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ABSTRACT 

This paper presents a dynamic task allocation method 
for smart cameras targeting traffic surveillance. Since 
our target platforms are distributed embedded systems 
with limited resources, the task allocation has to be 
light-weight, flexible as well as scalable and has to 
support real-time requirements. Therefore, surveillance 
tasks are not allocated to smart cameras directly, but to 
groups of smart cameras, so catled surveillance clusters. 
We formulate the allocation problem as a distributed 
constraint satisfaction problem (DCSP) and present a 
distributed method for finding feasible allocations. 
Finally, a cost function is used to determine the optimal 
allocation of tasks. We have realized this dynamic task 
allocation using heterogeneous, mobile agents which 
utilize their agencies and our embedded software 
framework to find the most appropriate mapping of 
tasks in a distributed manner. The dynamic task 
allocation has been implemented on our smart cameras 
(Smartcam) which are comprised of a network 
processor and several digital signal processors (DSPs) 
and provide a complex software framework. 

1. INTRODUCTION 

Surveillance systems currently undergo a dramatic shift. 
Traditional surveillance systems of the first and second 
generation have employed analog CCTV cameras, 
which transferred the analog video data to digital base 
stations where the video analysis, storage and retrieval 
takes place. Current semiconductor technology enables 
surveillance systems to leap forward to third generation 
systems which employ digital cameras with on-board 
video compression and communication capabilities. 
Smart cameras (Wolf et. a1 (9), Bramberger et. a1 (2)) 
even go one step further; they not only capture and 
compress the grabbed video stream, but also perform 
sophisticated, real-time, on-board video analysis of the 
captured scene. Smart cameras help in (i) reducing the 
communication bandwidth between camera and base 
station, (ii) decentralizing the overall surveillance 
system and hence to improve the fault tolerance, as well 
as (iii) realizing more surveillance tasks than with 
traditional cameras. 
Typical tasks to be run in a surveillance system 
targeting traffic surveillance include MPEG-4 video 
compression, various video analysis algorithms such as 

accident detection, wrong-way drivers detection and 
stationary vehicle detection. Additionally, traffic 
parameters such as average speed, lane occupancy and 
vehicle classification are often required. Since 
computing power is limited we may not allocate all 
tasks to the cameras. 

This paper presents a resource-aware dynamic task 
allocation system for smart cameras targeting traffic 
surveillance. Since our target platforms are distributed 
embedded systems with limited resources, the task 
allocation has to be light-weight, flexible and scalable 
as well as has to support real-time requirements. 
Therefore, surveillance tasks are not allocated to smart 
cameras directly, but to groups of smart cameras, so 
called surveillance clusters. We formulate the allocation 
problem as a distributed constraint satisfaction problem 
(DCSP) and present a distributed method for finding 
feasible allocations. Finally, a cost function is used to 
determine the optimal allocation of tasks. We have 
realized this dynamic task allocation using 
heterogeneous, mobile agents which utilize their 
agencies and our embedded software framework to find 
the most appropriate mapping of tasks in a distributed 
manner 

The main contributions of this ongoing research project 
include (i) the distributed agent-based approach for 
determining all feasible allocations of a DCSP, (i i)  the 
evaluation of a complex cost function considering the 
limited resources of the embedded platform in detail, 
(iii) the integration of a mobile agent system in our 
embedded software framework. The dynamic task 
allocation has been implemented on our smart cameras 
(%"Cum - Bramberger et. a1 (3)) which are 
comprised of a network processor and several digital 
signal processors (DSPs) and provide a complex 
software framework. 
The remainder of this paper is organized as follows: 
Section 1.1 sketches related work. Section 2 briefly 
presents hardware and software of our Smartcam. 
Section 3 discusses the advantages of grouping smart 
cameras to surveillance clusters. Section 4 describes the 
DCSP approach and focuses on finding feasible 
allocations of tasks and the cost function. Section 5 and 
6 present the implementation and the experimental 
results, respectively. Section 7 concludes the paper with 
a summary and an outlook on future work. 

1.1 Related Work 
Agents-based load distribution has been an active 
research in the last decade. An overview of agent 
standards and available platforms is presented in 
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Perdikeas at. al (6). WYA (While You're Away - Suri 
et. al (8)) is based on the NOMADS mobile agent 
system. It provides dynamic load balancing by mobile 
agents, which utilize a central coordinator to move 
between workstations. Qin et al (7) identified the 
amount UO-traffic as an important issue for dynamic 
load balancing beside CPU-load and memory. Chow 
and Kwok (4) introduced the affinity of an agent to its 
machine and used a credit-based scheme to determine 
the agents to be migrated by using a central host station. 
Agents used in surveillance systems were proposed by 
the MODEST consortium (Abreu et. al (l)), where 
mobile agents were used to track vehicles using PC 
based platforms. 
Distributed constraint satisfaction problems have been 
analyzed by Yokoo et. al. (12) for variable-split CSPs. 
The presented asynchronous backtracking algorithm 
used autonomous agents, however, the high 
communication effort between the agents is impractical 
for real-time systems. 

2. THE SMART CAMERA 

Smart cameras are the core components of a 3d 
generation surveillance system. These cameras perform 
video sensing, high-level video analysis and 
compression and transfer the compressed data as well as 
the results of the video analysis to a central monitoring 
station. The video analysis tasks implemented in the 
cameras clearly depend on the overall surveillance 
application and may include accident detection, vehicle 
tracking and the computation of traffic statistics. Most 
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Figure 1: The hardware architecture of the smart camera 

' Communication ' 

of these tasks, however, require a very high computing 
performance on the cameras. 

2.1 Hardware Architecture 

Our smart camera has been designed as a low-power, 
high-performance embedded system. As depicted in 
figure 1 ,  the smart camera consists of three main units. 
(1) The sensing unit, (2) the processing unit, and (3) the 
communication unit. 

A high-dynamic, monochrome CMOS image sensor is 
the heart of the sensing unit. It delivers images with 
VGA resolution at 25 frames per second via a FIFO 
memory to the processing unit. Real-time video 
analysis and compression i s  performed at the processing 
unit which is equipped with up to four digital signal 
processors (DSPs) TMS320C6415 from Texas 
Instruments. The DSPs deliver an aggregate computing 
performance of almost 20 GIPS while keeping the 
power consumption low. The DSPs are coupled via a 
local PCI bus which serves also as connection to the 
network processor (Intel XScale IXP425) in the 
communication unit. The communication unit provides 
access to the camera's environment. The communication 
of the smart camera is basically two-fold. First, the 
communication unit manages the internal 
communication between either the DSPs and the DSPs 
and the network processor. Second, it manages the 
external communication, which is usually IP-based. 
The XScale processor is operated by Linux due to large 
number of available tools and applications available 
under this operating system. (3) provides a more 
detailed insight into the hard- and software architecture 
of the smart camera. 
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Figure 2: The DSP Framework 

2.2 Software Architecture 
The software architecture of our smart camera is 
designed for flexibility and reconfigurability. The 
software architecture consists of several layers which 
can be grouped into: (1) The DSP framework, which is 
implemented on the DSPs, and (2) the SmartCam 
framework, running on the network processor. 

DSP Framework The main purpose of the DSP 
framework (cp. figure 2) is (i) the abstraction of 
hardware and communication channels, (ii) the support 
for dynamic loading and unloading of applications, and 
(iii) the management of on-chip and off-chip resources 
of the DSP system by utilizing Texas Instruments 
Reference Framework S (see Mullanix et. a1 (5)). 
SmartCam Framework The SmartCam framework 
(cp. figure 3) serves the following purpose: First, it 
provides abstraction of the DSPs to ensure platform 
independence of the agent-system and application 
layers. Second, the application layer uses the provided 
communication methods (messaging to the DSPs and 
IP-based communication to outer world) to exchange 
information, or work as a relay service, respectively. 
Finally, the agent-system layer is run on top of Java, 
whereas the agents are run as a part of the agent 
platform. 

3. SURVEILLANCE ARCHITECTURE 

The architecture of the surveillance system consists of a 
large number of smart cameras deployed alongside 
highways or in tunnels. Since these smart cameras have 
limited computational resources, it is not possible to run 
all required surveillance tasks on a smart camera. 
Therefore, physically co-located smart cameras are 
combined into logical groups, so called surveillance 
clusters. Consequently, sets of surveillance tasks (e.g. 

Figure 3: The SmartCam Framework 

accident detection, vehicle counting, and vehicle 
classification) are then allocated to surveillance clusters. 
This is feasible, since events, observed by co-located 
cameras are causally associated with each other. 
Therefore, it is not important on which smart camera a 
surveillance task is allocated, as iong as these 
surveillance clusters do not span a too large area. 
However, not all surveillance tasks require small 
surveillance clusters; classifying and counting of 
vehicles, for example, may be spread over a larger area, 
while accident or fire detection tasks are usually 
allocated to smaller clusters. Therefore, a smart camera 
may be a member of several surveillance clusters (cp. 
figure 4). The aklocation of surveillance tasks to smart 
cameras is done dynamically during runtime by the 
presented task allocation system (see section 4), which 
is distributed over all smart cameras. 

Chsler 1 

Figure 4: A tunnel surveillance scenario with three 
surveillance clusters 

In contrast to the presented surveillance tasks, which 
may be allocated to any smart camera i n  the 
surveillance cluster, there are also several surveillance 
tasks which are required to run on a specific smart 
camera. These tasks possess an affinity to a scene or a 
camera, respectively. Tracking algorithms, for example, 
require to be run on a specific camera, which observes 
the tracked object. These scene-affine tasks are also 
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contained in  a surveillance cluster, however, the task 
allocation system should allocate these tasks t o  the 
required smart cameras. Note that scene-affine tasks 
might be allocated to a different camera. In this case, 
however, the communication load would significantly 
be increased because raw images would have to be 
transferred from one camera to another. 

4. TASK ALLOCATION 

The goal of the task allocation system is find a mapping 
of tasks to smart cameras which satisfies all 
requirements and is optimal with respect to a specified 
metric, i.e. some cost function. Since the surveillance 
tasks have firm real-time requirements, the task 
allocation system has to take care that no deadlines are 
missed due to an overload of a camera or a cameras 
subsystem, respectively. 
The re-allocation of tasks may be necessary due to 
events, raised by hardware or software: (1) Hardware 
events usually originate from changed resource 
availability due to added or removed cameras, hardware 
breakdown, or re-usability of recovered resources. (2) 
Software events are caused by changes to resource 
requirements due to changes in the task set of the 
surveillance cluster, or because of changes in the 
quality-of-service level (QoS) of tasks, i.e., due to 
detected events in the observed scene. 
The allocation of tasks to smart cameras is done in two 
steps. (1) In the first step, all feasible allocations of 
tasks to smart cameras (allocations where no real-time 
requirements are violated) are determined. (2) In the 
second step, the optimal allocation of tasks is chosen by 
using a cost function. 

4.1 Find Feasible Allocations 

The determination of feasible allocations of tasks to 
smart cameras is a distributed constraint satisfaction 
problem (CSP) (12). CSPs are defined by a set of n 
variables T={T l,...,Tn), which hold values of a finite 
domain D, and a set of & constraints C={C,, ..., Ck/. In 
our case, the surveillance tasks to be allocated to the 
cameras of the surveillance cluster are the variables, and 
the values they hold is the identifier of the allocated 
smart camera D=/l ,  ..., m). Therefore, Ti=d indicates, 
that task i is currently allocated to smart camera d.  
Equation 1 determines all permutations with repetitions 
A, denoted by n,, from the m cameras and n tasks. 
The subsets of A are allocations of tasks to cameras, 
which have to be checked for feasibility. The constraints 
(cp. eq. 4 are formulated using two functions which 
determine the resource requirements and availability of 
the tasks and the cameras. req(Res, i) determines the 
requirements of task i concerning resource Res, while 
avail(Res, d) determines the availability of the resource 
Res on smart camera d. 

~=np,l~)= A { A ~ , . . . , A ~ ) ; ~  = m n  (1) 

Ai = [ui, ..., a m )  I ai E D (2) 
R = {CPU,MEM,DMA) (3) 

C=(VA,E A : V d E  D : V r E  R : V a i E A j :  
Vui = d  : (Creq(r , i ) )<avai l ( r ,d) }  (41 

1 

Equations 1 to 4 define a feasible allocation, i.e., any 
allocation A which does not violate any resource 
constraint C. Note that in our implementation we also 
considered the DSPs memory hierarchy and several 
parameters of the DMA subsystem. 

However, this simple approach requires a central host. 
A more scalable solution is to distribute the CSP to 
several cameras in the surveillance cluster. 

The distributed CSP. In order to distribute the 
determination of feasible allocations to all smart 
cameras, we split the domain D into m sub-domains 
DI,  ... Jn,, each comprised of a single value D1=E. The set 
of tasks Tremains the same, while the complexity of the 
constraints is reduced slightly (cp. equation 5) .  
To achieve all possible allocations of tasks, we choose 
VOci 5 n tasks out of the set of all tasks 
VO i i I n : Ai = choose(i, n) , Every set Ai is comprised 

of v allocations 4 = [A: ,...,g], each of which 

consisting of i tasks 4 = {a, ,..., a i } l  Vuv E 7’. All 

allocations 4, which meet the constraints (cp. equation 
5 )  for all resources R, are chosen as feasible, partial 
allocations. 

C = (VA, E A :  VA,! E Ai : VO ; E 4 : 

Note that the constraints only consider tasks allocated to 
a single smart camera, so the CSP is split into m sub- 
CSPs, which can be solved in parallel on the m smart 
cameras in the surveillance cluster. 

Normally, CSPs require that all variables are included in 
the solutions of the problem, however, in our case this 
rule would imply that only partial allocations are valid, 
which include all n tasks of the surveillance cluster. In 
order to accept task allocations which do not include all 
tasks, the CSP rules have to be weakened. Even the 
allocation of no task is a valid allocation, which is 
reasonable, if a surveillance cluster contains fewer tasks 
than smart cameras. 

Merging of Allocations. Finally, m sets of partial task 
allocations are available P = (4, ..., Pm}; 
Pj =(qJ  , . . . , P i ) .  In order to find all feasible task 
allocations these partial allocations have to be merged. 

Consequently, valid task allocations 

concurrently, and 
I. do not allocate tasks to more cameras 
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2. include all surveillance tasks. 
The merging of partial allocations can be done in 
parallel, as long as rule 1 is not violated. However, the 
final merging process has to obey rule 2 too. 

The combination of the partial allocations finally 
provides a set offfeasible allocations F, from which the 
most appropriate allocation has to be chosen. 

4.2 Find Optimal Allocation 

For finding the most appropriate allocation of tasks a 
cost-scheme is used. This cost-calculation scheme 
includes five cost classes, namely (1) resource costs - 
C,, (2) data-transfer costs - CT, (3) migration costs - CM, 
(4) affinity costs - CA, and (5 )  quality-of-service costs - 
CQd. These costs are calculated for every task on every 
smart camera in the surveillance cluster. Finally, the 
overall costs are accumulated as enlisted in the set of 
feasible allocations F. 

Cost Calculation. To compute the overall cost C,,, of a 
surveillance task, the cost values of the five cost classes 
are weighted and added: 

c~~~ = k ~ * c ~ + k ~ * C ~ + k y * c ~ +  
(6) 

Resource Cost. Highly-optimized applications for DSP- 
based embedded systems typically utilize the memory 
hierarchy and on-chip resources such as direct memory 
access and timers to exploit the processors performance. 
In order to fully exploit the performance capabilities of 
a DSP, it is necessary to carefully allocate these limited 
resources to applications. In order to guarantee 
resources to an application, the DSP framework has to 
keep track of the status of these DSP resources. 

kA * + kQoS * cQoS 

Actually, the system considers the following resources: 
(1) CPU load, (2) memory usage (including memory 
hierarchy on DSPs), (3) DMA utilization (including 
channels, reload-tables, and transfer complete codes), 
(4) memory bus utilization, (5 )  communication ports, 

. (6) timers, and (7) interrupts. 

CR = p R I  *kR, (7) 
VRi 

where 

(8) 
Resource Requirements 

= Resource Availability 
As denoted in equation 8, the resource costs are not only 
composed by sufficient availability of resources, but 
they are computed as the ratio of resources required to 
resources available. 

Note the also the utilization of the memory bus is taken 
into consideration, since an overload of the memory bus 
usually results in violating real-time deadlines. 

Datu-Transfer Cost. We have defined two different 
types of data transfers: [ 1) Data entering or leaving the 

system will usually be transmitted using a network 
interface, while (2) intermediate data transfers operate 
internally via PCI bus or directly to memory. To 
consider the bandwidth of the used interface, the data- 
transfer cost CT is calculated as the amount of 
megabytes (MB) transferred, multiplied by a slowness 
factor depending on the bandwidth of the connection. 

Migration Cost. The migration of tasks between smart 
cameras is accounted for by two costs, which are scaled 
and added to receive the migration cost CM. 

(9) CM = k, * C m  + k, * C M f  

1. Migration Transfer Cost - C ,  Data transfer 
costs are raised, since the task including the 
intermediate results has to be transferred to the 
new smart camera. These transfer costs are 
calculated similar to the data-transfer costs as 
the amount of to be transferred megabytes 
(MB) is multiplied by the appropriate slowness 
factor. 
Migration Idle Cost - C,, In many cases the 
restart of a video analysis algorithm after 
migration will require a certain amount of time 
due to a learning or initialization phase. The 
migration idle cost considers the time required 
by the algorithm to become fully functional 
again. It is set to low values for algorithms 
with no or little initialization or leaming phase 
like video encoding agents. In contrast, video 
analysis algorithms which have to setup 
backgrou.nd models or learn a certain behavior 
will have a high migration idle cost to assure a 
high level of usability as a high number of 
migrations would result in many periods of 
non-functionality. 

2. 

Afiniry Cost. The distribution of tasks inside a 
surveillance cluster is controlled by two affinity costs, 
which are defined by the task designer. 

Cluster Affinity. As the overall load of a 
surveillance cluster increases, it may not be 
possible to run all tasks due to insufficient 
computing resources. The cluster affinity 
introduces a priority scheme, whereas higher 
affinity values denote higher priority. 
Therefore tasks with high cluster affinity 
values will be allocated to smart cameras more 
likely. 
Scene Affinity. As mentioned in section 3, 
agents may require to process video data from 
a special smart camera, Tracking applications, 
for example, require to process video frames 
which contain the tracked object. Such agents 
feature high scene-affinity values, which 
increases the probability that the agent will be 
executed on the appropriate smart camera. 
However, if the agent is run on another smart 
camera in the system, the video data from the 
required scene has to be forwarded to the 
surveillance task. 

I. 

2. 
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Based on these two affinity values, the affinity costs - 
Cluster Affinity Cost CA, and Scene Affinity Cost CAS - 
are calculated, whereas the higher cost is selected as the 
overall affinity cost. 

As higher affinity values denote lower cost, the affinity 
costs are normalized to the maximum affinity. If the 
cluster or scene affinity is zero, it will not be considered 
in the cost calculation. Therefore, if both affinities are 
zero, the affinity cost is set to m . 

(1 i j  

(12) 

Maximum Affinity 
Cluster Affinity 

Maximum Affinity 

CA, = 

* k L  = Scene Affinity 
The scaling factor kL will increase the scene affinity cost 
be a factor kRp if the agent is not executed on the 
required smart camera. Otherwise it will be set to 1. kRp  

is called Remote Penalty and specifies the penalty 
induced by remote execution of agents featuring scene 
affinity. 
Qualiry-ofservice Cost The task allocation system 
considers all quality-of-service levels, therefore, we 
have to provide a possibility to choose which QoS-level 
should be used. It is desired to run all tasks with highest 
possible quality, therefore this cost adds penalty costs, if 
the task should be run with lower QoS-levels. These 
penalty costs and the number of QoS-levels are defined 
by the task designer. 

Since lower QoS-levels lead to lower resource 
requirements of tasks, the number of possible task 
allocations will rise. Therefore a high number of QoS- 
levels yield longer run-times of the task allocation 
system. 

4.3 RealIocation Scenarios 

As mentioned before, two scenarios are possible, where 
a reallocation of tasks is necessary. However, we handle 
the scenarios differently to improve the performance of 
the system. 

Increased Load. Increased requirements or decreased 
resource availability indicates a higher system load. 
Therefore, the number of feasible allocations will 
decrease, since less combinations of tasks will satisfy 
the constraints of the CSP. Therefore, the value of the 
changed resource or availability is updated in the set of 
feasible allocations F. Finally, the feasibte allocations 
are re-checked and infeasible allocations are removed 
from F. 
This re-checking process does not require recalculating 
all possible allocations, therefore, the time required for 
determination of the new allocation is reduced 
dramatically. 

Reduced Load. In contrast to the upper scenario, the 
decrease of requirements or increase of resource 
availability can be seen as a reduced load of the system. 
Consequently, the number of both, partial and complete, 
allocations will increase. Therefore, all feasible 
allocations have to be re-computed. This approach leads 
to longer execution times, however, as the service 
quality will rise by this reallocation, the real-time 
deadlines are not as firm as in the upper scenario. 
Implementation 
For the implementation of our surveillance system we 
have chosen to use mobile agent technology. Mobile 
agents are most suitable for our system, since they 
support mobility, autonomy, and platform 
independence. 

4.4 Agent System 
We have chosen to use the diet-agents (see http://diet- 
agents.sourceforge.net) system since it includes all 
required features like mobility, autonomy, and platform 
independence and is reasonable small, which is 
inevitable for embedded systems. 
However, extensions to the agent system were necessary 
to add the support for the DSPs, and the decentralized 
management of the surveillance clusters. 
DSP Agencies. Agencies provide the environment for 
agents to live in. An extension to standard agencies is 
required to support multiple surveillance clusters. 
Therefore, a logical grouping of agents within &he 
agency (cp. surveillance clusters A, B and x in figure 5) 
is desirable. We have implemented a cluster- 
information agent (CIA), which hosts local knowledge 
of other cameras belonging to the surveillance cluster, 
and provides lookup services for agents within the 
surveillance cluster. 
The iptegration of the DSPs into the agent system is 
done by one DSP integration agent (DIA) per DSP in 
the system. This DIA is a stationary agent, which 
manages message registrations, message dispatching, 

\ 
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Figure 5:  A DSP agency 
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and binary downloads to the DSP. Finally, the System 
Information Agent (SA) gathers the system status and 
performance data from the DSPs and the network 
processor. 
Two basic agent types are deployed within the agent 
system: (1) Management-oriented Smartcam-agents, 
which are not included in the task allocation system, and 
(2) DSP-agents, which implement algorithmic 
functionality to be executed on a DSP. Since the 
implementation of the SmartCam agents is quite 
straightforward, only the DSP agents will be discussed 
in detail in the next section. 

DSP Agents. DSP agents are an enhancement of usual 
agents, as they are the base of the task allocation 
system. Therefore, DSP agents (depicted as Worker 
Agents (WA) in figure 5 )  include their requirements to 
the system and their cost parameters. Additionally, the 
cost calculation functionality is added to these agents 
(cp. figure 6) .  As the computational intensive parts of 
these agents are executed on the DSPs, the agents 
contain a binary, which is downloaded to the DSP and 
dynamically integrated into the system by the DSP 
framework. Therefore, the agents maintain 
communication channels to the DSP by using the 
world's DSP integration agent (DIA). 
In case of migration the agent notifies the DSPs task to 
stop computation and to transmit the persistent 
intermediate results to the agent. After migration the 
agent loads the binary to the DSP and transmits the 
stored intermediate results to the DSP. This enables the 
algorithm to continue computation or to use the 
intermediate results as new starting values, respectively. 

4.5 Task Allocation System 
Determining Partial Allocations. We are using a 
backtracking-based algorithm in order to determine the 
feasible allocations of tasks to a smart camera. Figure 7 
shows two solution trees (containing all solutions) from 
a partial CSP. Since the order of the tasks is not 
relevant, the redundant edges (dashed) (figure 7(a)) are 
removed (figure 7(b)). In order to improve performance, 

1 Type: DSP Agent I 
I Functionality I Identification published to Agency 1 

-- .-_. _ . _ _ _ _ ~  
I Requirements 

Memory (Onthip I Off-chip) 
On-chip Resources (DMA. TCC, INT) 

Mission 

DSP Interface , DSP mission (binary) 

I DSP Intermediate Data I 
Figure 6: A DSP agent 

Backtracking means, that a certain sub-tree is not 
further evaluated, as soon as an infeasible allocation is  
found. Supposing AB is not a feasible solution, ABC 
would not be tested for feasibility. 

Merging of partial allocations. As mentioned, the 
constraint-satisfaction problem is solved on all smart 
cameras in parallel. Consequently, the determined 
partial allocations have to be merged in order to receive 
a feasible mapping. Therefore, allocation-merging 
agents (AMA) travel from camera to camera and merge 
the partial solutions into a global one. Since the merging 
is also done in parallel, agents are best suitable for 
merging, due to three features of agents: (a) 
communication to gather all required information, (b) 
mobility to migrate between the cameras, and (c) 
autonomous behavior to prevent a camera of being the 
control host. 
During merging, trees (as depicted in figure 7(b)) are 
merged left to right. The merging also makes use of a 
backtracking algorithm, since the merging of a sub-tree 

0 n 

A B C A B C 

AB AC 6C AB AC BC 

ABC AEC 

(4 (b) 
Figure 7: Possible Partial Allocations 

is stopped, as soon as its root is not a feasible allocation. 
The number of feasible allocations after merging rises 
significantly. 

Reconfiguring a surveillance cluster. This section 
outlines the actions taken during a reconfiguration of a 
surveillance cluster. Since our goal is a flexible, scalable 
and distributed implementation we have chosen to 
realize the task allocation system using mobile agents. 
A new allocation is always initiated by a smart camera, 
either due to a hardware event (changes of availability) 
or a software event (changes of requirements). This 
camera initiates the reallocation by broadcasting the 
request-far-requirements to all worker agents within the 
surveillance cluster. After the agents receive this 
request, they broadcast their requirements to all smart 
cameras in their surveillance cluster. Additionally, all 
agents calculate their costs for every smart camera and 
transmit the cost values to the initiating camera. The 
smart cameras determine in parallel the parrial 
allocations, which have to be merged in the next step. 
All smart cameras, which are equipped with more DSPs, 
have to merge the partial allocations for the DSPs first. 
In order to further merge the partial allocations, the half 
of the smart cameras (determined during the creation of 
the surveillance cluster) create allocation-merging 



agents (AMA), which pick up the merged partial 
allocation and migrate to predetermined smart cameras 
(which comprise the other half of the surveillance 
cluster), where they grab the local partial allocation, and 
merge both, the local and the included partial 
allocations, After the merging process, the agents 
migrate to the next smart camera, as defined by the 
fixed itinerary, and merge their partial allocation with 
the partial allocation provided by another AMA. This 
way, the partial allocations are merged to a final 
allocation, whereas the last allocation merge is done on 
the initiating smart camera. The merging process 
corresponds to a binary tree, therefore Id[m) (where m is  
the number of smart cameras) sequential merging steps 
have to be done. 
Finally, the initiating smart camera has to determine the 
most appropriate task allocation, therefore, the costs, as 
submitted by the agents, are accumulated for every task 
allocation. Consequently, the solution with the lowest 
cost is selected as the new task allocation. Since the 
selection of the most appropriate task allocation is based 
on the costs of the agents, the desired optimization goal 
like the number of migrations, degradation of quality- 
of-service, or balanced use of resources can be achieved 
by adapting the scaling factors of the cost classes. After 
this process, the new task allocation is broadcast to all 
smart cameras and agents, which then update their QoS 
level, or migrate to another smart camera. To enable the 
fast reconfiguration by removing feasible task 
allocations, also the set of feasible task allocations is 
broadcast to all smart cameras in the surveillance cluster 
after the system has settted. 

4.6 Hardware Setup 

To verify, test and evaluate the presented agent system, 
we have used two hardware platforms. A prototype of 
our smart camera and PCs equipped with DSP boards. 
The prototype of our smart camera consists of an Intel 
lXDP425 Development Board, which is equipped with 
an Intel IXP425 network processor running at 533 MHz. 
The board is operated with Linux Kernel 2.6.8.1, which 
allows the usage of standard software packages. Image 
acquisition is done using the National Semiconductor 
LM9618 monochrome CMOS image sensor, which is 
connected to one of the DSP boards. The prototype 
supports up to four DSP boards, however, our prototype 
is equipped with two Network Video Development Kits 
(NVDK) from ATEME. Each board is comprised of a 
TMS320C6416 DSP from Texas Instruments, running 
at 600 MHz, with a total of 264 MB of on-board 
memory. 
Due to the lack of additional smart camera prototypes, 
we are using two PCs, which are equipped with one 
Network Video Development Kit. 

Figure 8: The prototype of the smart camera 

We have used four different agent types for our 
experiments: ( I )  A MPEG-4 video compression agent, 
(2) a stationary-vehicle detection (StVD) agent, (3) a 
vehicle count agent, ana (4) a vehicle classifier agent. 
The MPEG-4 agent and the stationary-vehicle detection 
agent (2) are well tested and evaluated agents, however, 
the vehicle count and vehicle classify agents only 
simulated real behavior. A total of six agents have been 
instantiated from these four classes, where we used 
three MPEG-agents (as every camera has to transmit a 
live video stream), and one agent of every other agent- 
type, 

Table 1 enlists the execution times of the two stages of 
the task allocation. On the PCs we have used two Java 
virtual-machines: (a) Suns JDK 1.4.2, which uses ajust- 
in-time (JIT) compiler, and therefore reaches better 
performance values, while (b) the JamVM virtual 
machine (see http://jaamvm.sourceforge.net) is designed 
as an interpreter and therefore requires higher execution 
times. Lines la, 2a, and 3a represent the execution times 
if all six tasks had to be considered. As line 2a shows, 
that the merging process, resulting with a total of 2880 
feasible task alIocations, requires the most amount of 
time, therefore we have implemented the core 
calculation functions of steps I and 2 also in c++ to 
achieve acceptable performance. In a second scenario 
we have removed the MPEG-4 encoding agents from 
the surveillance cluster, and allocated them statically to 
the cameras. The results of the dynamic allocation of the 
resulting three agents are enlisted in lines lb, 2b, and 3b 
in table 1. 

Finally, we have also evaluated the performance of the 
task allocation system at increasing system load. Line 4 
enlists the times required to check all 2880 allocations 
for feasibility. These results show, that the system 
responds in a timely manner to increased system load. 

6. CONCLUSION 
5. EXPERIMENTS 

In order to verify and evaluate the presented task 
allocation system, we created a surveillance cluster, 
comprised of the smart camera prototype and two PCs. 

In this paper we have presented a resource-aware 
dynamic task-allocation system targeting embedded 
smart cameras. Surveillance tasks are not allocated to 
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1 Case PC PC 

Table 1: Running times of task allocation 

the smart cameras directly, but to groups of smart 
cameras, surveillance clusters, within the tasks are 
allocated by the smart cameras in a distributed manner. 
We show that the task allocation can be formulated as a 
distributed constraint satisfaction problem (DCSP) and 
present a solution for this DCSP. Therefore we combine 
the results of the DCSP with a cost function to retrieve 
the optimal allocation of tasks. Finally, we discuss the 
mobile-agent based implementatian of the system and 
present results achieved by evaluation of the 
implemented system, 

Future work includes (1) the further evaluation of the 
system, using more complex scenarios, (2) the tighter 
combination of finding feasible allocations and 
calculating the costs for an allocation in order to delete 
expensive allocations at an early stage, (3) the test and 
evaluation of the system in real-world scenarios, and (4) 
the integration of learning agents into surveillance 
clusters, which influence the behavior of the system by 
adapting the cos? function based on previous behavior. 
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