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Online Monitoring by Dynamically Refining
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Abstract—Model-based monitoring determines faults in a
supervised system by comparing the available system’s mea-
surements with a priori information represented by the system’s
mathematical model. Especially in technical environments, a
monitoring system must be able to reason with incomplete
knowledge about the supervised system, to process noisy and
erroneous observations and to react within a limited time. We
present MOSES, a model-based monitoring system which is based
on imprecise models where the structure is known and the param-
eters may be imprecisely specified by numerical intervals. As a
consequence, only bounds on the trajectories can be derived with
imprecise models. These bounds are computed using traditional
numerical integration techniques starting from individual points
on the external surface of the model’s uncertainty space. When
new measurements from the supervised system become available,
MOSES checks the consistency of this new information with
the model’s prediction and refutes inconsistent parts from the
uncertainty space of the model. A fault in the supervised system
is detected when the complete model’s uncertainty space has
been refuted. MOSES bridges and extends methodologies from the
FDI and DX communities by refining the model’s uncertainty
space conservatively through refutation, by applying standard
numerical techniques for deriving the trajectories of imprecise
models and by exploiting the measurements as soon as possible for
online monitoring. The performance of MOSES is evaluated based
on examples and by online monitoring a complex heating system.

Index Terms—Imprecise models, model-based monitoring, pa-
rameter estimation, uncertainty space partitioning.

I. INTRODUCTION

HE PRIMARY objective of monitoring is to detect ab-

normal behaviors of a supervised system as soon as pos-
sible to avoid shutdown or damage. Due to the increased com-
plexity of many supervised systems, monitoring is becoming
more and more important. Physical systems especially, such
as robots, production lines, or anti-lock brakes provide a vast
number of challenges for a monitoring system. In such an en-
vironment, the monitoring system must be able to reason with
incomplete knowledge about the supervised system, to process
noisy and erroneous observations, and to react within predefined
time windows.
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A particularly important and widely-applied approach is
model-based monitoring [1] which can be defined as the deter-
mination of faults in a supervised system from the comparison
of available system’s measurements with a priori informa-
tion represented by the system’s mathematical model [2]. A
discrepancy between the derived system’s behavior and the
observed behavior indicates a fault in the supervised system.
Model-based monitoring techniques have been investigated
and developed within the diagnosis (DX) [3]-[5] and the Fault
Detection and Isolation (FDI) [6]-[8] communities over the
last few years.

Model-based monitoring makes use of mathematical models
of the supervised system. However, a perfectly accurate and
complete model of a physical system is almost never available.
Usually, the parameters of the system may vary with time in
an uncertain manner, and the characteristics of the disturbances
and noise are unknown so that they cannot be modeled accu-
rately. Hence, there is a mismatch between the physical system
and its mathematical model even if there are no faults present.
For model-based monitoring, it is therefore important how to
express and reason with incomplete knowledge.

Traditional FDI methods for model-based monitoring are es-
sentially based on numerical methods such as state estimation
and parameter estimation [9]-[11]. The general structure of such
a FDI system consists typically of two stages. First, fault indi-
cating signals, i.e., residuals, are generated using available input
and output data of the supervised system. Second, the residuals
are examined for the likelihood of faults, and a decision rule is
then applied to determine if any faults have occurred. Incom-
plete knowledge is often represented by parameterized differ-
ential equations.

We present an alternative approach to model-based moni-
toring of physical systems (called MOSES, for MOnitoring using
uncertainty Space partitioning for physical systEmS) that com-
bines and extends techniques from DX and FDI. Our approach
[12]-[14] is based on imprecise models' where the structure
of the models is known and the parameters may be imprecisely
given as numerical intervals. These parameter intervals span the
uncertainty space of the model. Only bounds on the trajectory,
i.e., envelopes, can be derived from an imprecise model based
on intervals. However, it is in principle not possible to decide
whether a supervised system is fault-free by using imprecise
models, since the output of a faulty system can lie anywhere, i.e.,
inside or outside the envelopes. In order to reduce missed alarms

IRemember the difference between precision and accuracy. Precision refers to
the degree of specified detail which can be observed or predicted from a model,
while accuracy refers to the truthfulness, or correctness, of the specified or pre-
dicted data.
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and reduce the fault recognition times it is, therefore, important
to keep the envelopes small. MOSES achieves small envelopes
by applying numerical integration techniques for solving im-
precise models and by checking the consistency of the observed
data with the model’s prediction whenever new measurements
are available. It removes then inconsistent parts from the uncer-
tainty space of the model.

Our approach bridges and extends methodologies from the
FDI and the DX communities in the following way.

1) Modeling the incomplete knowledge about the supervised
system is based on differential equations which are aug-
mented by numerical intervals of parameters. In general,
reasoning with intervals is complex and tedious. How-
ever, by focusing only on individual points on the sur-
face of the model’s uncertainty space, we can use standard
numerical methods, i.e., Runge—Kutta integration, for de-
riving the envelopes.

2) Measurements and prediction are checked for consistency
by exploiting qualitative information from the residuals.
Discrepancies are only reported when there is no overlap
between the measurements and the predicted envelopes.

3) By refuting parts of the uncertainty space that are incon-
sistent, MOSES also performs model refinement during
monitoring. This technique originates from semi-quanti-
tative system identification [15], [16] and is related to in-
terval analysis [17], [18]. We have extended and applied
this technique to online monitoring.

By exploiting measurements as soon as possible for online
monitoring by refining the uncertainty space conservatively
through refutation and by applying standard numerical tech-
niques for deriving the trajectories of imprecise models, our
approach combines and complements techniques from FDI and
DX and helps make them more widely and robustly available.

The remainder of this paper is organized as follows. Sec-
tion II presents the basic monitoring approach of MOSES,
i.e., it describes the imprecise modeling, the partitioning of
the model’s uncertainty space and the checking for consis-
tency with the measurements. Section III extends the basic
monitoring approach. The problem of nonmonotonicity of
state variables is discussed, and a check for monotonicity
is introduced. We also discuss the limitations of the basic
approach for oscillating systems and how this problem is
solved by intersecting the measurements with the predicted
envelopes. Section IV presents experimental results of our
implemented monitoring system. Section V discusses related
work and Section VI concludes this paper with a discussion
and an outlook for future work.

II. MONITORING BY REFUTING SUBSPACE MODELS

A. Overview

Monitoring methods based on imprecise models can reason
with incomplete knowledge in the model as well as with noisy
measurements. A main drawback of the standard interval ap-
proach, however, is that the envelopes may diverge very rapidly
which delays or even inhibits a fault recognition. We have re-
vised this interval approach to model-based monitoring with the
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primary goal to keep the resulting envelopes as small as pos-
sible.

In our approach, we exploit the measurements from the su-
pervised system as soon as possible to refine the uncertainty in
the model and the derived envelopes. The key step in our ap-
proach is to partition the uncertainty space of the model into sev-
eral subspaces. The trajectories derived from each subspace are
then checked for consistency with the measurements. Each in-
consistent subspace is refuted and excluded from further investi-
gations. Partitioning and consistency checking are continued re-
sulting in a smaller uncertainty space of the model and smaller
envelopes. When all subspaces are refuted, a discrepancy be-
tween the model prediction and the observation has been recog-
nized and a fault has been detected. Like uncertain parameters,
measurement noise can also be represented by numerical inter-
vals in MOSES.

B. Imprecise Modeling and Subspace Partitioning

In general, a physical system can be modeled as a differential
equation of order n

x(t) = £(x(t), u(t), p(t))
y(t) = g(x(1),p(t)) ey

where x(t) is the state vector at time ¢, u(t) is the input vector at
time ¢, p(¢) is the parameter vector at time ¢, y(¢) is the output
vector at time ¢, and g and f are vector functions. In a precise
model, p(t) is a vector of real numbers. However, in a model
with uncertain parameters, p(¢) can be replaced by a vector of

the number of uncertain parameters.2 A model with uncertain
parameters, i.e., an imprecise model, can therefore be described
as

x(t) = £(x(t), u(t), p)
y(t) = g(x(1), p)- ()

Equation (2) is the starting point of our approach. It defines
an imprecise model of the supervised system with K uncertain
parameters. This model has a K -dimensional uncertainty space.
A partition is defined as

a=1[(g,, @), (ay, @) - (4, dx)]" ®)

with q C p. Thus, a partition divides the uncertainty space into
smaller regions. A model based on a partition of the uncertainty
space is referred to as a subspace model which has obviously
less imprecision than the unpartitioned model. In order to apply
subspace models to monitoring, a complete partitioning into M
partitions must satisfy the following condition: | J,, g™ =p
where m = 1,..., M. Thus, the union of all subspace models
covers the complete (initial) uncertainty space of the impre-
cise model. Note that the individual partitions may overlap. The

system equation of a subspace model m is formally defined as:
(1) = £ (X0 (1), u(t), 4™
o) =g (X (1).4). ©

2In our approach we assume that the parameters do not vary over time and
are not necessarily independent.
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To apply imprecise models in MOSES, we must compute their
trajectories. A simple but intractable method to derive the tra-
jectories is to repeat a numerical integration starting from any
point within the uncertainty space.? If we assume monotonicity
of x(t) and y(t) with regard to the parameters p over the range
of the intervals, it is sufficient to focus only on a few points of
the uncertainty space.

C. Consistency Checking

With the monotonicity assumption, the (imprecise) state of
a subspace model can be represented by the (precise) state at
extremal points, i.e., corner points, of a subspace. The corner
points of a subspace are defined as all combinations of upper
and lower bounds of a partition q and can be represented as
set QM) = {q,ﬁ””} with i = 1,...,2%. Thus, an uncertainty
space of dimension K results in 2% corner points. The states at
the corner points can be represented as set

X0 = {0 50 = £ (%" (0 u(0), 0" )}

YOO = {y™ )y (1) = g (x™ (1) a™) }

)
where qgm) is a numerical parameter vector from the subspace
m and at corner i = 1,...,25 of this subspace. x\"(t) are
state vectors, and also ygm) (t) are output vectors both with nu-
merical values.*

This representation of an uncertain state is directly ex-
ploited by our consistency check for a given subspace
m. First, a residual vector r; is calculated for each state
at a corner point using the measurements at time ¢, i.e.,
rgm)(t) = Vmeasured (1) — ygm)(t). Vmeasured (t) TEpresents the
measured output values of the supervised system. rgm)(t) has
the same dimension J as Ymeasured(t) and yim)(t). Then, the
minimum and maximum values of the residual are determined
for each measured variable over all corner points as

i () = min {r™ (1)} (©)
r[(nn;l,j (1) = max {Tq(j]n)(f)} @)

withi = 1,...,2% and j = 1,...,.J. Finally, the subspace
model m is checked for consistency by simply comparing the
signs of 7™ (¢) and ™) _(t). The subspace model m is con-

min,j max,j

sistent with the measurements, iff

sgn (r 5 (8)) # sen (v, (1) ®)

holds for all elements j = 1,...,J.

3Note that for deriving the trajectories of imprecise models, it is also sufficient
to focus on points belonging to the external surface of the uncertainty space [19].
However, the number of trajectories to be computed is still infinite, even if it is
of a lower order.

4Note that our basic approach requires a precise initial state x(to) for the
computation of the state at time ¢ using standard numerical methods such as
Runge-Kutta integration. As we see in the next section and also in [14], MOSES
can be used with imprecise initial states. In this case, the imprecise initial state
is represented by additional uncertain parameters.
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Fig. 1. Consistency check with one uncertain parameter p and three subspaces
q1,42, and gs. The residuals at the corner points of subspace ¢; are both
negative, therefore, the model with the subspace ¢; is inconsistent with the
measurement. In subspace ¢-, the residuals at the corner points have different
signs. Thus, ¢> is consistent. For the parameter range of subspace g3 the
monotonicity assumption is violated. In this case, checking the residuals’ signs
at the corner points is not feasible.

Informally, (8) checks whether the zero vector lies within the
“residual subspace” (see Fig. 1). If this equation is violated, the
subspace model m is refuted. This simple consistency check
also holds if all elements of y are not included in the measure-
ments. In this case, a comparison with the missing elements is
simply ignored. Since this technique is based on the calcula-
tion of a precise state (at corner points), we can use standard
numerical methods for computing the solution of differential
equations. Subspace models are only refuted when they are in-
consistent with the measurements.

D. Dynamic Partitioning

At the beginning of a monitoring process the imprecise
model of the supervised system is partitioned into several
subspace models. During monitoring, a large number of these
subspace models may be detected as inconsistent; only a
few subspace models remain consistent. To increase the fault
detection performance of MOSES, the uncertainty space of the
consistent subspace models can be partitioned dynamically
during monitoring. At any time ¢ a consistent subspace can be
partitioned into smaller subspaces as long as (3) holds. This
dynamic partitioning results in smaller subspace models that
potentially describe the supervised system more precisely.

There is clearly a trade-off between the number of (active)
subspace models and the computational load in MOSES. Dy-
namic partitioning allows to adjust online the computational
load as well as the degree of uncertainty of individual subspaces.

Dynamic partitioning also reduces the problem of accumula-
tion uncertainty of imprecise models. In general, the predicted
uncertainty of imprecise models increases over time resulting in
diverging envelopes.

An additional source of uncertainty in physical systems is
measurement noise. In MOSES, noise can be simply handled as
additional uncertain parameters, i.e., the measurements are su-
perimposed by a fixed (noise) interval. The residual is then com-
puted using this interval. Note that uncertain parameters repre-
senting measurement noise may not be divided during dynamic
partitioning.
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III. EXTENSIONS

When the monotonicity of the state variables is given, the
envelopes computed by numerical integration starting from the
extremal points are sound and complete [19]. Such envelopes
are also referred to as “exact” envelopes [20] and represent the
optimal output for an interval simulator. When the monotonicity
is not given, MOSES computes underbounded envelopes which
lie within the exact ones. However, underbounded envelopes can
not be used to check the consistency with the measurements and
to refute subspace models.

In this section, we analyze the monotonicity assumption
and extend the basic monitoring approach of MOSES in the
following way. First, a check for monotonicity is included and
subspace models are checked (and potentially refuted) only
when the monotonicity has been positively checked. Second,
MOSES is able to introduce a new initial state each time new
measurements are available. By these extensions MOSES is then
able to: 1) monitor systems even if its imprecise model violates
the monotonicity assumption for limited periods of time and
2) reduce the uncertainty by intersecting measurements with
predicted envelopes.

A. Nonmonotonicity of State Values

In general, the monotonicity of the state values with regard to
the parameters cannot be guaranteed by the monotonicity of the
system equations f and g. For example, the monotonicity may
not be given when one of the following conditions is violated:
1) the system input u does not change; 2) the initial values of
a subspace model are independent of the parameters; and 3) all
eigenvalues of the system model are real valued.

The first condition is especially relevant for controlled
processes or hybrid system models [21] which can change the
system’s input either continuously or discretely. The second
condition is a simple consequence of the integration of the
given differential equation: x(t) = x(tg) + fti x(7)dr. If the
initial states x(¢) are different at some corner points in the
subspace model, the state values x(¢) need not be monotonic
(even if x is monotonic) with regard to the parameter. However,
this potential nonmonotonic behavior appears only for a limited
period of time. The third condition corresponds to nonoscil-
lating systems because in an oscillating system monotonicity
cannot be guaranteed for an arbitrary time.

These are very restrictive conditions and limit the applica-
bility of our basic monitoring approach. To overcome these lim-
itations, we have extended our basic approach.

B. Checking for Monotonicity

As discussed above, there are several conditions which may
result in a nonmonotonicity of the state values with regard to
the parameters (for a limited period of time). This nonmono-
tonicity may lead, in turn, to underbounded envelopes and an
incorrect consistency check. Thus, to maintain a correct (and
conservative) monitoring technique, we must precede MOSES’
consistency check by a check for monotonicity.If the state values
of a subspace model are detected as nonmonotonic, the consis-
tency check is simply bypassed. This subspace can be neither
accepted nor refuted at that time. After some time the subspace
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Fig. 2. Tllustrative example for checking the monotonicity of a system with
one state variable » and one parameter p. To check the subspace model for
monotonicity, the gradients of the state values with regard to the parameters are
calculated at the corner points. In this example, the subspace ¢; is monotonic
and the subspace §- violates the monotonicity check.

model may become monotonic again, and the consistency check
can then be applied again.

The monotonicity of the state values for an individual sub-
space is checked by comparing the sign of the gradients of the
state values with regard to the parameters (cp. Fig. 2) at the
corner points of each subspace. We start the computation of the
monotonicity by defining a n x K matrix V(¢,x, p) for the
partial derivatives of the state values’ derivatives, i.e., the ma-
trix elements are given as

axz (t X, p) _ af’t (t7 X, p)
8pj apj

vij(t‘,xvp) = (9)
where ¢ is the time, x is the state vector, and p is the parameter
vector with its elements p;. For determing the monotonicity of
the state values with regard to the parameters, we need the n X K
matrix W (¢, x, p) with the elements

wii(t,x,p) = P (10)
Similar to [19], the matrix W (¢, x, p) is computed by
dW (t,x,
TWEXP) _ At p)W(tx.p) + VL xp) (1)

where W(0,x9,p) =
A(t,x,p)’ is defined as

0 (the empty matrix), and matrix

axl (t X, p)

T (12)

a; 7 (t X, p) =
The elements w;; (¢, x, p) represent the trend of the state value
x;(t, p) with regard to the parameter p;. This is exploited by
our monotonicity check: The state values of a subspace model
are monotonic iff

SEN(Wij,min) = SEN(Wij max) (13)
holds for all state values ¢ = 1,...,n and all directions of
the uncertainty space j = 1,..., K. w;;min represents the

value of w;;(t,x,p) at the corner point with the minimum
residual of subspace m (cp. (6)). w;; max represents the value
of w;;(t,x, p) at the corner point with the maximum residual
[cp. (7)]. The computation of this monotonicity check implies
a numerical solution of the differential equation (11).

SFor linear systems matrix, A is constant and corresponds to the state transi-
tion matrix.
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Fig. 3.

The monotonicity check is demonstrated on the simple example of an oscillating system. The monotonicity of (¢, p) is checked at time ¢ by comparing

the signs of the state derivatives at the corner points. Three cases can be distinguished: (a) the state variable is correctly detected as monotonic (M1); (b) the state
variable is correctly detected as nonmonotonic (M2); and (c) after t = 2, the state variable is nonmonotonic but may be wrongly detected as monotonic (M3).

C. Oscillating Systems

In general, the trajectories of oscillating systems have dif-
ferent periods due to the interval ranges of the uncertain param-
eters. The state values are, therefore, only monotonic as long as
the deviation between the maximum and minimum frequency is
small. Clearly, this deviation increases with time.

‘We demonstrate the effect of diverging frequencies on a small
example. Consider the following system with two state variables
and a single parameter p > 0:

Li71:£132

Ty = —ple. (14)

With the initial state vector 2(0) = [1,0]7, the solution of this
system is given as

15)
(16)

x1(t,p) = cospt
za(t,p) = —psinpt.

The derivative of the state variables with regard to the param-
eter is (2’ = dx/dp)

2y (t,p) = —tsinpt (17)

x%(t, p) = — sin pt — pt cos pt. (18)

In this example, we only consider the first state variable (15).
For a given parameter p = [, 27| we can distinguish between
three regions concerning the monotonicity of x4 (¢, p)

M1 t<0.5
M2 0.5<t<2 uz(tp)is nonmonotonic,

x1(t, p) is monotonic

and the monotonicity check detects it
M3 t>2 (¢t p)is nonmonotonic,

but the check may fail to detect it.  (19)

These three cases concerning the monotonicity of x1 (¢, p) are
depicted in Fig. 3. In general, the dynamics of the system cause
the states to be nonmonotonic with regard to the parameters after
a certain time. After that time it is, therefore, not possible to
refute any subspace; monitoring would become infeasible with
our basic approach.

To solve this problem of oscillating systems, we have taken a
closer look at the cause of the nonmonotonicity. In general, the
solution of a linear system has the following form:

x(t,p) = Y Ci(t, p)e P! (20)

where C;(t, p) can be complex and are monotonic with regard
to p and t. \;(p) are the imaginary parts of the eigenvalues, j =
v/—1, and t is the time from the initial state. The exponential
term can also be expressed as a combination of sinus and cos-
inus functions which are of course nonmonotonic: e/*(P)t =
cos Ai(p)t + jsin A\;(p)t.

Considering only the real part, cos \;(p)t is monotonic, if
0 < Xi(p)t < m. As long as this inequality is satisfied, mono-
tonicity of the state values is guaranteed. This can be achieved
by two approaches: 1) by keeping A;(p) small or 2) by keeping
the integration time ¢ small.

Concerning the first approach, note that A;(p) is a property
of the supervised system and, therefore, cannot be influenced
by our algorithm. However, the system states have to be mono-
tonic only within an individual subspace model. The states in
the subspace model are monotonic if

111,?X{Amax(pk)} </t 21

holds, where A\pn.x = max;{)\;} for all eigenvalues of the
system and k = 1,...,2% are the corner points of the sub-
space. The monotonicity check, however, is able to detect the
monotonicity, only as long as the deviation between maximum
and minimum frequencies of the state does not exceed a
complete cycle within the subspace [see Fig. 3(c)]. Thus, the
monotonicity check is only valid if

m}gx{)\max(pk)} — mkin{)\max(pk)} <2r/t (22)

holds. Note that (21) and (22) correspond to the border between
the regions M1 and M2 as well as M2 and M 3 of (19), respec-
tively.

Concerning the second approach, since time increases
steadily from an initial state, all subspace models will eventu-
ally become nonmonotonic [cp. (22)] and, thus, our monitoring
algorithm would be useless for oscillating systems without
modification. The measurements from the supervised system,
however, do provide some information about the time, and we
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can exploit this information so that a new initial state can be
introduced at each sampling point. The (integration) time is
then limited by the sampling period. Introducing new initial
states by exploiting the measurements from the supervised
system is discussed in the following section in more detail.

D. Intersecting the Measurements With the Trajectories

The key step of this modification is to introduce an initial
state each time new measurements are available. If the sampling
period is small with regard to the dynamics of the supervised
system—which is normally the case —(22) is satisfied and the
monotonicity information is guaranteed.

In order to introduce a new initial state, the measurements
must be intersected with the computed trajectories (Fig. 4).
Since measurements as well as trajectories include uncertainty
due to noise and uncertain parameters, the intersection also
includes uncertainty. This results in an (imprecise) initial state
space for our monitoring algorithm. Measurement noise is
represented by superimposing a predefined interval over all
measured variables resulting in a measurement space. Clearly,
an initial state space introduces additional uncertainty to
our algorithm. When starting from an initial state space, our
monitoring algorithm computes an individual trajectory of
each extremal point of the initial state space. This results in
several uncertain state spaces which can be bound by a single
uncertainty space, i.e., the computed trajectory space. (cp.
rectangles C and B in Fig. 4). The computed trajectory space is
larger than the sum of the individual uncertain state spaces.

We can distinguish four different cases for the generation of
the new initial state space at time ¢ in our modified algorithm.
These cases are referred to as initial state cases which have dif-
ferent effects on the accumulation of uncertainty and the dura-
tion of the integration time.

Case 1) Take the measurement space as initial state space
(rectangle E in Fig. 4). In this case, the measurement
provides significant new information about the un-
certainty of the state space. By using the measure-
ment space as new initial state space, the accumu-
lating uncertainty effect is not relevant. The integra-
tion time is limited by the sampling period.

Take the computed trajectory space as initial state
space (rectangle B in Fig. 4). In this case, the mea-
surement does not provide any new information and,
thus, the computed trajectory space must be used
as new initial state space. The accumulating uncer-
tainty effect is relevant; the integration time is lim-
ited by the sampling period.

Take the intersection as initial state space (rectangle
Fin Fig. 4). In this case, the intersection between tra-
jectory and measurement space is used as new initial
state space which is the smallest space of the four
cases. No accumulating uncertainty effect appears,
and the integration time is limited by the sampling
period.

Continue with the corner points (rectangles C in
Fig. 4). When measurements do not provide any in-
formation or are not available at all, we continue the

Case 2)

Case 3)

Case 4)
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Fig. 4. Intersection of trajectories and measurements in the state space. The
initial state space at time ¢ — 1 is represented by rectangle A. Due to parameter
uncertainty, this initial state space results in several uncertainty spaces at time #
(rectangles C) which can be bounded by a single uncertainty space (rectangle B).
Point D represents the measurement at time ¢; measurement noise is accounted
by rectangle E. Rectangle F is the result of the intersection and may serve as
new initial state space at time ¢.

computation of the trajectories with the corner points
of the uncertainty space. No new initial state space is
introduced. Thus, we achieve a medium level for the
accumulating uncertainty (better than case 2); the in-
tegration time increases.

The four initial state cases are depicted in Fig. 4. Note that
for determining the initial space of each state variable any of
the cases 1 to 3 can be chosen. Obviously, case 4 can only be
applied jointly for all state variables.

The remaining open question is now what initial state case
should we choose. Since monotonicity may not be given for
all state variables and not all state variables may be measured,
several cases have to be considered. In principle, the new initial
state space at time ¢ is determined by the following rules.

1) If a measurement for state variable x; is available at ¢ and
x; 1S monotonic, then the intersection between trajectory
and measurement is taken as new initial state space for z;
(case 3). If the intersection is empty, the subspace model
is refuted.
2) If a measurement for state variable x; is available at ¢ and
x; is not monotonic, we cannot decide the consistency
between trajectory and measurement. In order to keep the
integration time small, the measurement space is used as
new initial state space for z; (case 1).

3) If a measurement for state variable x; is not available at ¢
and x; is monotonic, then the computed trajectory space
is used as new initial state space for x; (case 2).

4) If a measurement for state variable x; is not available at
t and x; is not monotonic, then we have to continue with
the corner points of the uncertainty space (case 4).

The algorithm for selecting the new initial state space is pre-
sented in Fig. 5. This algorithm replaces the simple consistency
check of the basic algorithm in MOSES. It determines the new
initial state space in three consecutive steps. First, it checks
all state variables where measurements are available and de-
termines whether the intersection or the measurement are used
as new state space for that variable. Second, it checks the re-
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1 TakeCornerPoints := 0 // flag for selecting case 4
2 forall measured state variables i do // check all measured states
3 Intersection(i) := Measured(i) N Computed(i) // compute intersection
4 if monotonic(i) then
5 TakeIntersection(i) := 1 // if monotonic, set intersection flag
6 if Intersection(i) = @) then refute subspace; // refute if no intersection
7 else TakeIntersection(i) := 0 // else take measurement
8 endfor
9 forall non-measured state variables i do // check remaining states
10 Intersection(i) := Computed(i) // no measurement available
11 If monotonic(i) then TakeIntersection(i) := 1 // take intersection
12 else TakeCornerPoints := 1 // take old corner points
13 endfor
14 // now create new initial state space
15 if TakeCornerPoints = O then // flag Corner Points not set
16 forall state variables i do
17 if TakeIntersection(i) = 1 then NewSpace(i) := Intersection(i)
18 else NewSpace(i) := Measured(i)
19 endfor
20 TakeNewSpace;
21 else // take corner points
22 TakeOldValues;
23 endif
Fig. 5. Pseudo code for the consistency check with initial state space selection.
; X,
et —»

(@)

(b)

Fig. 6.
distinguished.

maining state variables, and finally the overall initial state space
is generated.

Fig. 6 depicts some examples of the selection of the new ini-
tial state space based on a two-dimensional state space. Fig. 6(a)
depicts the case where measurements of both state variables are
available and the measurement space is completely overlapped
by the computed trajectories. Thus, the measurement space is
taken as the new initial state space. In Fig. 6(b), the measure-
ment space is only overlapped by the computed trajectory space
in £1. Only when x5 is monotonic can the subspace model be
refuted. If 22 is not monotonic, then this measurement may be
consistent. Figs. 6(c) and (d) show examples where no measure-
ments for x; are available. The initial state space for this vari-
able can only be bounded by the computed trajectories, if x
is monotonic. For the measured variable z2, the monotonicity
decides whether the measurement space or the intersection is
taken.

As mentioned above measurements for all state variables are
not always available. In general, the measurement gives us in-
formation about the output vector y, and not the state vector
itself. For linear systems, the differential equation model in (1)
can be transformed into x = Ax + Bu,y = Cx + D, with
appropriate dimensions for the matrixes A, B, C, and D. We
can use the matrixes C and D to calculate the state vector:
x = C7(y — D). If C is not regular, i.e., rankC = 0, not

© )

Initial state cases in a two-dimensional state space. Depending on the position of the measurement and trajectory space the new initial state space can be

all state values can be derived from the measurements. In this
case, we can remove certain columns from C as well as the cor-
responding state values. The reduced matrix will then become
regular and the values for certain variables can be derived.

IV. EXPERIMENTAL RESULTS

The monitoring system MOSES has been completely imple-
mented on a standard PC running Linux. The software has been
implemented in C/C++. The performance of MOSES is evaluated
using both a simulated as well as a “real” supervised system. The
evaluation is performed in both offline and online operation.

We demonstrate the performance of MOSES in three different
areas. First, we compare the basic monitoring algorithm with
the modified algorithm using an oscillating system. Second, we
demonstrate the fault detection performance of MOSES in a real-
world example. Finally, we demonstrate how MOSES is able to
refine uncertain parameters during monitoring.

A. Comparison Between the Basic and the Modified Algorithm

This comparison is based on a simulated supervised system.
Consider again the linear system

1 = T2

(23)

. 2
Iy = —pT1
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Fig. 7. Oscillating system (23) monitored with the basic MOSES approach.
21 (a) and x> (b) are plotted each with the envelopes (solid line), and the
measurements including a noise interval (vertical lines). The monotonicity
regions are marked at the bottom of the diagrams. The monitoring process
terminates at t = 4 because MOSES wrongly detects an inconsistency between
measurements and trajectories.

with two state variables xz; and z, and a single uncertain
parameter p > 0. The initial state values are given as
x21(0) = [99,119] and x2(0) = [—6,14]. The parameter
interval is given as p = [m,27]. In this experiment, (23) is
simulated with p?> = 10. The values of both state variables are
superimposed by random noise within [—10,10] to generate
the “measurements” for MOSES. The sampling period is given
as 0.1 s. These measurements are clearly consistent with the
computed trajectories of the imprecise model.

We first monitor the oscillating system using the basic algo-
rithm, i.e., trajectories and measurements are not intersected and
no new initial states are introduced. Monitoring without inter-
section (see Fig. 7) terminates at¢ = 4, because MOSES wrongly
detects an inconsistency between measurement and trajectory.
This error is caused because (22) is violated, and our mono-
tonicity check assumes monotonic states. In MOSES, the mono-
tonicity check is applied at each sampling time. The mono-
tonicity regions M1 to M3 corresponding to (19) are also de-
picted in Fig. 7. Note that an inconsistency between trajectory
and measurement can only be genuinely detected by MOSES in
region M1.

In contrast, Fig. 8 depicts the monitoring process of MOSES
using the modified algorithm, i.e., an intersection between mea-
surement and trajectory is performed and new initial states are
introduced. In this case, MOSES is able to accept all measure-
ments until the simulation ends at £ = 11. Note that the states
remain almost always monotonic, i.e., within monotonicity re-
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Fig. 8. Oscillating system (23), monitored with the extended MOSES approach.
The monitoring process genuinely accepts all measurements and ends att = 11.

gion M1. This is because the integration time is kept small by
introducing new initial state spaces at every sampling period.

B. Fault-Detection Performance

We demonstrate the performance of our monitoring algo-
rithm on a “real” physical system which is comprised of three
heating/cooling components mounted on a thermal conductive
plate. A process control computer (B&R 2003) controls the
three heating/cooling components. The measured samples as
well as the control actions issued are transferred to MOSES via
a RS 232 interface.

Our model, which includes the three components with heating
elements, is given as

. 1
T = a(fh = Li(h = To) = Li2(Th = T3))
. 1
T, = @(fh + Lio(Ty = T2) — Lo(T2 — To)
— Lag(T> — T3))
. 1
13 = 53(% + Laa(To = T3) = Ls(T3 = To)) (24

where T; is the temperature of the three components, C; is the
mass of the components, g; is the heat flow into the components,
L; is the thermal conductivity between the component : and the
environment, L;; is the thermal conductivity between the com-
ponents ¢ and j, and T} is the temperature of the environment.
We can reduce the complexity of this model by exploiting the
symmetric construction of the heating system (L3 = L1, Loz =
Ly5,C5 = C1) resulting in a total of five uncertain parameters.

The state vector is given as x = (171,75,73)T, the input
vector as u = (qi1,q2,q3,Tp)”, and the output vector as y =
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Scenario of (a) an intermittent fault and (b) fault detection by observing temperature sensor T3. The sensor readings of all four temperature sensors as

well as the induced fault are plotted in the left graph. The derived trajectories and the sensor reading for temperature sensor T3 are plotted in the right graph.

TABLE 1
TIME REQUIRED TO DETECT THE INTERMITTENT FAULT USING MOSES

observ. variables fault recognition [s]
model #1 | model #2 | model #3 | model #4
T1, T2, T3 3.8 3.8 3.8 3.8
T1, T2 > 96.1 74.1 53.1 47.8
T1 > 96.1 > 96.1 > 96.1 > 96.1

(21,22, 3:3)T. The noise interval of the temperature sensors is
set to 0.3.

We have measured the input values with ¢; = 1.24 W
and ¢; = 34.8 W (the heating element is either turned off
or turned on).6 After an initial refinement step of MOSES,
we get the parameter intervals as Ly = [0.12,0.13], Ly =
[0.15,0.18], L15 = [0.62,0.76], C; = [51,54],Cy = [61,65].
This refinement step is performed in a single continuous
behavior segment [12].

We demonstrate the fault detection performance using an in-
termittent fault scenario in component 3 of the heating system
[Fig. 9(a)]. At t = 0 the heating element of component 2 is
switched on; all other actuators remain turned off. Starting at
t = 14.6 s, the heating element of component 3 is switched on
and off several times. Fig. 9(b) depicts the situation of detecting
this fault scenario by observing only the temperature sensor of
component 3. At ¢ = 18.4, the sensor value exceeds the trajec-
tory derived from the imprecise model. Note that the envelopes
are kept quite small all the time.

Table I presents the time required by our monitoring system
for detecting the intermittent fault in the heating system. This
table summarizes the results from experiments where the uncer-
tainty space of the model and the number of observed variables
have been varied. Model #1 has the largest uncertainty space
and model #4 has the smallest uncertainty space. The parameter
intervals of these models are presented in Table III. Note that
observing only T1 is not sufficient in order to detect the fault
within the observation period of 110.7 s.

C. Refining Imprecise Models

Partitioning results in more but smaller subspace models. If a
subspace model is inconsistent with the measurements, the sub-

6Although the heating element is switched off, power is dissipated due to a
controller mounted at the heating element.

TABLE 1I
THE PARAMETER ESTIMATION EFFECT DEMONSTRATED ON PARAMETER p OF
THE OSCILLATING SYSTEM

initial models | refined parameter p* | consistent models
2 [9.8696, 24.67405] 1
4 9.8696, 17.271825 1
8 9.8696, 13.570712 1
16 9.8696, 11.720156 1
32 9.8696, 10.794878 1
64 9.8696, 10.794878 2
128 9.8696, 10.563559 3
256 9.8696, 10.447899 5
512 9.8696, 10.390069 9
1024 9.8696,10.361154 17

space model is refuted and excluded from further investigation.
This can result in a smaller uncertainty space after refutation
and also in smaller bounds on the uncertain parameters, if the
measurement and the system is fault-free. This refutation can
also be seen as a form of parameter estimation.

The effect of parameter refinement is demonstrated on the
oscillating system of (23). In each experiment, we started the
monitoring process with a different number of subspace models.
However, all initial subspace models covered the same uncer-
tainty space [9.8696, 39.4784]. Table II presents the number of
initial subspace models, the refined uncertainty space of param-
eter p and the number of consistent subspace models after the
monitoring process was completed. Due to the noise in the mea-
surement there is a limit on the achieved refinement on param-
eter p.

Refinement of uncertain parameters was also been applied to
estimate the parameters of our heating system. We started the
refinement with very large parameter intervals. In this experi-
ment, the initial parameters were given as Ly = [0.01,1], Ly =
[0.01,1], L12 = [0.01,10],Cy = [5,200], and Cy = [5,200].
The inputs were estimated as ¢1 = g3 = 1.24 W and g2 = 32.8
W.

We executed a monitoring process on MOSES using this large
subspace model and measurements of T, T, and T3 from the
(healthy) heating system. The achieved refinement on the pa-
rameters are summarized in Table III. The different refinements
depend on the maximum number of subspace models allowed
during monitoring. Note that this corresponds to a reduction of
the uncertainty space of eight orders of magnitude. The size of
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TABLE 1II
ACHIEVED PARAMETER REFINEMENT OF OUR HEATING SYSTEM. THE SIZE OF
THE UNCERTAINTY SPACE IS SPECIFIED AS THE PRODUCT OF THE RANGE OF
THE PARAMETER INTERVALS TO THE SIZE OF MODEL #4

Space No. L1 L2 L12 C1 c2 size
#1 0.11,0.13] | |0.13,0.18] | [0.62,0.86] | 48,68 | [49,66]| | 162
#2 0.11,0.13] | [0.15,0.18] | [0.62,0.76] | [48,60] | [59,66] | 14
#3 0.12,0.13] | [0.15,0.18] | [0.62,0.76] | [51,57] | [60,65] | 2.5
#4 0.12,0.13] | [0.15,0.18] | [0.62,0.76] | [51,54] | [61,65 1

the uncertainty space can be defined as the product of the range
of all uncertain parameter intervals.

V. RELATED WORK

Over the last few years, the DX and FDI communities have in-
dependently developed a number of monitoring approaches. In
recent years there has been an increasing interest in combining
and extending these approaches [22], [23].

Tornil et al. [24] apply interval models to fault detection. The
envelopes of these models are derived using interval prediction
or interval simulation. However, both techniques introduce addi-
tional uncertainty during monitoring due to the evaluation of in-
terval functions at each integration step. A popular problem with
this approach is the wrapping effect, i.e., simulating a multi-di-
mensional state space causes overbounded envelopes and ac-
cumulating uncertainty. This problem results from the implicit
assumption that the parameters can vary over time. Although
MOSES represents uncertainty by parameter intervals, it does not
use interval methods. MOSES simulates the model at the corner
points of the uncertainty space with precise parameter values.

Model-based monitoring using uncertainty space partitioning
is related to the interval identification algorithm of Schaich et al.
[25]. In their approach, the consistency check is only performed
at the qualitative level. Thus, valuable detection time is lost, as
long as the fault is only manifested in a quantitative value. Ad-
ditionally, the monotonicity of the states with regard to the pa-
rameters is not checked, and therefore, the derived envelopes
may not be complete. Petridis and Kehagias [26] have also de-
veloped an algorithm with subspace partitioning. Their parti-
tioning is only performed in advance and the consistency check
is based on probabilities depending on the measurement noise
and Markovian time-varying parameters. Hence, they cannot re-
fute subspaces because the probabilities will never reach zero.
Not mentioned in [26] is that their algorithm converges to more
than one partition.

Bonarini and Bontempi [19] have developed a simulation
approach for linear systems with uncertain initial states and
a monotonicity check (based on the derivation with regard
to the initial states dx(t)/dxp). They have also described a
technique to simulate models with uncertain parameters by
introducing additional states which represent the parameter
values. Unfortunately, this leads to nonlinear system equations,
where the monotonicity check is not always sufficient.?

Also related to our work is Armengol et al. [27], [20]. Their
simulation is based on modal interval arithmetic, which pro-
duces overbounded and underbounded envelopes for the super-

7As a simple example of generating a nonlinear system, simply introduce
p? = a3 to (23).
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vised system. To minimize the rate of false and missed alarms,
the uncertainty space is only partitioned at critical measure-
ments (which lie between the underbounded and overbounded
envelopes). In comparison, our approach “leads” to exact en-
velopes when monotonicity is given, and therefore, the problem
of false and missed alarms in the above mentioned sense does
not exist.

Jaulin et al. [28] have developed an algorithm for determining
guaranteed bounds on interval parameters that are consistent
with experimental data. Their approach combines interval com-
putation with constraint propagation and is also applicable to
nonlinear systems. An approach for computing the parameter
uncertainty in static linear models is presented in [29].

Other work in monitoring [30]-[32] uses multiple models for
fault detection. These models represent known faults of the su-
pervised system. Biswas et al. [33], [34] apply numerical and
qualitative techniques to monitor hybrid systems.

VI. DISCUSSION

In this paper, we have presented a model-based monitoring
approach based on refining imprecise models of the supervised
system. The fundamental assumption of this approach is the
monotonicity of state values with regard to the range of the
parameters. The uncertainty space of the imprecise model is
partitioned into smaller subspace models. When new measure-
ments become available, inconsistent subspace models are re-
futed resulting in a smaller uncertainty space. When all subspace
models are refuted, a fault has been detected. The state of the
imprecise model is computed by numerical integration starting
at corner points of the model’s uncertainty space. MOSES de-
rives exact envelopes as long as the monotonicity of the state
variables is given. If the monotonicity does not hold, MOSES
derives underbounded envelopes which cannot be used to check
the consistency with the measurements and, hence, have very
limited use for monitoring.

To make MOSES more applicable, e.g., for systems with dis-
crete changes at inputs and oscillating systems, we have ex-
tended the basic monitoring approach by introducing a check
for the monotonicity of the state variables and by intersecting
measurements and trajectories in order to generate new initial
state space. By introducing new initial states, the integration
time of the numerical simulator is bounded and the problem of
including a complete cycle of Apax(Pr) within the integration
time is avoided [cp. (22)]. We have identified four different cases
for the computation of the new initial state space during moni-
toring. In the modified version of MOSES, the simple consistency
check is replaced by a more complex algorithm (cp. Fig. 5).

A different method to derive the envelopes of imprecise
models is interval analysis, e.g., [17], [18], [24]. In general,
interval methods result in overbounded envelopes, e.g., due
to the effects of wrapping and temporal multi-incidence [24].
As long as the monotonicity is given, MOSES results in exact
envelopes whereas methods based on interval analysis may
result in overbounded envelopes.?8 Note that overbounded

80ur extended algorithm may also result in overbounded envelopes, i.e., when
“case (2)” is chosen for generating a new initial state.
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envelopes can be used to refute subspace model. However, the
number of missed alarms is larger than with exact envelopes.

Our approach is based on computing the envelopes of differ-
ential equations. For complex models, the overall runtime of our
monitoring algorithm is dominated by solving the differential
equations, especially when a high-precision integration method
such as Runge—Kutta is used. The computational complexity of
our algorithm for a single time-step can be estimated as

O(M2" (p+ ) (25)
where M is the number of partitions, K is the number of the
uncertainty dimension, p is the time of the Runge—Kutta algo-
rithm and p is the time required for the matrix multiplication
according to (11). The time p strongly depends on the dynamic
properties of the system model, and for highly dynamic systems
p > p generally holds.

This approach can also be seen as system identification
because refuting subspace models reduces the uncertainty
space, resulting in smaller bounding intervals on the param-
eters. Smaller intervals on the parameters result in a faster
fault recognition time. With dynamic uncertainty partitioning,
it is possible to partition parameter intervals online at the
monitoring process. In this way, MOSES can adapt the uncertain
parameters to the real system at the beginning of monitoring
and continue to detect faults with smaller uncertainty space.

However, this approach is in contrast to traditional system
identification where the model space is specified by a parame-
terized differential equation. Identification selects numerical pa-
rameter values so that simulation of the model best matches the
measurements. By using refutation instead of search our method
is able to derive guaranteed bounds on the trajectories. As long
as the data comes from the “healthy” model, refutation does
not converge to a wrong model. The identification may not be
misled by uninformative (or “un-exited”) data. Refutation fur-
ther keeps the correspondence of the model parameter to the
physical parameters. This correspondence is especially impor-
tant for monitoring and diagnosis applications. It is more com-
plicated to keep this correspondence for parameter estimation
and it also requires more complex (nonlinear) models [35]. A
detailed comparison between MOSES’ refutation and standard
parameter estimation is presented in [36].

The size of the model’s uncertainty space, as well as the error
interval of the measurements, are important for the failure detec-
tion performance of MOSES. With imprecise models, uncertain
observations and limited observability, we may never be able to
detect all faults in the supervised system. Thus, when a failure
is covered by the model’s initial uncertainty space or measure-
ments from the “healthy” model do not sufficiently reduce the
uncertainty space during monitoring, this failure cannot be de-
tected. There is currently no notation about the persistence or
confidence of the measurements included in our residual gener-
ation. Several approaches to overcome this restriction are pos-
sible; one would be to use observers [2].

There are several directions for future research. First, MOSES
is currently able to monitor hybrid system models when the
transition between modes are known, e.g., by signals indicating
a transition. When the time of the transition is not known, an
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additional source of uncertainty is introduced—the time uncer-
tainty between trajectory and measurements of the new mode.
Second, MOSES currently uses imprecise linear system models.
Non-linear models are more expressive; however, they signifi-
cantly complicate the determination of the monotonicity of state
variables. The computation of the state at corner point is also not
sufficient for computing the envelopes. Future research should
therefore be focused on special classes of nonlinear systems. Fi-
nally, MOSES can be viewed as a method for tracking hypotheses
and detecting discrepancies in the context of diagnosis. To de-
velop a complete fault-diagnosis system for dynamic systems,
MOSES could be combined with existing methods for automated
model building and for proposing hypotheses given weak infor-
mation between observations and predictions [37], [38].

REFERENCES

[1] W. Hamscher, L. Console, and J. de Kleer, Eds., Readings in Model-
Based Diagnosis. New York: Morgan Kaufmann, 1990.

[2] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dy-
namic Systems. Norwell, MA: Kluwer, 1999.

[3] Working Papers of the 12th Int. Workshop on Principles of Diagnosis
(DX’01), S. Mcllraith and D. T. Dupré, Eds., Sansicario, Italy, 2001.

[4] Working Papers of the 13th Int. Workshop on Principles of Diagnosis
(DX’02), M. Stumptner and F. Wotawa, Eds., Semmering, Austria, 2002.

[S]1 Working Papers of the 14th Int. Workshop on Principles of Diagnosis
(DX’03), P.J. Mosterman, M. Sampath, and M. Tatar, Eds., Washington,
DC, 2003.

[6] Proc. IFAC Symp. Fault Detection, Supervision and Safety of Technical
Processes (SAFEPROCESS’97), R. J. Patton and J. Chen, Eds., Hull,
UK., 1997.

[71 Proc. 4th IFAC Symp. Fault Detection, Supervision and Safety of
Technical Processes (SAFEPROCESS’00), A. M. Edelmayer and Cs.
Bényész, Eds., Budapest, Hungary, 2000.

[8] Proc. 5th IFAC Symp. Fault Detection, Supervision and Safety of
Technical Processes (SAFEPROCESS’03), M. Staroswiecki, Ed.,
Washington, DC, 2003.

[9] R.Isermann, “Process fault detection based on modeling and estimation
methods: A survey,” Automatica, vol. 20, pp. 387-404, 1984.

[10] ——, “Fault diagnosis of machines via parameter estimation and

knowledge processing—Tutorial paper,” Automatica, vol. 29, no. 4, pp.

815-835, 1993.

P. M. Frank, Fault Diagnosis in Dynamic Systems Via State Estimation:

A Survey. Dordrecht, U.K.: Reidl Press, 1987, vol. 1.

B. Rinner and U. Weiss, “Model-based monitoring using uncertainty

space partitioning,” in Proc. 21st IASTED Int. Conf. Modeling, Iden-

tification and Control (MIC 2002), Innsbruck, Austria, Feb. 2002, pp.

174-179.

[13] ——, “Model-based monitoring of piecewise continuous behaviors
using dynamic uncertainty space partitioning,” in Proc. 13th Workshop
on Principles of Diagnosis (DX’02), Semmering, Austria, May 2002,
pp. 146-150.

[14] ——, “Online monitoring of hybrid systems using imprecise models,” in

Proc. 5th IFAC Symp. Fault Detection, Supervision and Safety of Tech-

nical Processes (SAFEPROCESS 2003), Washington, DC., June 2003,

pp. 837-842.

H. Kay, B. Rinner, and B. Kuipers, “Semi-quantitative system identifi-

cation,” Artific. Intell., vol. 119, no. 1-2, pp. 103-140, May 2000.

B. Rinner and B. Kuipers, “Monitoring piecewise continuous behaviors

by refining semi-quantitative trackers,” in Proc. 16th Int. Joint Conf.

Artificial Intelligence (IJCAI-99), Stockholm, Sweden, Aug. 1999, pp.

1080-1086.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis:

With Examples in Parameter and State Estimation, Robust Control and

Robotics. London: Springer, U.K., 2001.

R. E. Moore, Methods and Applications

ysis.  Philadelphia, PA: SIAM, 1979.

A. Bonarini and G. Bontempi, “A qualitative simulation approach for

fuzzy dynamical models,” in ACM Trans. Modeling Comput. Sim., vol.

4, 1994, pp. 285-313.

[11]

[12]

[15]

[16]

[17]

[18] of Interval Anal-

[19]



1822

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

J. Armengol, J. Vehi, L. Travé-Massuyes, and M. A. Sainz, “Applica-
tion of multiple sliding time windows to fault detection based on in-
terval models,” in Proc. 12th Int. Workshop on Principles of Diagnosis
(DX-01), Sansicario, Italy, 2001, pp. 9-16.

M. Branicky, “Studies in hybrid systems: Modeling, analysis, and con-
trol,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts
Inst. Technol., Cambridge, 1995.

S. Cauvin, M.-O. Cordier, C. Dousson, P. Laborie, F. Leévy, J. Montmain,
M. Porcheron, I. Servet, and L. Travé-Massuyes, “Monitoring and alarm
interpretation in industrial environments,” Al Commun., pp. 139-173,
1998.

M.-O. Cordier, P. Dague, M. Dumas, F. Lévy, J. Montmain, M.
Staroswiecki, and L. Travé-Massuyes, “A comparative analysis of Al
and control theory approaches to model-based diagnosis,” in Proc. 11th
In. Workshop on Principles of Diagnosis (DX’00), A. Darwiche and G.
Provan, Eds., Morelia, Mexico, June 2000, pp. 33-40.

S. Tornil, T. Excobet, and V. Puig, “Fault detection using interval
models,” in Proc. 4th IFAC Symp. Fault Detection, Supervision and
Safety for Technical Processes (SAFEPROCESS’2000), A. M. Edel-
mayer, Ed., Budapest, Hungary, June 2000, pp. 1180-1185.

D. Schaich, R. King, U. Keller, and M. Chantler, “Interval identifica-
tion—A modeling and design technique for dynamic systems,” in Proc.
13th Int. Workshop on Qualitative Reasoning, June 1999, pp. 6-9.

V. Petridis and Ath. Kehagias, “A multi-model algorithm for parameter
estimation of time-varying nonlinear systems,” Automatica, vol. 34, no.
4, pp. 469475, 1998.

J. Armengol, L. Travé-Massuyes, J. Vehi, and J. L. de la Rosa, “A survey
on interval model simulators and their properties related to fault detec-
tion,” Annu. Rev. Contr., vol. 24, pp. 31-39, 2000.

L. Jaulin, I. Braems, and E. Walter, “Interval methods for nonlinear iden-
tification and robust control,” in Proc. 41th Conf. Decision and Control,
Las Vegas, NV, Dec. 2002, pp. 4676-4681.

S. Ploix, O. Adrot, and J. Ragot, “Parameter uncertainty computation in
static linear models,” in Proc. 38th Conf. Decision and Control, Dec.
1999, pp. 1916-1921.

P. D. Hanlon and P. S. Maybeck, “Multiple-model adaptive estimation
using a residual correlation Kalman filter bank,” IEEE Trans. Aerosp.
Electron. Syst., vol. 36, no. 2, pp. 393-406, Apr. 2000.

R. Mehra, C. Rago, and S. Seereeram, “Autonomous failure detection,
identification, and fault-tolerant estimation with aerospace applica-
tions,” in Proc. IEEE Aerospace Applications Conf., vol. 2, 1998, pp.
133-138.

S. Bogh, “Multiple hypothesis-testing approach to FDI for the indus-
trial actuator benchmark,” Control Eng. Practice, vol. 3, no. 12, pp.
1763-1768, 1995.

E.-J. Manders, S. Narasimhan, G. Biswas, and P. J. Mosterman, “A com-
bined qualitative/quantitative approach for fault isolation in continuous
dynamic systems,” in Proc. 4th IFAC Symp. Fault Detection, Supervi-
sion and Safety for Technical Processes (SAFEPROCESS’2000), A. M.
Edelmayer, Ed., Budapest, Hungary, June 2000, pp. 512-517.

[34] S.Narasimhan, G. Biswas, G. Karsai, T. Szemethy, T. Bowman, M. Kay,
and K. Keller, “Hybrid modeling and diagnosis in the real world: A case
study,” in Proc. 13th Workshop on Principles of Diagnosis (DX’02),
Semmering, Austria, May 2002, pp. 7-15.

[35] P. M. Frank, E. A. Garcia, and B. Koppen-Seliger, “Modeling for
fault detection and isolation versus modeling for control,” Mathemat.
Comput. Sim., vol. 53, pp. 259-271, 2000.

[36] A. Doblander, B. Rinner, and U. Weiss, “Model refinement for mon-
itoring—Refutation vs. traditional parameter estimation,” in Proc. 5th
IFAC Symp. Fault Detection, Supervision and Safety of Technical Pro-
cesses (SAFEPROCESS 2003), Washington, DC, pp. 1137-1142.

[37] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artific.
Intell., vol. 32, pp. 97-130, 1987.

[38] H. T. Ng, “Model-based, multiple-fault diagnosis of dynamic, contin-
uous physical devices,” IEEE Expert, vol. 6, no. 6, pp. 38—43, Dec. 1991.

Bernhard Rinner (SM’04) received the M.Sc. and
Ph.D. degrees in telematics from Graz University of
Technology, Graz, Austria, in 1993 and 1996, respec-
tively.

He is currently an Associate Professor of Com-
puter Architecture and Embedded Systems at Graz
University of Technology. He held research positions
at the Department of Computer Sciences, University
of Texas at Austin, in 1995 and in1998-1999. His re-
search interests include parallel and distributed pro-
cessing, embedded systems, and real-time artificial
intelligence. He is currently working on multi-DSP systems, embedded multi-
media systems, power- and context-aware computer systems, and applying Al
techniques to real-time systems. He has authored and co-authored several papers
for journals, conferences, and workshops, has lead several research projects, and
has served as a reviewer, program committee member, program chair, and ed-
itor-in-chief.

Dr. Rinner is a member of AAAI and Telematik Ingenieurverband (TIV).

Ulrich Weiss received the M.Sc. and Ph.D. (out-
standing) degrees in telematics from Graz University
of Technology, Graz, Austria, in 2000 and 2003,
respectively. His thesis was on simulation with im-
precise models for online model-based monitoring.
He worked as Research Assistant at the Institute
for Technical Informatics, Graz University of Tech-
nology. His research interests include simulation of
complex systems, monitoring, real-time artificial in-
telligence, and embedded multi-DSP systems.




