
Dynamic Task Allocation in Clusters of Embedded Smart Cameras
M. Bramberger , B. Rinner

{ bramberger, rinner} @iti.tugraz.at
Institute for Technical Informatics

Graz University of Technology
Graz, AUSTRIA

H. Schwabach
helmut.schwabach@arcs.ac.at

ARC seibersdorf research
Seibersdorf, AUSTRIA

Abstract – This paper presents a dynamic task allocation
method for smart cameras targeting traffic surveillance. Since
our target platforms are distr ibuted embedded systems with
limited resources, the task allocation has to be light-weight,
flexible as well as scalable and has to support real-time
requirements. Therefore, surveillance tasks are not allocated
to smart cameras directly, but to groups of smart cameras, so
called surveillance clusters. We formulate the allocation
problem as a distr ibuted constraint satisfaction problem
(DCSP) and present a distr ibuted method for finding feasible
allocations. Finally, a cost function is used to determine the
optimal allocation of tasks. We have realized this dynamic
task allocation using heterogeneous, mobile agents which
utilize their agencies and our embedded software framework
to find the most appropr iate mapping of tasks in a distr ibuted
manner. The dynamic task allocation has been implemented
on our smart cameras (SmartCam) which are compr ised of a
network processor and several digital signal processors
(DSPs) and provide a complex software framework.

Kurzfassung – Diese Arbeit präsentier t eine Methodik zur
dynamischen Verteilung von Aufgaben in einem Verkehrs-
überwachungssystem, welches aus intelligenten Kameras
besteht. Da wir uns hier mit ver teilten, eingebetteten
Systemen mit eingeschränkten Ressourcen beschäftigen, muß
diese Aufgabenverteilung schlank, flexibel und skalierbar
sein. Das System muß außerdem Echtzeitanforderungen
genügen, sowohl die Ver teilung der Aufgaben, wie die
Aufgaben selbst. Um eine effektive Verteilung von Aufgaben
gewähr leisten zu können, werden Aufgaben nicht einer
Kamera dirket zugeordnet, sondern einer Gruppe von
intelligenten Kamera, einem sogenannten Überwachungs-
Cluster (Surveillance Cluster). Wir zeigen ausserdem, dass die
Generalisierung dieses Problems ein ver teiltes constraint-
satisfaction-problem (CSP) ist, welches wir mittels einer
ver teilten Methodik lösen, um alle plausiblen Verteilungen
von Aufgaben zu untersuchen. Zur Bewertung der einzelnen
Verteilungen verwenden wir eine Kostenfunktion um die
optimale Lösung des Problems zu finden.
Realisier t wurde das System mittels heterogenen, mobilen
Agenten, welche unser Software-Framework nutzen, um die
optimale Zuordnung der Aufgaben in ver teilter Ar t und
Weise zu finden. Dieses System haben wir auf Prototypen
unserer intelligenten Kamera (SmartCam) implementier t,
welche aus einem Netzwerkprozessor und einer var iablen
Anzahl von digitalen Signalprozessoren besteht.

Keywords: Real-time mapping; agent system; embedded
system; real-time.

I. INTRODUCTION

Surveillance systems currently undergo a dramatic shift.
Traditional surveillance systems of the first and second
generation have employed analog CCTV cameras, which
transferred the analog video data to digital base stations

where the video analysis, storage and retrieval takes place.
Current semiconductor technology enables surveillance
systems to leap forward to third generation systems which
employ digital cameras with on-board video compression
and communication capabilities. Smart cameras [9] [2]
even go one step further; they not only capture and
compress the grabbed video stream, but also perform
sophisticated, real-time, on-board video analysis of the
captured scene. Smart cameras help in (i) reducing the
communication bandwidth between camera and base
station, (ii) decentralizing the overall surveillance system
and hence to improve the fault tolerance, as well as (iii)
realizing more surveillance tasks than with traditional
cameras.

Typical tasks to be run in a surveillance system
targeting traffic surveillance include MPEG-4 video
compression, various video analysis algorithms such as
accident detection, wrong-way drivers detection and
stationary vehicle detection. Additionally, traffic
parameters such as average speed, lane occupancy and
vehicle classification are often required. Since computing
power is limited we may not allocate all tasks to the
cameras.

This paper presents a resource-aware dynamic task
allocation system for smart cameras targeting traffic
surveillance. Since our target platforms are distributed
embedded systems with limited resources, the task
allocation has to be light-weight, flexible and scalable as
well as has to support real-time requirements. Therefore,
surveillance tasks are not allocated to smart cameras
directly, but to groups of smart cameras, so called
surveillance clusters. We formulate the allocation problem
as a distributed constraint satisfaction problem (DCSP) and
present a distributed method for finding feasible
allocations. Finally, a cost function is used to determine the
optimal allocation of tasks. We have realized this dynamic
task allocation using heterogeneous, mobile agents which
utilize their agencies and our embedded software
framework to find the most appropriate mapping of tasks in
a distributed manner The main contributions of this
ongoing research project include (i) the distributed agent-
based approach for determining all feasible allocations of a
DCSP, (ii) the evaluation of a complex cost function
considering the limited resources of the embedded platform
in detail, (iii) the integration of a mobile agent system in
our embedded software framework. The dynamic task
allocation has been implemented on our smart cameras
(SmartCam [3]) which are comprised of a network

processor and several digital signal processors (DSPs) and
provide a complex software framework. The remainder of
this paper is organized as follows: Section 1.1 sketches
related work. Section 2 briefly presents hardware and
software of our SmartCam. Section 3 discusses the
advantages of grouping smart cameras to surveillance
clusters. Section 4 describes the DCSP approach and
focuses on finding feasible allocations of tasks and the cost
function. Section 5 and 6 present the implementation and
the experimental results, respectively. Section 7 concludes
the paper with a summary and an outlook on future work.

A. Related Work

Agents-based load distribution has been an active
research in the last decade. An overview of agent standards
and available platforms is presented in [6]. WYA (While
You’re Away) [8] is based on the NOMADS mobile agent
system. It provides dynamic load balancing by mobile
agents, which utilize a central coordinator to move between
workstations. Qin et al [7] identified the amount I/O-traffic
as an important issue for dynamic load balancing beside
CPU-load and memory. Chow and Kwok [4] introduced
the affinity of an agent to its machine and used a credit-
based scheme to determine the agents to be migrated by
using a central host station. Agents used in surveillance
systems were proposed by the MODEST consortium [1],
where mobile agents were used to track vehicles using PC
based platforms. Distributed constraint satisfaction
problems have been analyzed by Yokoo et al. in [10] for
variablesplit CSPs. The presented asynchronous
backtracking algorithm used autonomous agents, however,
the high communication effort between the agents is
impractical for real-time systems.

II. THE SMART CAMERA

Smart cameras are the core components of a 3rd
generation surveillance system. These cameras perform
video sensing, high-level video analysis and compression
and transfer the compressed data as well as the results of
the video analysis to a central monitoring station. The
video analysis tasks implemented in the cameras clearly
depend on the overall surveillance application and may
include accident detection, vehicle tracking and the
computation of traffic statistics. Most of these tasks,
however, require a very high computing performance on
the cameras.

A. Hardware Architecture

Our smart camera has been designed as a low-power,
high-performance embedded system. As depicted in Figure
1, the smart camera consists of three main units. (1) The
sensing unit, (2) the processing unit, and (3) the
communication unit. A high-dynamic, monochrome CMOS
image sensor is the heart of the sensing unit. It delivers
images with VGA resolution at 25 frames per second via a
FIFO memory to the processing unit. Real-time video
analysis and compression is performed at the processing
unit which is equipped with up to four digital signal
processors (DSPs) TMS320C6415 from Texas
Instruments. The DSPs deliver an aggregate computing
performance of almost 20 GIPS while keeping the power

consumption low. The DSPs are coupled via a local PCI
bus which serves also as connection to the network
processor (Intel XScale IXP425) in the communication
unit. The communication unit provides access to the
camera’s environment. The communication of the smart
camera is basically two-fold. First, the communication unit
manages the internal communication between either the
DSPs and the DSPs and the network processor. Second, it
manages the external communication, which is usually IP-
based. The XScale processor is operated by Linux due to
large number of available tools and applications available
under this operating system. [3] provides a more detailed
insight into the hard- and software architecture of the smart
camera.

B. Software Architecture

The software architecture of our smart camera is
designed for flexibility and reconfigurability. The software
architecture consists of several layers which can be
grouped into: (1) The DSP framework, which is
implemented on the DSPs, and (2) the SmartCam
framework, running on the network processor. DSP
Framework The main purpose of the DSP is (i) the
abstraction of hardware and communication channels, (ii)
the support for dynamic loading and unloading of
applications, and (iii) the management of on-chip and off-
chip resources of the DSP system by utilizing Texas
Instruments Reference Framework 5 [5]. SmartCam
Framework The SmartCam framework (cp. figure 3) serves
the following purpose: First, it provides abstraction of the
DSPs to ensure platform independence of the agent-system
and application layers. Second, the application layer uses
the provided communication methods (messaging to the
DSPs and IP-based communication to outer world) to
exchange information, or work as a relay service,
respectively. Finally, the agent-system layer is run on top
of Java, whereas the agents are run as a part of the agent
platform.

Memory

Memory

Ethernet WLAN

Serial GPRS

Processing Communication

XScale
IXP425

InterfacesDSP
TMS320C6416

CMOS-Sensor

In
 t

e
rf

a
 c

 e

Video Interface

(Infrared -)
Flash

PTZ / Dome
Interface

PCI

Ir
is

.

.

.

DSP
TMS320C6416

Figure 1: The architecture of the smart camera

III. SURVEILLANCE SYSTEM ARCHITECTURE

The architecture of the surveillance system consists of a
large number of smart cameras deployed alongside
highways or in tunnels. Since these smart cameras have
limited computational resources, it is not possible to run all
required surveillance tasks on a smart camera. Therefore,
physically co-located smart cameras are combined into
logical groups, so called surveillance clusters.
Consequently, sets of surveillance tasks (e.g. accident
detection, vehicle counting, vehicle classification) are then
allocated to surveillance clusters. This is feasible, since
events, observed by co-located cameras are causally
associated with each other. Therefore, it is not important on
which smart camera a surveillance task is allocated, as long
as these surveillance clusters do not span a too large area.
Not all surveillance tasks require small surveillance
clusters; classifying and counting of vehicles, for example,
may be spread over a larger area, while accident or fire
detection tasks are usually allocated to smaller clusters.
Therefore, a smart camera may be a member of several
surveillance clusters (cp. Figure 2). The allocation of
surveillance tasks to smart cameras is done dynamically
during runtime by the presented task allocation system (see
section 4), which is distributed over all smart cameras.

In contrast to the presented surveillance tasks, which
may be allocated to any smart camera in the surveillance
cluster, there are also several surveillance tasks which are
required to run on a specific smart camera. These tasks
possess an affinity to a scene or a camera, respectively.
Tracking algorithms, for example, require to be run on a
specific camera, which observes the tracked object. These
scene-affine tasks are also contained in a surveillance
cluster, however, the task allocation system should allocate
these tasks to the required smart cameras. Note that scene-
affine tasks might be allocated to a different camera. In this
case, however, the communication load would significantly
be increased because raw images would have to be
transferred from one camera to another.

IV. TASK ALLOCATION

The goal of the task allocation system is to find a
mapping of tasks to smart cameras which satisfies all
requirements and is optimal with respect to a specified
metric, i.e., some cost function. Since the surveillance tasks
have firm real-time requirements, the task allocation system
has to take care that no deadlines are missed due to an
overload of a camera or a camera’s subsystem,

respectively. The re-allocation of tasks may be necessary
due to events, raised by hardware or software: (1)
Hardware events usually originate from changed resource
availability due to added or removed cameras, hardware
breakdown, or re-usability of recovered resources. (2)
Software events are caused by changes in resource
requirements due to changes in the task set of the
surveillance cluster, or because of changes in the quality-
of-service level (QoS) of tasks, i.e., due to detected events
in the observed scene. The allocation of tasks to smart
cameras is done in two steps. (1) In the first step, all
feasible allocations of tasks to smart cameras (allocations
where all real-time requirements are satisfied) are
determined. (2) In the second step, the optimal allocation
of tasks is chosen by using a cost function.

A. Find Feasible Allocations

The determination of feasible allocation of tasks to
smart cameras is a distributed constraint satisfaction
problem (CSP) [10]. CSPs are defined by a set of variables
T={T1,…,Tn}, which hold values of a finite domain D, and
a set of k constraints C={C1,…,Ck}. In our case, the
surveillance tasks to allocated to the cameras of the
surveillance cluster are the variables T, and the stored value
is the identifier of the hosting smart camera. The domain is
defined as D={1,…,m}, therefore, Ti=j indicates the
allocation of task i to smart camera j. A feasible allocation
of tasks to cameras means, that all resource requirements
can be satisfied, since an overload of even a single resource
would lead to a violation of real-time deadlines. In order to
formulte the constraints, two functions which determine the
resource requirements of the tasks and the resource
availability on the smart cameras are defined. Therefore,
req(Res, i) determines the requirements to resource Res
(where },,,{Re IRQDMAMemCPUs∈)of task i,

while the availability of resource Res on smart camera j is
determined by avail(Res, j). The feasible allocations of
tasks are all combinations of tasks, where (i) all resource
requirements of tasks are met, while (2) no resource on any
smart camera is overloaded, and (3) all tasks are allocated
to a smart camera.

In order to distribute the determination of feasible
allocations to all smart cameras, the domain D is split into
m sub-domains D1,…,Dm, each comprised of a single value
Dl=l. This way, each smart camera determines all feasible
allocations of tasks on itself, which is done in parallel on
the smart cameras. Finally, all feasible allocations are
merged into a set of feasible allocations, which (1) include
all required tasks, and (2) do not allocate a task to two smar
cameras concurrently.

B. Find Optimal Allocation

From the set of feasible allocations the optimal
allocation concerning (i) the number of migrations, (ii) the
amount of communication between the cameras, and (iii)
the quality-of-service has to be found. Therefore, we use a
cost function, which takes (1) resource cost, (2) data-
transfer cost, (3) migration cost, (4) affinity cost, and (5)
quality-of-service cost into account. Consequently, we
calculate the oveall cost for each feasible allocation and

���
�� �� �� ��

����	
���

����	
��

����	
���

Figure 2: A surveillance scene with tree clusters

choose the one with the lowest cost as new allocation of
tasks. Note that the weight of each cost can be scaled,
therefore, it is possible to set an emphasis on a certain cost
during optimization.

C. Reallocation Scenarios

As mentioned before, two scenarios are possible, where
a reallocation of tasks is necessary. However, we handle
the scenarios differently to improve the performance of the
system.

Increased Requirements / Decreased Resource Availability
Increased requirements or decreased resource

availability indicates a higher system load. Therefore, the
number of feasible allocations will decrease, since less
combinations of tasks will satisfy the constraints of the
CSP. Therefore, the value of the changed resource or
availability is updated in the set of feasible allocations F.
Finally, the feasible allocations are re-checked and
infeasible allocations are removed from F.

This re-checking process does not require to recalculate
all possible allocations, therefore, the time required for
determination of the new allocation is reduced
dramatically.

Decreased Requirements / Increased Resource Availability
In contrast to the upper scenario, the decrease of

requirements or increase of resource availability can be
seen as a reduced load of the system. Consequently, the
number of both, partial and complete, allocations will
increase. Therefore, all feasible allocations have to be re-
computed. This approach leads to longer execution times,
however, as the service quality will rise by this
reallocation, the real-time deadlines are not as firm as in
the upper scenario.

V. IMPLEMENTATION

For the implementation of our surveillance system we
have chosen to use mobile agent technology. Mobile agents
are most suitable for our system, since they support
mobility, autonomy, and platform independence.

A. Agent System

We have chosen to use the diet-agents (see
http://diet-agents.sf.net) system since it includes all
required features like mobility, autonomy, and platform
independence and is reasonable small, which is inevitable
for embedded systems. However, extensions to the agent
system were necessary to add the support for the DSPs, and
the decentralized management of the surveillance clusters.

DSP Agencies
Agencies provide the environment for agents to live in.

An extension to standard agencies is required to support
multiple surveillance clusters. Therefore, a logical
grouping of agents within the agency (cp. surveillance
clusters A, B and x in Figure 3) is desirable. We have
implemented a cluster-information agent (CIA), which
hosts local knowledge of other cameras belonging to the

surveillance cluster, and provides lookup services for
agents within the surveillance cluster.

The integration of the DSPs into the agent system is
done by one DSP integration agent (DIA) per DSP in the
system. This DIA is a stationary agent, which manages
message registrations, message dispatching, and binary
downloads to the DSP.

Two basic agent types are deployed within the agent
system: (1) Management-oriented SmartCamagents, which
are not included in the task allocation system, and (2) DSP-
agents, which implement algorithmic functionality to be
executed on a DSP. Since the implementation of the
SmartCam agents is quite straightforward, only the DSP
agents will be discussed in detail in the next section.

DSP Agents
DSP agents are an enhancement of usual agents, as they

are the base of the task allocation system. Therefore, DSP
agents include their requirements to the system and their
cost parameters. Additionally, the cost calculation
functionality is added to these agents(cp. Figure 4). As the
computational intensive parts of these agents are executed
on the DSPs, the agents contain a binary, which is
downloaded to the DSP and dynamically integrated into the
system by the DSP framework. Therefore, the agents
maintains communication channels to the DSP by using the
world’s DSP integration agent (DIA). In case of migration
the agent notifies the DSPs task to stop computation and to
transmit the persistent intermediate results to the agent.
After migration the agent loads the binary to the DSP and
transmits the stored intermediate results to the DSP. This

Figure 3: The DSP Agency

enables the algorithm to continue computation or to use the
intermediate results as new starting values, respectively.

B. Task Allocation

This section outlines the actions taken during a
reconfiguration of a surveillance cluster. Since our goal is a
flexible, scalable and distributed implementation we have
chosen to realize the task allocation system using mobile
agents.

A new allocation is always initiated by a smart camera,
either due to a hardware event (changes of availability) or a
software event (changes of requirements). This camera
initiates the reallocation by broadcasting the request-for-
requirements to all agents, that encapsulate the surveillance
tasks, within the surveillance cluster. After the agents
receive this request, they broadcast their requirements to all
smart cameras in their surveillance cluster. Additionally, all
agents calculate their costs for every smart camera and
transmit the cost values to the initiating camera. The smart
cameras determine in parallel the partial allocations, which
have to be merged in the next step. As the smart cameras
are comprised of more DSPs, the partial allocations for the
DSPs are merged. To further merge the partial allocations,
half of the smart cameras (determined during the creation
of the surveillance cluster) create allocationmerging agents
(AMA), which pick up the merged partial allocation and
migrate to predetermined smart cameras (which comprise
the other half of the surveillance cluster), where they grab
the partial allocation, and merge both, the local and the
included partial allocations. After the merging process, the
agents migrate to the next smart camera, as defined by the
fixed itinerary, and merge their partial allocation with the
partial allocation provided by another AMA. This way the
partial allocations are merged to a final allocation, whereas
the last allocation merge is done on the initiating smart
camera. The merging process corresponds to a binary tree,
therefore ld(m) (where m is the number of smart cameras)
sequential steps have to be done.

The initiating smart camera has to determine the most
appropriate task allocation, therefore, the costs, as
submitted by the agents, are accumulated for every task
allocation. Consequently, the task allocation with the
lowest cost is selected as the new task allocation. Since the
selection of the most appropriate task allocation is based on
the costs of the agents, the desired optimization goal like
the number of migrations, degradation of quality-of-
service, or balanced use of resources can be achieved by
adapting the scaling factors of the cost classes. Finally, the

new task allocation is broadcast to all smart cameras and
agents, which may update their QoS level, or migrate to
another smart camera then. To enable the fast
reconfiguration by removing feasible task allocations, also
the set of feasible task allocations is broadcast to all smart
cameras in the surveillance cluster after the system has
settled.

C. Harware Setup

To verify, test and evaluate the presented agent system,
we have used two hardware platforms. A prototype of our
smart camera and PCs equipped with DSP boards. The
prototype of our smart camera consists of an Intel
IXDP425 Development Board, which is equipped with an
Intel IXP425 network processor running at 533 MHz. This
processor features onchip Ethernet MACs, serial
communication ports and a PCI host controller. The board
is operated with Linux Kernel 2.6.8.1, which allows the
usage of standard software packages, and enables
interoperability with PC-based Linux systems. To enable
the interaction with the DSPs, the SmartCam framework is
run on top of Linux. The board supports up to four DSP
boards, however, our prototype is equipped with two
Network Video Development Kits (NVDK) from ATEME.
Each board is comprised of a TMS320C6416 DSP from
Texas Instruments, running at 600 MHz, with a total of 264
MB of on-board memory. Image acquisition is done using
the National Semiconductor LM9618 monochrome CMOS
image sensor, which is connected to one of the DSP
boards.

Due to the lack of additional smart camera prototypes,
we are using two Pentium-III personal computers (PCs)
running at 1 GHz, which are equipped with one Network
Video Development Kit (NVDK) from ATEME. We are
using the analog video inputs from the DSP card to grab
the required video data. These video inputs are fed by
analog cameras or VCRs.

VI. EXPERIMENTS

In order to verify and evaluate the presented task
allocation system, we created a surveillance cluster,
comprised of the smart camera prototype and two PCs. We
have used four different agent types for our experiments:
(1) A MPEG-4 video compression agent, (2) a stationary-
vehicle detection (StVD) agent, (3) a vehicle count agent,
and (4) a vehicle classifier agent. The MPEG-4 agent and
the stationary-vehicle detection agent [2] are well tested

Figure 4: A DSP Agent

Figure 5: The prototype of the smart camera

and evaluated agents, however, the vehicle count and
vehicle classify agents only simulated real behavior. A total

of six agents have been instantiated from these four
classes, where we used three MPEG-agents (as every
camera has to

transmit a live video stream), and one agent of every
other agent-type.

Table 1 enlists the execution times of the two stages of
the task allocation. On the PCs we have used two Java
virtual-machines: (a) Sun’s JDK 1.4.2, which uses a just-in-
time (JIT) compiler, and therefore reaches better
performance values, while (b) the JamVM virtual machine2
is designed as an interpreter and therefore requires higher
execution times. Lines 1a, 2a, and 3a represent the
execution times if all six tasks had to be considered. As
line 2a shows, that the merging process, resulting with a
total of 2880 feasible task allocations, requires the most
amount of time, therefore we have implemented the core
calculation functions of steps 1 and 2 also in C++ to
achieve acceptable performance. In a second scenario we
have removed the MPEG-4 encoding agents from the
surveillance cluster, and allocated them statically to the
cameras. The results of the dynamic allocation of the
resulting three agents is enlisted in lines 1b, 2b, and 3b in
table 1.

Finally, we have also evaluated the performance of the
task allocation system at increasing system load. Line 4
enlists the times required to check all 2880 allocations for
feasibility. These results show, that the system responds in
a timely manner to increased system load.

VII. CONCLUSION

In this paper we have presented a resource-aware
dynamic task-allocation system targeting embedded smart
cameras. Surveillance tasks are not allocated to the smart
cameras directly, but to groups of smart cameras,
surveillance clusters, within the tasks are allocated by the
smart cameras in a distributed manner. We show that the
task allocation can be formulated as a distributed constraint
satisfaction problem (DCSP) and present a solution for this
DCSP. Therefore we combine the results of the DCSP with
a cost function to retrieve the optimal allocation of tasks.
Finally, we discuss the mobile-agent based implementation
of the system and present results achieved by evaluation of
the implemented system.

Future work includes (1) the further evaluation of the
system, using more complex scenarios, (2) the tighter
combination of finding feasible allocations and calculating

the costs for an allocation in order to delete expensive
allocations at an early stage, (3) the test and evaluation of
the system in real-world scenarios, and (4) the integration
of learning agents into surveillance clusters, which
influence the behavior of the system by adapting the cost
function based on previous behavior, events, and actions.

VIII. REFERENCES

 [1] B. Abreu, L. Botelho, A. Cavallaro, D. Douxchamps, T.
Ebrahimi, P. Figueiredo, B. Macq, B. Mory, L. Nunes, J.
Orri, M. J. Trigueiros, and A. Violante. Video-Based Multi-
Agent Surveillance System. In Proceedings of the 2000
Intelligent Vehicles Conference, Oct 2000.

 [2] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach.
Real-Time Video Analysis on an Embedded Smart Camera
for Traffic Surveillance. In Proceedings of the 10th IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 174–181, 2004.

 [3] M. Bramberger, B. Rinner, and H. Schwabach. An
Embedded Smart Camera on a Scalable Heterogeneous
Multi-DSP System. In Proceedings of the European DSP
Education and Research Symposium (EDERS 2004), Nov
2004.

 [4] K.-P. Chow and Y.-K. Kwok. On Load Balancing for
Distributed Multiagent Computing. IEEE Transactions on
Parallel and Distributed Systems, 13(8):787–801, Aug
2002.

 [5] T. Mullanix, D. Magdic, V. Wan, B. Lee, B. Cruickshank,
A. Campbell, and Y. DeGraw. Reference Frameworks for
eXpressDSP Software: RF5, An Extensive, High-Density
System. Technical Report SPRA795A, Texas Instruments,
April 2003.

 [6] M. K. Perdikeas, F. G. Chatzipapadopoulos, I. S. Venieris,
and G. Marino. Mobile agent standards and available
platforms. Elsevier Computer Networks, (31), 1999.

 [7] X. Qin, Q. Zhu, and D. Swanson. A Dynamic Load
Balancing Scheme for I/O-Intensive Applications in
Distributed Systems. In Proceedinges of the 2003
International Conference on Parallel Processing
Workshops. IEEE, 2003.

 [8] N. Suri, P. Groth, and J. Bradshaw. While You’ re Away: A
System for Load-Balancing and Resource Sharing based on
Mobile Agents. In Proceedings of the First
IEEE/ACMInternational Symposium on Cluster Computing
and the Grid, pages 470–473, 2001.

 [9] W. Wolf, B. Ozer, and T. Lv. Smart Cameras as Embedded
Systems. IEEE Computer, 35(9):48–53, Sep 2002.

[10] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: formalization
and algorithms. IEEE Transactions on Knowledge and
Data Engineering, 10(5):Sep/Oct, 1998.

Case
Executed by

PC
JDK 1.4

PC
JamVM

SmartCam
JamVM

SmartCam
Native/C++

1a Partial Allocations (6 Ag.) 20 ms 14 ms 79 ms 13 ms
1b Partial Allocations (3 Ag) 14 ms 7 ms 55 ms 9 ms
2a Merge Solutions (6 Ag) 766 ms 4.852 ms 21.363 ms 2.360 ms
2b Merge Solutions (3 Ag) 9 ms 5 ms 31 ms 4 ms
3a Overall allocation determination (6 Ag) 786 ms 4.866 ms 21.442 ms 2.373 ms
3b Overall allocation determination (3 Ag) 23 ms 12 ms 86 ms 13 ms
4 Pruning of infeasible allocations (6 Ag) 14 ms 32 ms 172 ms 26 ms

Table 1: Running times of the task allocation

