
Integrating Multi-Camera Tracking into
a Dynamic Task Allocation System for Smart Cameras

M. Bramberger, M. Quaritsch, T. Winkler, B. Rinner
Institute for Technical Informatics

Graz University of Technology, AUSTRIA
{bramberger, quaritsch, winkler, rinner}@iti.tugraz.at

H. Schwabach
Video & Safety Technology

ARC seibersdorf research, AUSTRIA
helmut.schwabach@arcs.ac.at

Abstract

This paper reports on the integration of multi-camera
tracking into an agent-based framework, which features au-
tonomous task allocation for smart cameras targeting traf-

c surveillance. Since our target platforms are distributed
embedded systems with limited resources, the trackers may
only be active, if the target is in the camera’s eld of view.
Consequently, the tracking algorithm has to migrate from
camera to camera in order to follow the target, whereas
the decision when and whereto the migration takes place
is reached autonomously by the tracker. Consequently, no
central control host is required. We further present differ-
ent strategies on when to migrate a tracker, and how to de-
termine the camera which will observe the tracked object
subsequently.

We have realized the tracker’s control by using heteroge-
neous mobile agents, which employ a state-of-the-art track-
ing algorithm for tracking. The tracking system has been
implemented on our smart cameras (SmartCam) which are
comprised of a network processor and several digital signal
processors (DSPs) and provide a complex software frame-
work.

Keywords: smart cameras; mobile agents; traf c surveil-
lance; embedded systems; single-object tracking

1 Introduction

Surveillance systems currently undergo a dramatic shift.
Traditional surveillance systems of the first and second gen-
eration have employed analog CCTV cameras, which trans-
ferred the analog video data to digital base stations where
the video analysis, storage and retrieval takes place. Current
semiconductor technology enables surveillance systems to
leap forward to third generation systems which employ dig-
ital cameras with on-board video compression and commu-
nication capabilities. Smart cameras [9] [2] even go one

step further; they not only capture and compress the grabbed
video stream, but also perform sophisticated, real-time, on-
board video analysis of the captured scene. Smart cam-
eras help in (i) reducing the communication bandwidth be-
tween camera and base station, (ii) decentralizing the over-
all surveillance system and hence to improve the fault toler-
ance, as well as (iii) realizing more surveillance tasks than
with traditional cameras.

Typical tasks to be run in a surveillance system target-
ing traffic surveillance include MPEG-4 video compres-
sion, various video analysis algorithms such as accident de-
tection, wrong-way drivers detection and stationary vehi-
cle detection. Additionally, the tracking of objects among
many cameras is an important issue. However, computing
power is limited, hence not all tasks can be allocated to a
smart camera concurrently. Therefore, we have developed a
resource-aware task allocation system [3], which distributes
the surveillance tasks autonomously within groups of smart
cameras. Based on mobile agents this task-allocation sys-
tem works in a distributed manner without a central host.

This paper reports on the integration of multi-camera
tracking into our task-allocation system. Since our target
platforms are distributed embedded systems with limited re-
sources, the tracking-algorithms may only be active, if the
tracked object is in the camera’s field of view. Additionally,
since the surveillance system is fully distributed, the tracker
has to migrate from camera to camera in order to follow the
target.

We have realized the tracking control strategy using het-
erogeneous mobile agents, which comprise a well know
tracking-algorithm. Consequently, these mobile agents are
integrated into the task-allocation system, which provides
the required infrastructure (e.g., resource monitoring, com-
munication infrastructure).

The dynamic task allocation, and, consequently the
tracking agents, have been implemented on our smart cam-
eras (SmartCam [2]) which are comprised of a network pro-
cessor and several digital signal processors (DSPs) and pro-
vide a complex software framework.

1

4740-7803-9385-6/05/$20.00 ©2005 IEEE

Administrator
Pezza

Memory

Memory

Ethernet WLAN

Serial GPRS

Processing Communication

XScale
IXP425

InterfacesDSP
TMS320C6416

CMOS-Sensor

In
te

rf
a

c
e

Video Interface

(Infrared -)
Flash

PTZ / Dome
Interface

PCI

Ir
is

.

.

.

DSP
TMS320C6416

Figure 1. The hardware architecture of the smart camera

The remainder of this paper is organized as follows: Sec-
tion 1.1 sketches related work. Section 2 briefly presents
hardware and software of our SmartCam. Section 3 intro-
duces the dynamic task allocation framework and explains
the architecture of the surveillance system. The integration
of multi-camera tracking is explained in Section 4. Sec-
tion 5 and 6 present the implementation and experimental
results. Finally, Section 7 concludes the paper with a sum-
mary and an outlook on future work.

1.1 Related Work

In [1], Abreu et. al present Monitorix, a video-based
multi-agent traffic surveillance system, based on PCs. The
presented approach, however, does not work in real-time.
Ellis presents in [4] a multi-view video surveillance system,
which makes use of intelligent cameras. The goal of the
surveillance system is the monitoring of public sites, there-
fore, the system architecture is setup statically. Remagnino
at. al describe in [7] the usage of agents in visual surveil-
lance systems. An agent-based framework is used to ac-
complish scene understanding. The system enables hand-
over of events between neighboring cameras.

2 The Smart Camera

Smart cameras are the core components of a 3rd gen-
eration surveillance system. These cameras perform video
sensing, high-level video analysis and compression and
transfer the compressed data as well as the results of the
video analysis to a central monitoring station. The video

analysis tasks implemented in the cameras clearly depend
on the overall surveillance application and may include ac-
cident detection, vehicle tracking and the computation of
traffic statistics. Most of these tasks, however, require a
very high computing performance on the cameras.

2.1 Hardware Architecture

Our smart camera has been designed as a low-power,
high-performance embedded system. As depicted in fig-
ure 1, the smart camera consists of three main units. (1)
The sensing unit, (2) the processing unit, and (3) the com-
munication unit.

A high-dynamic, monochrome CMOS image sensor is
the heart of the sensing unit. It delivers images with
VGA resolution at 25 frames per second via a FIFO mem-
ory to the processing unit. Real-time video analysis and
compression is performed by the processing unit which is
equipped with up to four digital signal processors (DSPs)
TMS320C6415 from Texas Instruments. The DSPs deliver
an aggregate computing performance of almost 20 GIPS
while keeping the power consumption low. The DSPs are
coupled via a local PCI bus which serves also as connection
to the network processor (Intel XScale IXP425) in the com-
munication unit. The communication unit provides access
to the camera’s environment.

The communication of the smart camera is basically two-
fold. First, the communication unit manages the internal
communication between either the DSPs and the DSPs and
the network processor. Second, it manages the external
communication, which is usually IP-based. The XScale

475

processor is operated by Linux due to large number of avail-
able tools and applications available under this operating
system. [2] provides a more detailed insight into the hard-
and software architecture of the smart camera.

2.2 Software Architecture

The software architecture of our smart camera is de-
signed for flexibility and reconfigurability. The software ar-
chitecture consists of several layers which can be grouped
into: (1) The DSP framework, which is implemented on the
DSPs, and (2) the SmartCam framework, running on the
network processor.
DSP Framework The main purpose of the DSP framework
is (i) the abstraction of hardware and communication chan-
nels, (ii) the support for dynamic loading and unloading of
applications, and (iii) the management of on-chip and off-
chip resources of the DSP system by utilizing Texas Instru-
ments Reference Framework 5 [5].
SmartCam Framework The SmartCam framework serves
the following purpose: First, it provides abstraction of the
DSPs to ensure platform independence of the agent-system
and application layers. Second, the application layer uses
the provided communication methods (messaging to the
DSPs and IP-based communication to outer world) to ex-
change information, and work as a relay service. Finally,
the agent-system layer is run on top of Java, whereas the
agents are run as a part of the agent platform.

3 Task Allocation Framework

3.1 Surveillance System Architecture

The architecture of the surveillance system consists of
a large number of smart cameras deployed alongside high-
ways or in tunnels. Since these smart cameras have lim-
ited computational resources, it is not possible to run all
required surveillance tasks on a smart camera. Therefore,
physically co-located smart cameras are combined into log-
ical groups, so called surveillance clusters. Consequently,
sets of surveillance tasks (e.g. accident detection, vehi-
cle counting, vehicle classification) are then allocated to
surveillance clusters. This is feasible, since events, ob-
served by co-located cameras are causally associated with
each other. Therefore, it is not important on which smart
camera a surveillance task is allocated, as long as these
surveillance clusters do not span a too large area. However,
not all surveillance tasks require small surveillance clusters;
classifying and counting of vehicles, for example, may be
spread over a larger area, while accident or fire detection
tasks are usually allocated to smaller clusters. Therefore,
a smart camera may be a member of several surveillance
clusters (cp. figure 2).

Figure 2. A tunnel surveillance scenario with
three surveillance clusters

In contrast to the presented surveillance tasks, which
may be allocated to any smart camera in the surveillance
cluster, there are also several surveillance tasks which are
required to run on a specific smart camera. These tasks pos-
sess an affinity to a scene or a camera, respectively. Track-
ing algorithms, for example, require to be run on a specific
camera, which observes the tracked object. These scene-
affine tasks are also contained in a surveillance cluster, how-
ever, these tasks are very likely allocated to the required
smart cameras.

3.2 Autonomous Task Allocation

In order to automatically distribute tasks within surveil-
lance clusters, our task allocation system is used [3]. The
goal of the task allocation system is to autonomously find
a mapping of tasks to smart cameras which satisfies all re-
quirements and is optimal with respect to a specified metric,
i.e. some cost function. This system is designed to operate
fully distributed, hence no central host is required for oper-
ation. Since the surveillance tasks have firm real-time re-
quirements, the task allocation system has to take care that
no deadlines are missed due to an overload of a camera or a
camera’s subsystem, respectively.

The re-allocation of tasks may be necessary due to
events, raised by hardware or software: (1) Hardware events
usually originate from changed resource availability due
to added or removed cameras, hardware breakdown, or
re-usability of recovered resources. (2) Software events
are caused by changes to resource requirements due to
changes in the task set of the surveillance cluster, or be-
cause of changes in the quality-of-service level (QoS) of
tasks, i.e.due to detected events in the observed scene.

The allocation of tasks to smart cameras is done in two
steps. (1) In the first step, all feasible allocations of tasks to
smart cameras (allocations where no real-time requirements
are violated) are determined. (2) In the second step, the op-
timal allocation of tasks is chosen by using a cost function.

476

Figure 3. A DSP-agent

3.3 Mobile-Agent based Framework

The task allocation framework uses mobile agents to en-
capsulate the surveillance tasks. Mobile agents are the best
choice, since this paradigm supports autonomous actions,
mobility, and platform independence. In accordance with
the hard- and software architecture (cp. section 2) the agents
(DSP-agents, cp. figure 3), encapsulating the surveillance
tasks, are divided into a control-part which can be seen as
the agent itself, and a surveillance-part, which is down-
loaded to the DSP as the computational-intensive part of
the surveillance task (e.g., tracking, stationary-vehicle de-
tection, etc.). Figure 4 depicts a smart camera’s agency
including DSP-agents (Worker Agents — WA) and their
connection to the DSP using the DSP interaction agent
(DIA). The system-information agent (SA), and the cluster-
information agent (CIA) determine information on the cur-
rent system status (SA), and the status of the other cameras
in the surveillance cluster (CIA).

As depicted in figure 3, DSP-agents can have many
QoS-levels, each of which stores its resource requirements.
These resource requirements are used by our task alloca-
tion system to distribute the DSP-agents among the smart
camera in the surveillance cluster. Scene-affine tasks, like
trackers or video-encoders, additionally contain the scene
or camera, to which they have an affinity. This information
is used by our task-allocation system to force the agents al-
location to the required camera.

4 Multi-Camera Tracking

In our system, trackers have to fulfill two basic require-
ments: (1) Since the tracker is not running continuously on
the cameras, the tracker or the tracking-agent, respectively,
has to ensure, that it is running on the appropriate camera in
order to watch and track the desired object. (2) The smart

Figure 4. A DSP-agency

cameras have limited resources, which are shared between
several surveillance tasks executed on the smart cameras.
Therefore the tracking-agent has to use as little resources
as possible. Consequently, the execution of many trackers,
which are tracking the same target on different cameras con-
currently should be avoided.

However, in order to continue tracking on subsequent
cameras, the tracking-agents include tracking information
like features or patterns to enable and to ease the next cam-
era to find the target.

For the integration of a tracking-agent three issues have
to be considered: (1) Choosing the appropriate tracking al-
gorithm, (2) the determination of the next camera observing
the tracked object, and (3) the selection of the most suitable
migration strategy,

4.1 Tracking Algorithm

The focus of this paper is the integration of tracking al-
gorithms into the task allocation framework. Consequently,
we are using well-known tracking-algorithms which are
state-of-the-art. For the integration of a tracking-algorithm,
however, we are differentiating trackers whether a back-
ground model is required or not.

Background model required Tracking algorithms,
which require a background model have long initialization
times, since the background model requires several frames
to be initialized properly. Consequently, these trackers have
to be started well before they have to provide usable results.

477

No background model required In contrast, tracking al-
gorithms (e.g., KLT [8]) which do not require a background
model, can be migrated fast, since these tracking algorithms
are able to provide results by the first computed frame.

4.2 Determining the Appropriate Camera

The determination of the next camera observing the tar-
get, is done using statically defined regions (“migration re-
gions”). Therefore, every camera stores its set of migration
regions, which includes the geometric region, the required
motion vector, and the next camera in this direction. Fig-
ure 5 depicts a simple surveillance scene, indicating only
a single migration region for simplicity. It is possible that
migration regions are overlapping due to crossings and per-
spective overlaps. Therefore, a motion vector is computed
for each target, which describes the direction of the target’s
motion. Consequently, each migration region also has as-
signed a motion vector, which is compared with the motion
vector of the target. If the two motion vectors are almost
identical, the migration region is used.

Crossings, which can not be clearly seen, have to be han-
dled slightly different. In order to further track the object,
two or more cameras have to chosen as the next camera.
Therefore, each of these cameras has to search the target in
its field-of-view until a camera identifies the tracked object.

4.3 Migration Strategy

The strategy, when and how a tracking-agent should mi-
grate to the next camera is vital for finding the target on the
next camera.

Plain Tracker The plain tracker migrates to the next cam-
era as soon as the target enters the migration region and the
next camera can be determined. This is the straight-forward
strategy with the drawbacks, that (1) the tracker leaves the
camera before the target is in the field of view of next cam-
era, which means that the tracker is not aware of the position
of the target until it enters the field of view of the next cam-
era. Additionally, (2) a high network utilization can slow
down the migration of the tracking-agent. Consequently,
the tracking-agent may miss the target on the camera due to
the late arrival.

Master/Slave Tracker The master/slave tracker over-
comes the drawbacks of the plain tracker. In order to track
an object, the tracker is executed on the smart camera,
which observes the target (master tracker). As soon as the
target enters the migration region, the tracker is cloned, and
the clone, called slave-tracker, is migrated to the next cam-
era, where the slave-tracker waits for the target. The master-
tracker is active until the slave-tracker identifies the target.

Figure 5. A tracking scene with migration area
and motion vector

At this point,the master-tracker is destroyed, and the slave-
tracker becomes the master-tracker.

5 Implementation

For the implementation of our task allocation system,
and the tracking system, we have chosen to use the Diet-
Agents System (see http://diet-agents.sf.net) which runs on
top of Java, since it provides all required features like mobil-
ity and autonomy, and it is reasonable small and fast, which
is inevitable for embedded systems.

We have chosen to implement and integrate the
master/slave-tracker due its mentioned advantages in com-
parison with the plain-tracker. Furthermore, a KLT-tracker
is used for tracking due to its short initialization time. The
porting of the KLT-tracker to the DSP is, however, not yet
finished. Therefore a tracking-simulation agent simulates
the behavior of the KLT-tracker in a realistic way by re-
porting predefined trajectories and features of the tracked
object to the tracking agent. The tracking-agent commu-
nicates with the tracking-simulation agent using the same
interface as it is defined for the KLT-tracker. Consequently,
the behavior of the tracking system will not change as soon
as we start using the KLT-tracker.

5.1 Hardware Setup

To verify, test and evaluate the presented tracking sys-
tem, we have used two hardware platforms. Two prototypes
of our smart camera and PCs equipped with DSP boards.

The prototypes of our smart camera consist of Intel
IXDP425 Development Boards, which are equipped with
an Intel IXP425 network processor running at 533 MHz.
The boards are operated with Linux Kernel 2.6.8.1, which
allows the usage of standard software packages, and en-
ables interoperability with PC-based Linux systems. The

478

Figure 6. The prototype of the smart camera

boards support up to four DSP boards, however, our proto-
types are equipped with two Network Video Development
Kits (NVDK) from ATEME. Each board is comprised of
a TMS320C6416 DSP from Texas Instruments, running at
600 MHz, with a total of 264 MB of on-board memory. Im-
age acquisition is done using the National Semiconductor
LM9618 monochrome CMOS image sensor, which is con-
nected to one of the DSP boards. Due to the lack of ad-
ditional smart camera prototypes, we are using additional
PCs, which are equipped with an NVDK board.

6 Experiments

We have conducted several experiments in order to test
and evaluate the tracking system. Therefore, we have im-
plemented three different tracking simulations:

1. Simple one-way traffic tunnel scenario to test the basic
functionality of migrations and finding the target on
the next camera.

2. Simple two-way traffic scenario in order to addition-
ally test the effectiveness of the motion vectors, since
the migration regions are overlapping.

3. A complex highway scenario including crossings,
which are only contained partially in the field of view.
Hence, agents have to be cloned and migrated to all
possible smart cameras in order to find the tracked ob-
ject.

The tracking system worked well and delivered the cor-
rect results with all three tracking simulators. The migra-
tion of tracking agents between smart cameras required ap-
proximately 900 ms due to the low performance of the used
Java-VM. Since the master/slave tracker creates its slaves as
soon as the target enters the migration region, the migration
regions can be enlarged, if the migration times are too high.

7 Conclusion

In this paper we have reported on the integration of
multi-camera tracking into our task allocation system for
smart cameras. In order to reduce the resource usage, the
tracking algorithm is only run on the appropriate smart cam-
era as long as the tracked object is in its field of view. There-
fore, the tracking algorithm is encapsulated into a mobile
agent, which decides autonomously, based on the results
from the tracking algorithm, when to migrate to the next
smart camera. In order to test and evaluate the mobile-agent
based tracking, we have implemented the proposed strate-
gies on the prototype of our smart camera.

Future work includes (1) the test and evaluation using a
KLT-tracker, (2) more extensive tests under real-world con-
ditions, and (3) the implementation of other tracking algo-
rithms.

References

[1] B. Abreu, L. Botelho, A. Cavallaro, D. Douxchamps,
T. Ebrahimi, P. Figueiredo, B. Macq, B. Mory, L. Nunes,
J. Orri, M. J. Trigueiros, and A. Violante. Video-Based Multi-
Agent Traffic Surveillance System. In Proceedings of the
IEEE Intelligent Vehicles Symposium. IEEE, Oct 2000.

[2] M. Bramberger, B. Rinner, and H. Schwabach. An Embed-
ded Smart Camera on a Scalable Heterogeneous Multi-DSP
System. In Proceedings of the European DSP Education and
Research Symposium (EDERS 2004), Nov 2004.

[3] M. Bramberger, B. Rinner, and H. Schwabach. Resource-
aware dynamic task-allocation in clusters of embedded smart
cameras by mobile agents. In Proceedings of the IEE Intena-
tional Workshop on Intelligent Environments. IEE, June 2005.

[4] T. Ellis. Multi-camera video surveillance. In Proceedings of
the International Carnahan Conference on Security Technol-
ogy, pages 228–233. IEEE, 2002.

[5] T. Mullanix, D. Magdic, V. Wan, B. Lee, B. Cruickshank,
A. Campbell, and Y. DeGraw. Reference Frameworks for eX-
pressDSP Software: RF5, An Extensive, High-Density Sys-
tem. Technical Report SPRA795A, Texas Instruments, April
2003.

[6] C. Regazzoni, V. Ramesh, and G. Foresti. Introduction of the
special issue. Proceedings of the IEEE, 89(10), Oct 2001.

[7] P. Remagnino, J. Orwell, D. Greenhill, G. Jones, and
L. Marchesotti. An agent society for scene interpretation. In
G. Foresti, P.Mhnen, and C.S.Regazzoni, editors, Multimedia
Video Based Surveillance Systems, pages 108–117. Kluwer
Academic Publishers, 2001.

[8] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, Carnegie Mel-
lon University, 1991.

[9] W. Wolf, B. Ozer, and T. Lv. Smart Cameras as Embedded
Systems. IEEE Computer, 35(9):48–53, Sep 2002.

479

