera for traffic
surveillance, In Proceedings of the 10th
IEEE Real-Time and Embedded
Technology and Applications Symposi-
um (RTAS 2004), pages 174–181, To-
ronto, Canada, May 2004. IEEE.

Andreas Doblander, Dietmar Gösseringer,
Bernhard Rinner, {doblander, goesseringer,
rinner}@iti.tugraz.at, Institute for Technical
Informatics, Graz University of Technology,
Graz, Austria

Helmut Schwabach, helmut.schwabach@arcs.ac.at
Video & Safety Technologies, ARC seibersdorf
research GmbH, Seibersdorf, Austria

Conference on Human Factors
in Computing Systems

Portland, Oregon USA
April 2-7, 2005

The scope of SIGCHI consists of the
study of the human-computer interaction
processes and includes research, design,
development, and evaluation efforts for
interactive computer systems. The focus
of SIGCHI is on how people
communicate and interact with a broadly-
defined range of computer systems.
SIGCHI serves as a forum for the
exchange of ideas among computer
scientists, human factors scientists,
psychologists, social scientists, system
designers, and end users. Nearly 5,000
professional members of the SIGCHI
community work together toward
common goals and objectives.
One of the major challenges to the HCI
community is developing complex
interactive information systems. Hence,
CHI 2005 will focus on the relationships
between Safety, Technology, and
Community.

