
RESOURCE-AWARE DYNAMIC TASK-ALLOCATION IN CLUSTERS OF EMBEDDED SMART
CAMERAS BY MOBILE AGENTS

M. Bramberger',', B. Rinner', and H. Schwabachl

' Graz University of Technology , ARC seibersdorf research, AUSTRIA

ABSTRACT

This paper presents a dynamic task allocation method
for smart cameras targeting traffic surveillance. Since
our target platforms are distributed embedded systems
with limited resources, the task allocation has to be
light-weight, flexible as well as scalable and has to
support real-time requirements. Therefore, surveillance
tasks are not allocated to smart cameras directly, but to
groups of smart cameras, so catled surveillance clusters.
We formulate the allocation problem as a distributed
constraint satisfaction problem (DCSP) and present a
distributed method for finding feasible allocations.
Finally, a cost function is used to determine the optimal
allocation of tasks. We have realized this dynamic task
allocation using heterogeneous, mobile agents which
utilize their agencies and our embedded software
framework to find the most appropriate mapping of
tasks in a distributed manner. The dynamic task
allocation has been implemented on our smart cameras
(Smartcam) which are comprised of a network
processor and several digital signal processors (DSPs)
and provide a complex software framework.

1. INTRODUCTION

Surveillance systems currently undergo a dramatic shift.
Traditional surveillance systems of the first and second
generation have employed analog CCTV cameras,
which transferred the analog video data to digital base
stations where the video analysis, storage and retrieval
takes place. Current semiconductor technology enables
surveillance systems to leap forward to third generation
systems which employ digital cameras with on-board
video compression and communication capabilities.
Smart cameras (Wolf et. a1 (9), Bramberger et. a1 (2))
even go one step further; they not only capture and
compress the grabbed video stream, but also perform
sophisticated, real-time, on-board video analysis of the
captured scene. Smart cameras help in (i) reducing the
communication bandwidth between camera and base
station, (ii) decentralizing the overall surveillance
system and hence to improve the fault tolerance, as well
as (iii) realizing more surveillance tasks than with
traditional cameras.
Typical tasks to be run in a surveillance system
targeting traffic surveillance include MPEG-4 video
compression, various video analysis algorithms such as

accident detection, wrong-way drivers detection and
stationary vehicle detection. Additionally, traffic
parameters such as average speed, lane occupancy and
vehicle classification are often required. Since
computing power is limited we may not allocate all
tasks to the cameras.

This paper presents a resource-aware dynamic task
allocation system for smart cameras targeting traffic
surveillance. Since our target platforms are distributed
embedded systems with limited resources, the task
allocation has to be light-weight, flexible and scalable
as well as has to support real-time requirements.
Therefore, surveillance tasks are not allocated to smart
cameras directly, but to groups of smart cameras, so
called surveillance clusters. We formulate the allocation
problem as a distributed constraint satisfaction problem
(DCSP) and present a distributed method for finding
feasible allocations. Finally, a cost function is used to
determine the optimal allocation of tasks. We have
realized this dynamic task allocation using
heterogeneous, mobile agents which utilize their
agencies and our embedded software framework to find
the most appropriate mapping of tasks in a distributed
manner

The main contributions of this ongoing research project
include (i) the distributed agent-based approach for
determining all feasible allocations of a DCSP, (i i) the
evaluation of a complex cost function considering the
limited resources of the embedded platform in detail,
(iii) the integration of a mobile agent system in our
embedded software framework. The dynamic task
allocation has been implemented on our smart cameras
(%"Cum - Bramberger et. a1 (3)) which are
comprised of a network processor and several digital
signal processors (DSPs) and provide a complex
software framework.
The remainder of this paper is organized as follows:
Section 1.1 sketches related work. Section 2 briefly
presents hardware and software of our Smartcam.
Section 3 discusses the advantages of grouping smart
cameras to surveillance clusters. Section 4 describes the
DCSP approach and focuses on finding feasible
allocations of tasks and the cost function. Section 5 and
6 present the implementation and the experimental
results, respectively. Section 7 concludes the paper with
a summary and an outlook on future work.

1.1 Related Work
Agents-based load distribution has been an active
research in the last decade. An overview of agent
standards and available platforms is presented in

TMS320C6416

Perdikeas at. al (6). WYA (While You're Away - Suri
et. al (8)) is based on the NOMADS mobile agent
system. It provides dynamic load balancing by mobile
agents, which utilize a central coordinator to move
between workstations. Qin et al (7) identified the
amount UO-traffic as an important issue for dynamic
load balancing beside CPU-load and memory. Chow
and Kwok (4) introduced the affinity of an agent to its
machine and used a credit-based scheme to determine
the agents to be migrated by using a central host station.
Agents used in surveillance systems were proposed by
the MODEST consortium (Abreu et. al (l)), where
mobile agents were used to track vehicles using PC
based platforms.
Distributed constraint satisfaction problems have been
analyzed by Yokoo et. al. (12) for variable-split CSPs.
The presented asynchronous backtracking algorithm
used autonomous agents, however, the high
communication effort between the agents is impractical
for real-time systems.

2. THE SMART CAMERA

Smart cameras are the core components of a 3d
generation surveillance system. These cameras perform
video sensing, high-level video analysis and
compression and transfer the compressed data as well as
the results of the video analysis to a central monitoring
station. The video analysis tasks implemented in the
cameras clearly depend on the overall surveillance
application and may include accident detection, vehicle
tracking and the computation of traffic statistics. Most

i

Figure 1: The hardware architecture of the smart camera

' Communication '

of these tasks, however, require a very high computing
performance on the cameras.

2.1 Hardware Architecture

Our smart camera has been designed as a low-power,
high-performance embedded system. As depicted in
figure 1 , the smart camera consists of three main units.
(1) The sensing unit, (2) the processing unit, and (3) the
communication unit.

A high-dynamic, monochrome CMOS image sensor is
the heart of the sensing unit. It delivers images with
VGA resolution at 25 frames per second via a FIFO
memory to the processing unit. Real-time video
analysis and compression i s performed at the processing
unit which is equipped with up to four digital signal
processors (DSPs) TMS320C6415 from Texas
Instruments. The DSPs deliver an aggregate computing
performance of almost 20 GIPS while keeping the
power consumption low. The DSPs are coupled via a
local PCI bus which serves also as connection to the
network processor (Intel XScale IXP425) in the
communication unit. The communication unit provides
access to the camera's environment. The communication
of the smart camera is basically two-fold. First, the
communication unit manages the internal
communication between either the DSPs and the DSPs
and the network processor. Second, it manages the
external communication, which is usually IP-based.
The XScale processor is operated by Linux due to large
number of available tools and applications available
under this operating system. (3) provides a more
detailed insight into the hard- and software architecture
of the smart camera.

101

(DSP FrQnewak

Figure 2: The DSP Framework

2.2 Software Architecture
The software architecture of our smart camera is
designed for flexibility and reconfigurability. The
software architecture consists of several layers which
can be grouped into: (1) The DSP framework, which is
implemented on the DSPs, and (2) the SmartCam
framework, running on the network processor.

DSP Framework The main purpose of the DSP
framework (cp. figure 2) is (i) the abstraction of
hardware and communication channels, (ii) the support
for dynamic loading and unloading of applications, and
(iii) the management of on-chip and off-chip resources
of the DSP system by utilizing Texas Instruments
Reference Framework S (see Mullanix et. a1 (5)).
SmartCam Framework The SmartCam framework
(cp. figure 3) serves the following purpose: First, it
provides abstraction of the DSPs to ensure platform
independence of the agent-system and application
layers. Second, the application layer uses the provided
communication methods (messaging to the DSPs and
IP-based communication to outer world) to exchange
information, or work as a relay service, respectively.
Finally, the agent-system layer is run on top of Java,
whereas the agents are run as a part of the agent
platform.

3. SURVEILLANCE ARCHITECTURE

The architecture of the surveillance system consists of a
large number of smart cameras deployed alongside
highways or in tunnels. Since these smart cameras have
limited computational resources, it is not possible to run
all required surveillance tasks on a smart camera.
Therefore, physically co-located smart cameras are
combined into logical groups, so called surveillance
clusters. Consequently, sets of surveillance tasks (e.g.

Figure 3: The SmartCam Framework

accident detection, vehicle counting, and vehicle
classification) are then allocated to surveillance clusters.
This is feasible, since events, observed by co-located
cameras are causally associated with each other.
Therefore, it is not important on which smart camera a
surveillance task is allocated, as iong as these
surveillance clusters do not span a too large area.
However, not all surveillance tasks require small
surveillance clusters; classifying and counting of
vehicles, for example, may be spread over a larger area,
while accident or fire detection tasks are usually
allocated to smaller clusters. Therefore, a smart camera
may be a member of several surveillance clusters (cp.
figure 4). The aklocation of surveillance tasks to smart
cameras is done dynamically during runtime by the
presented task allocation system (see section 4), which
is distributed over all smart cameras.

Chsler 1

Figure 4: A tunnel surveillance scenario with three
surveillance clusters

In contrast to the presented surveillance tasks, which
may be allocated to any smart camera i n the
surveillance cluster, there are also several surveillance
tasks which are required to run on a specific smart
camera. These tasks possess an affinity to a scene or a
camera, respectively. Tracking algorithms, for example,
require to be run on a specific camera, which observes
the tracked object. These scene-affine tasks are also

102

contained in a surveillance cluster, however, the task
allocation system should allocate these tasks t o the
required smart cameras. Note that scene-affine tasks
might be allocated to a different camera. In this case,
however, the communication load would significantly
be increased because raw images would have to be
transferred from one camera to another.

4. TASK ALLOCATION

The goal of the task allocation system is find a mapping
of tasks to smart cameras which satisfies all
requirements and is optimal with respect to a specified
metric, i.e. some cost function. Since the surveillance
tasks have firm real-time requirements, the task
allocation system has to take care that no deadlines are
missed due to an overload of a camera or a cameras
subsystem, respectively.
The re-allocation of tasks may be necessary due to
events, raised by hardware or software: (1) Hardware
events usually originate from changed resource
availability due to added or removed cameras, hardware
breakdown, or re-usability of recovered resources. (2)
Software events are caused by changes to resource
requirements due to changes in the task set of the
surveillance cluster, or because of changes in the
quality-of-service level (QoS) of tasks, i.e., due to
detected events in the observed scene.
The allocation of tasks to smart cameras is done in two
steps. (1) In the first step, all feasible allocations of
tasks to smart cameras (allocations where no real-time
requirements are violated) are determined. (2) In the
second step, the optimal allocation of tasks is chosen by
using a cost function.

4.1 Find Feasible Allocations

The determination of feasible allocations of tasks to
smart cameras is a distributed constraint satisfaction
problem (CSP) (12). CSPs are defined by a set of n
variables T={T l,...,Tn), which hold values of a finite
domain D, and a set of & constraints C={C,, ..., Ck/. In
our case, the surveillance tasks to be allocated to the
cameras of the surveillance cluster are the variables, and
the values they hold is the identifier of the allocated
smart camera D=/l , ..., m). Therefore, Ti=d indicates,
that task i is currently allocated to smart camera d.
Equation 1 determines all permutations with repetitions
A, denoted by n,, from the m cameras and n tasks.
The subsets of A are allocations of tasks to cameras,
which have to be checked for feasibility. The constraints
(cp. eq. 4 are formulated using two functions which
determine the resource requirements and availability of
the tasks and the cameras. req(Res, i) determines the
requirements of task i concerning resource Res, while
avail(Res, d) determines the availability of the resource
Res on smart camera d.

~=np,l~)= A { A ~ , . . . , A ~) ; ~ = m n (1)

Ai = [ui, ..., a m) I ai E D (2)
R = {CPU,MEM,DMA) (3)

C=(VA,E A : V d E D : V r E R : V a i E A j :
Vui = d : (Creq(r , i))<avai l (r ,d) } (41

1

Equations 1 to 4 define a feasible allocation, i.e., any
allocation A which does not violate any resource
constraint C. Note that in our implementation we also
considered the DSPs memory hierarchy and several
parameters of the DMA subsystem.

However, this simple approach requires a central host.
A more scalable solution is to distribute the CSP to
several cameras in the surveillance cluster.

The distributed CSP. In order to distribute the
determination of feasible allocations to all smart
cameras, we split the domain D into m sub-domains
DI, ... Jn,, each comprised of a single value D1=E. The set
of tasks Tremains the same, while the complexity of the
constraints is reduced slightly (cp. equation 5) .
To achieve all possible allocations of tasks, we choose
VOci 5 n tasks out of the set of all tasks
VO i i I n : Ai = choose(i, n) , Every set Ai is comprised

of v allocations 4 = [A: ,...,g], each of which

consisting of i tasks 4 = {a, ,..., a i } l Vuv E 7’. All

allocations 4, which meet the constraints (cp. equation
5) for all resources R, are chosen as feasible, partial
allocations.

C = (VA, E A : VA,! E Ai : VO ; E 4 :

Note that the constraints only consider tasks allocated to
a single smart camera, so the CSP is split into m sub-
CSPs, which can be solved in parallel on the m smart
cameras in the surveillance cluster.

Normally, CSPs require that all variables are included in
the solutions of the problem, however, in our case this
rule would imply that only partial allocations are valid,
which include all n tasks of the surveillance cluster. In
order to accept task allocations which do not include all
tasks, the CSP rules have to be weakened. Even the
allocation of no task is a valid allocation, which is
reasonable, if a surveillance cluster contains fewer tasks
than smart cameras.

Merging of Allocations. Finally, m sets of partial task
allocations are available P = (4, ..., Pm};
Pj =(qJ , . . . , P i) . In order to find all feasible task
allocations these partial allocations have to be merged.

Consequently, valid task allocations

concurrently, and
I. do not allocate tasks to more cameras

103

2. include all surveillance tasks.
The merging of partial allocations can be done in
parallel, as long as rule 1 is not violated. However, the
final merging process has to obey rule 2 too.

The combination of the partial allocations finally
provides a set offfeasible allocations F, from which the
most appropriate allocation has to be chosen.

4.2 Find Optimal Allocation

For finding the most appropriate allocation of tasks a
cost-scheme is used. This cost-calculation scheme
includes five cost classes, namely (1) resource costs -
C,, (2) data-transfer costs - CT, (3) migration costs - CM,
(4) affinity costs - CA, and (5) quality-of-service costs -
CQd. These costs are calculated for every task on every
smart camera in the surveillance cluster. Finally, the
overall costs are accumulated as enlisted in the set of
feasible allocations F.

Cost Calculation. To compute the overall cost C,,, of a
surveillance task, the cost values of the five cost classes
are weighted and added:

c~~~ = k ~ * c ~ + k ~ * C ~ + k y * c ~ +
(6)

Resource Cost. Highly-optimized applications for DSP-
based embedded systems typically utilize the memory
hierarchy and on-chip resources such as direct memory
access and timers to exploit the processors performance.
In order to fully exploit the performance capabilities of
a DSP, it is necessary to carefully allocate these limited
resources to applications. In order to guarantee
resources to an application, the DSP framework has to
keep track of the status of these DSP resources.

kA * + kQoS * cQoS

Actually, the system considers the following resources:
(1) CPU load, (2) memory usage (including memory
hierarchy on DSPs), (3) DMA utilization (including
channels, reload-tables, and transfer complete codes),
(4) memory bus utilization, (5) communication ports,

. (6) timers, and (7) interrupts.

CR = p R I *kR, (7)
VRi

where

(8)
Resource Requirements

= Resource Availability
As denoted in equation 8, the resource costs are not only
composed by sufficient availability of resources, but
they are computed as the ratio of resources required to
resources available.

Note the also the utilization of the memory bus is taken
into consideration, since an overload of the memory bus
usually results in violating real-time deadlines.

Datu-Transfer Cost. We have defined two different
types of data transfers: [1) Data entering or leaving the

system will usually be transmitted using a network
interface, while (2) intermediate data transfers operate
internally via PCI bus or directly to memory. To
consider the bandwidth of the used interface, the data-
transfer cost CT is calculated as the amount of
megabytes (MB) transferred, multiplied by a slowness
factor depending on the bandwidth of the connection.

Migration Cost. The migration of tasks between smart
cameras is accounted for by two costs, which are scaled
and added to receive the migration cost CM.

(9) CM = k, * C m + k, * C M f

1. Migration Transfer Cost - C , Data transfer
costs are raised, since the task including the
intermediate results has to be transferred to the
new smart camera. These transfer costs are
calculated similar to the data-transfer costs as
the amount of to be transferred megabytes
(MB) is multiplied by the appropriate slowness
factor.
Migration Idle Cost - C,, In many cases the
restart of a video analysis algorithm after
migration will require a certain amount of time
due to a learning or initialization phase. The
migration idle cost considers the time required
by the algorithm to become fully functional
again. It is set to low values for algorithms
with no or little initialization or leaming phase
like video encoding agents. In contrast, video
analysis algorithms which have to setup
backgrou.nd models or learn a certain behavior
will have a high migration idle cost to assure a
high level of usability as a high number of
migrations would result in many periods of
non-functionality.

2.

Afiniry Cost. The distribution of tasks inside a
surveillance cluster is controlled by two affinity costs,
which are defined by the task designer.

Cluster Affinity. As the overall load of a
surveillance cluster increases, it may not be
possible to run all tasks due to insufficient
computing resources. The cluster affinity
introduces a priority scheme, whereas higher
affinity values denote higher priority.
Therefore tasks with high cluster affinity
values will be allocated to smart cameras more
likely.
Scene Affinity. As mentioned in section 3,
agents may require to process video data from
a special smart camera, Tracking applications,
for example, require to process video frames
which contain the tracked object. Such agents
feature high scene-affinity values, which
increases the probability that the agent will be
executed on the appropriate smart camera.
However, if the agent is run on another smart
camera in the system, the video data from the
required scene has to be forwarded to the
surveillance task.

I.

2.

104

Based on these two affinity values, the affinity costs -
Cluster Affinity Cost CA, and Scene Affinity Cost CAS -
are calculated, whereas the higher cost is selected as the
overall affinity cost.

As higher affinity values denote lower cost, the affinity
costs are normalized to the maximum affinity. If the
cluster or scene affinity is zero, it will not be considered
in the cost calculation. Therefore, if both affinities are
zero, the affinity cost is set to m .

(1 i j

(12)

Maximum Affinity
Cluster Affinity

Maximum Affinity

CA, =

* k L = Scene Affinity
The scaling factor kL will increase the scene affinity cost
be a factor kRp if the agent is not executed on the
required smart camera. Otherwise it will be set to 1. kRp

is called Remote Penalty and specifies the penalty
induced by remote execution of agents featuring scene
affinity.
Qualiry-ofservice Cost The task allocation system
considers all quality-of-service levels, therefore, we
have to provide a possibility to choose which QoS-level
should be used. It is desired to run all tasks with highest
possible quality, therefore this cost adds penalty costs, if
the task should be run with lower QoS-levels. These
penalty costs and the number of QoS-levels are defined
by the task designer.

Since lower QoS-levels lead to lower resource
requirements of tasks, the number of possible task
allocations will rise. Therefore a high number of QoS-
levels yield longer run-times of the task allocation
system.

4.3 RealIocation Scenarios

As mentioned before, two scenarios are possible, where
a reallocation of tasks is necessary. However, we handle
the scenarios differently to improve the performance of
the system.

Increased Load. Increased requirements or decreased
resource availability indicates a higher system load.
Therefore, the number of feasible allocations will
decrease, since less combinations of tasks will satisfy
the constraints of the CSP. Therefore, the value of the
changed resource or availability is updated in the set of
feasible allocations F. Finally, the feasibte allocations
are re-checked and infeasible allocations are removed
from F.
This re-checking process does not require recalculating
all possible allocations, therefore, the time required for
determination of the new allocation is reduced
dramatically.

Reduced Load. In contrast to the upper scenario, the
decrease of requirements or increase of resource
availability can be seen as a reduced load of the system.
Consequently, the number of both, partial and complete,
allocations will increase. Therefore, all feasible
allocations have to be re-computed. This approach leads
to longer execution times, however, as the service
quality will rise by this reallocation, the real-time
deadlines are not as firm as in the upper scenario.
Implementation
For the implementation of our surveillance system we
have chosen to use mobile agent technology. Mobile
agents are most suitable for our system, since they
support mobility, autonomy, and platform
independence.

4.4 Agent System
We have chosen to use the diet-agents (see http://diet-
agents.sourceforge.net) system since it includes all
required features like mobility, autonomy, and platform
independence and is reasonable small, which is
inevitable for embedded systems.
However, extensions to the agent system were necessary
to add the support for the DSPs, and the decentralized
management of the surveillance clusters.
DSP Agencies. Agencies provide the environment for
agents to live in. An extension to standard agencies is
required to support multiple surveillance clusters.
Therefore, a logical grouping of agents within &he
agency (cp. surveillance clusters A, B and x in figure 5)
is desirable. We have implemented a cluster-
information agent (CIA), which hosts local knowledge
of other cameras belonging to the surveillance cluster,
and provides lookup services for agents within the
surveillance cluster.
The iptegration of the DSPs into the agent system is
done by one DSP integration agent (DIA) per DSP in
the system. This DIA is a stationary agent, which
manages message registrations, message dispatching,

\
Diet-Agents

\

I I XScaleNeiwork rocessor

Figure 5: A DSP agency

I05

http://diet

and binary downloads to the DSP. Finally, the System
Information Agent (SA) gathers the system status and
performance data from the DSPs and the network
processor.
Two basic agent types are deployed within the agent
system: (1) Management-oriented Smartcam-agents,
which are not included in the task allocation system, and
(2) DSP-agents, which implement algorithmic
functionality to be executed on a DSP. Since the
implementation of the SmartCam agents is quite
straightforward, only the DSP agents will be discussed
in detail in the next section.

DSP Agents. DSP agents are an enhancement of usual
agents, as they are the base of the task allocation
system. Therefore, DSP agents (depicted as Worker
Agents (WA) in figure 5) include their requirements to
the system and their cost parameters. Additionally, the
cost calculation functionality is added to these agents
(cp. figure 6) . As the computational intensive parts of
these agents are executed on the DSPs, the agents
contain a binary, which is downloaded to the DSP and
dynamically integrated into the system by the DSP
framework. Therefore, the agents maintain
communication channels to the DSP by using the
world's DSP integration agent (DIA).
In case of migration the agent notifies the DSPs task to
stop computation and to transmit the persistent
intermediate results to the agent. After migration the
agent loads the binary to the DSP and transmits the
stored intermediate results to the DSP. This enables the
algorithm to continue computation or to use the
intermediate results as new starting values, respectively.

4.5 Task Allocation System
Determining Partial Allocations. We are using a
backtracking-based algorithm in order to determine the
feasible allocations of tasks to a smart camera. Figure 7
shows two solution trees (containing all solutions) from
a partial CSP. Since the order of the tasks is not
relevant, the redundant edges (dashed) (figure 7(a)) are
removed (figure 7(b)). In order to improve performance,

1 Type: DSP Agent I
I Functionality I Identification published to Agency 1

-- .-_. _ . _ _ _ _ ~
I Requirements

Memory (Onthip I Off-chip)
On-chip Resources (DMA. TCC, INT)

Mission

DSP Interface , DSP mission (binary)

I DSP Intermediate Data I
Figure 6: A DSP agent

Backtracking means, that a certain sub-tree is not
further evaluated, as soon as an infeasible allocation is
found. Supposing AB is not a feasible solution, ABC
would not be tested for feasibility.

Merging of partial allocations. As mentioned, the
constraint-satisfaction problem is solved on all smart
cameras in parallel. Consequently, the determined
partial allocations have to be merged in order to receive
a feasible mapping. Therefore, allocation-merging
agents (AMA) travel from camera to camera and merge
the partial solutions into a global one. Since the merging
is also done in parallel, agents are best suitable for
merging, due to three features of agents: (a)
communication to gather all required information, (b)
mobility to migrate between the cameras, and (c)
autonomous behavior to prevent a camera of being the
control host.
During merging, trees (as depicted in figure 7(b)) are
merged left to right. The merging also makes use of a
backtracking algorithm, since the merging of a sub-tree

0 n

A B C A B C

AB AC 6C AB AC BC

ABC AEC

(4 (b)
Figure 7: Possible Partial Allocations

is stopped, as soon as its root is not a feasible allocation.
The number of feasible allocations after merging rises
significantly.

Reconfiguring a surveillance cluster. This section
outlines the actions taken during a reconfiguration of a
surveillance cluster. Since our goal is a flexible, scalable
and distributed implementation we have chosen to
realize the task allocation system using mobile agents.
A new allocation is always initiated by a smart camera,
either due to a hardware event (changes of availability)
or a software event (changes of requirements). This
camera initiates the reallocation by broadcasting the
request-far-requirements to all worker agents within the
surveillance cluster. After the agents receive this
request, they broadcast their requirements to all smart
cameras in their surveillance cluster. Additionally, all
agents calculate their costs for every smart camera and
transmit the cost values to the initiating camera. The
smart cameras determine in parallel the parrial
allocations, which have to be merged in the next step.
All smart cameras, which are equipped with more DSPs,
have to merge the partial allocations for the DSPs first.
In order to further merge the partial allocations, the half
of the smart cameras (determined during the creation of
the surveillance cluster) create allocation-merging

agents (AMA), which pick up the merged partial
allocation and migrate to predetermined smart cameras
(which comprise the other half of the surveillance
cluster), where they grab the local partial allocation, and
merge both, the local and the included partial
allocations, After the merging process, the agents
migrate to the next smart camera, as defined by the
fixed itinerary, and merge their partial allocation with
the partial allocation provided by another AMA. This
way, the partial allocations are merged to a final
allocation, whereas the last allocation merge is done on
the initiating smart camera. The merging process
corresponds to a binary tree, therefore Id[m) (where m is
the number of smart cameras) sequential merging steps
have to be done.
Finally, the initiating smart camera has to determine the
most appropriate task allocation, therefore, the costs, as
submitted by the agents, are accumulated for every task
allocation. Consequently, the solution with the lowest
cost is selected as the new task allocation. Since the
selection of the most appropriate task allocation is based
on the costs of the agents, the desired optimization goal
like the number of migrations, degradation of quality-
of-service, or balanced use of resources can be achieved
by adapting the scaling factors of the cost classes. After
this process, the new task allocation is broadcast to all
smart cameras and agents, which then update their QoS
level, or migrate to another smart camera. To enable the
fast reconfiguration by removing feasible task
allocations, also the set of feasible task allocations is
broadcast to all smart cameras in the surveillance cluster
after the system has settted.

4.6 Hardware Setup

To verify, test and evaluate the presented agent system,
we have used two hardware platforms. A prototype of
our smart camera and PCs equipped with DSP boards.
The prototype of our smart camera consists of an Intel
lXDP425 Development Board, which is equipped with
an Intel IXP425 network processor running at 533 MHz.
The board is operated with Linux Kernel 2.6.8.1, which
allows the usage of standard software packages. Image
acquisition is done using the National Semiconductor
LM9618 monochrome CMOS image sensor, which is
connected to one of the DSP boards. The prototype
supports up to four DSP boards, however, our prototype
is equipped with two Network Video Development Kits
(NVDK) from ATEME. Each board is comprised of a
TMS320C6416 DSP from Texas Instruments, running
at 600 MHz, with a total of 264 MB of on-board
memory.
Due to the lack of additional smart camera prototypes,
we are using two PCs, which are equipped with one
Network Video Development Kit.

Figure 8: The prototype of the smart camera

We have used four different agent types for our
experiments: (I) A MPEG-4 video compression agent,
(2) a stationary-vehicle detection (StVD) agent, (3) a
vehicle count agent, ana (4) a vehicle classifier agent.
The MPEG-4 agent and the stationary-vehicle detection
agent (2) are well tested and evaluated agents, however,
the vehicle count and vehicle classify agents only
simulated real behavior. A total of six agents have been
instantiated from these four classes, where we used
three MPEG-agents (as every camera has to transmit a
live video stream), and one agent of every other agent-
type,

Table 1 enlists the execution times of the two stages of
the task allocation. On the PCs we have used two Java
virtual-machines: (a) Suns JDK 1.4.2, which uses ajust-
in-time (JIT) compiler, and therefore reaches better
performance values, while (b) the JamVM virtual
machine (see http://jaamvm.sourceforge.net) is designed
as an interpreter and therefore requires higher execution
times. Lines la, 2a, and 3a represent the execution times
if all six tasks had to be considered. As line 2a shows,
that the merging process, resulting with a total of 2880
feasible task alIocations, requires the most amount of
time, therefore we have implemented the core
calculation functions of steps I and 2 also in c++ to
achieve acceptable performance. In a second scenario
we have removed the MPEG-4 encoding agents from
the surveillance cluster, and allocated them statically to
the cameras. The results of the dynamic allocation of the
resulting three agents are enlisted in lines lb, 2b, and 3b
in table 1.

Finally, we have also evaluated the performance of the
task allocation system at increasing system load. Line 4
enlists the times required to check all 2880 allocations
for feasibility. These results show, that the system
responds in a timely manner to increased system load.

6. CONCLUSION
5. EXPERIMENTS

In order to verify and evaluate the presented task
allocation system, we created a surveillance cluster,
comprised of the smart camera prototype and two PCs.

In this paper we have presented a resource-aware
dynamic task-allocation system targeting embedded
smart cameras. Surveillance tasks are not allocated to

107

http://jaamvm.sourceforge.net

1 Case PC PC

Table 1: Running times of task allocation

the smart cameras directly, but to groups of smart
cameras, surveillance clusters, within the tasks are
allocated by the smart cameras in a distributed manner.
We show that the task allocation can be formulated as a
distributed constraint satisfaction problem (DCSP) and
present a solution for this DCSP. Therefore we combine
the results of the DCSP with a cost function to retrieve
the optimal allocation of tasks. Finally, we discuss the
mobile-agent based implementatian of the system and
present results achieved by evaluation of the
implemented system,

Future work includes (1) the further evaluation of the
system, using more complex scenarios, (2) the tighter
combination of finding feasible allocations and
calculating the costs for an allocation in order to delete
expensive allocations at an early stage, (3) the test and
evaluation of the system in real-world scenarios, and (4)
the integration of learning agents into surveillance
clusters, which influence the behavior of the system by
adapting the cos? function based on previous behavior.

REFERENCES

B. Abreu, L. Botelho, A. Cavallaro, D.
Douxchamps, T. Ebrahimi, P. Figueiredo, B. Macq,
E. Mory, L. Nunes, J. Orri, M. J. Trigueiros, and A.
Violante. 2000. Video-Based Multi-Agent Traffic
Surveillance System. Proceedings of the IEEE
Intelligent Vehicles Conference.

M. Bramberger, J. Brunner, B. Rinner, and H.
Schwabach. 2004. Real-Time Video Analysis bn an
Embedded Smart Camera for Traffic Surveillance.
Proceedings of the IEEE Real-Time and Embedded
Technology and A~~l ica t ions Symposium, 174-1 8 1

M. Bramberger, B. Rinner, and H. Schwabach.
2004. An Embedded Smart Camera on a Scalable
Heterogeneous Multi-DSP System. Proceedings of
the Eurowean DSP Education and Research
Symclosium (EDERS 2004).

K.-P. Chow and Y.-K. Kwok. 2002. On Load
Balancing for Distributed Multiagent Computing.

5 .

6.

7.

8.

9.

10.

IEEE Transactions on Parallel and Distributed
Svstems. 13(81.787-801.

T. Mullanix, D. Magdic, V. Wan, B. Lee, B.
Cruickshank, A. Campbell, and Y. DeGraw. 2003.
“Reference Frameworks for eXpressDSP Software:
RF5, An Extensive, High-Density System”.
Technical Report: SPRA795A, Texas Instruments.

M. K. Perdikeas, P. G. Chatzipapadopoulos, I. S.
Venieris, and G. Marino. 1999. Mobile agent
standards and available platforms. Elsevier
Computer Networks. (3 11.

X. Qin, Q. Zhu, and D. Swanson. 2003. A Dynamic
Load Balancing Scheme for I/O-Intensive
Applications in Distributed Systems. Proceedinees
of the IEEE Intl. Conference on Parallel Processing
Workshops.

N. Sun, P. Groth, and J. Bradshaw. 2001. While
You’re Away: A System for Load-Balancing and
Resource Sharing based on Mobile Agents.
Proceedings of the IEEWACM Intl. Svmposium on
Cluster Computing and the Grid. 470-473.

W. Wolf, B. Ozer, and T. Lv. 2002. Smart Cameras
as Embedded Systems. IEEE Computer, 35c91.48-
53.

M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara.
1998. The distributed constraint satisfaction
problem: formalization and algorithms. IEEE
Transactions on Knowledge and Data Engineering,
1QcI).

108

