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Abstract – This paper presents a dynamic task allocation 
method for  smart cameras targeting traffic surveillance. Since 
our  target platforms are distr ibuted embedded systems with 
limited resources, the task allocation has to be light-weight, 
flexible as well as scalable and has to support real-time 
requirements. Therefore, surveillance tasks are not allocated 
to smart cameras directly, but to groups of smart cameras, so 
called surveillance clusters. We formulate the allocation 
problem as a distr ibuted constraint satisfaction problem 
(DCSP) and present a distr ibuted method for  finding feasible 
allocations. Finally, a cost function is used to determine the 
optimal allocation of tasks. We have realized this dynamic 
task allocation using heterogeneous, mobile agents which 
utilize their  agencies and our  embedded software framework 
to find the most appropr iate mapping of tasks in a distr ibuted 
manner. The dynamic task allocation has been implemented 
on our  smart cameras (SmartCam) which are compr ised of a 
network processor  and several digital signal processors 
(DSPs) and provide a complex software framework. 
 
Kurzfassung – Diese Arbeit präsentier t eine Methodik zur  
dynamischen Verteilung von Aufgaben in einem Verkehrs-
überwachungssystem, welches aus intelligenten Kameras 
besteht. Da wir  uns hier  mit ver teilten, eingebetteten 
Systemen mit eingeschränkten Ressourcen beschäftigen, muß 
diese Aufgabenverteilung schlank, flexibel und skalierbar  
sein. Das System muß außerdem Echtzeitanforderungen 
genügen, sowohl die Ver teilung der  Aufgaben, wie die 
Aufgaben selbst. Um eine effektive Verteilung von Aufgaben 
gewähr leisten zu können, werden Aufgaben nicht einer  
Kamera dirket zugeordnet, sondern einer  Gruppe von 
intelligenten Kamera, einem sogenannten  Überwachungs-
Cluster  (Surveillance Cluster). Wir  zeigen ausserdem, dass die 
Generalisierung dieses Problems ein ver teiltes constraint-
satisfaction-problem (CSP) ist, welches wir  mittels einer  
ver teilten Methodik lösen, um alle plausiblen Verteilungen 
von Aufgaben zu untersuchen. Zur  Bewertung der  einzelnen 
Verteilungen verwenden wir  eine Kostenfunktion um die 
optimale Lösung des Problems zu finden. 
Realisier t wurde das System mittels heterogenen, mobilen 
Agenten, welche unser  Software-Framework nutzen, um die 
optimale Zuordnung der  Aufgaben in ver teilter  Ar t und 
Weise zu finden. Dieses System haben wir  auf Prototypen 
unserer  intelligenten Kamera (SmartCam) implementier t, 
welche aus einem Netzwerkprozessor  und einer  var iablen 
Anzahl von digitalen Signalprozessoren besteht. 
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system; real-time. 

I. INTRODUCTION 

Surveillance systems currently undergo a dramatic shift. 
Traditional surveillance systems of the first and second 
generation have employed analog CCTV cameras, which 
transferred the analog video data to digital base stations 

where the video analysis, storage and retrieval takes place. 
Current semiconductor technology enables surveillance 
systems to leap forward to third generation systems which 
employ digital cameras with on-board video compression 
and communication capabilities. Smart cameras [9] [2] 
even go one step further; they not only capture and 
compress the grabbed video stream, but also perform 
sophisticated, real-time, on-board video analysis of the 
captured scene. Smart cameras help in (i) reducing the 
communication bandwidth between camera and base 
station, (ii) decentralizing the overall surveillance system 
and hence to improve the fault tolerance, as well as (iii) 
realizing more surveillance tasks than with traditional 
cameras. 

Typical tasks to be run in a surveillance system 
targeting traffic surveillance include MPEG-4 video 
compression, various video analysis algorithms such as 
accident detection, wrong-way drivers detection and 
stationary vehicle detection. Additionally, traffic 
parameters such as average speed, lane occupancy and 
vehicle classification are often required. Since computing 
power is limited we may not allocate all tasks to the 
cameras. 

This paper presents a resource-aware dynamic task 
allocation system for smart cameras targeting traffic 
surveillance. Since our target platforms are distributed 
embedded systems with limited resources, the task 
allocation has to be light-weight, flexible and scalable as 
well as has to support real-time requirements. Therefore, 
surveillance tasks are not allocated to smart cameras 
directly, but to groups of smart cameras, so called 
surveillance clusters. We formulate the allocation problem 
as a distributed constraint satisfaction problem (DCSP) and 
present a distributed method for finding feasible 
allocations. Finally, a cost function is used to determine the 
optimal allocation of tasks. We have realized this dynamic 
task allocation using heterogeneous, mobile agents which 
utilize their agencies and our embedded software 
framework to find the most appropriate mapping of tasks in 
a distributed manner The main contributions of this 
ongoing research project include (i) the distributed agent-
based approach for determining all feasible allocations of a 
DCSP, (ii) the evaluation of a complex cost function 
considering the limited resources of the embedded platform 
in detail, (iii) the integration of a mobile agent system in 
our embedded software framework. The dynamic task 
allocation has been implemented on our smart cameras 
(SmartCam [3]) which are comprised of a network 



processor and several digital signal processors (DSPs) and 
provide a complex software framework. The remainder of 
this paper is organized as follows: Section 1.1 sketches 
related work. Section 2 briefly presents hardware and 
software of our SmartCam. Section 3 discusses the 
advantages of grouping smart cameras to surveillance 
clusters. Section 4 describes the DCSP approach and 
focuses on finding feasible allocations of tasks and the cost 
function. Section 5 and 6 present the implementation and 
the experimental results, respectively. Section 7 concludes 
the paper with a summary and an outlook on future work. 

A. Related Work 

Agents-based load distribution has been an active 
research in the last decade. An overview of agent standards 
and available platforms is presented in [6]. WYA (While 
You’re Away) [8] is based on the NOMADS mobile agent 
system. It provides dynamic load balancing by mobile 
agents, which utilize a central coordinator to move between 
workstations. Qin et al [7] identified the amount I/O-traffic 
as an important issue for dynamic load balancing beside 
CPU-load and memory. Chow and Kwok [4] introduced 
the affinity of an agent to its machine and used a credit-
based scheme to determine the agents to be migrated by 
using a central host station. Agents used in surveillance 
systems were proposed by the MODEST consortium [1], 
where mobile agents were used to track vehicles using PC 
based platforms. Distributed constraint satisfaction 
problems have been analyzed by Yokoo et al. in [10] for 
variablesplit CSPs. The presented asynchronous 
backtracking algorithm used autonomous agents, however, 
the high communication effort between the agents is 
impractical for real-time systems. 

II. THE SMART CAMERA 

Smart cameras are the core components of a 3rd 
generation surveillance system. These cameras perform 
video sensing, high-level video analysis and compression 
and transfer the compressed data as well as the results of 
the video analysis to a central monitoring station. The 
video analysis tasks implemented in the cameras clearly 
depend on the overall surveillance application and may 
include accident detection, vehicle tracking and the 
computation of traffic statistics. Most of these tasks, 
however, require a very high computing performance on 
the cameras. 

A. Hardware Architecture 

Our smart camera has been designed as a low-power, 
high-performance embedded system. As depicted in Figure 
1, the smart camera consists of three main units. (1) The 
sensing unit, (2) the processing unit, and (3) the 
communication unit. A high-dynamic, monochrome CMOS 
image sensor is the heart of the sensing unit. It delivers 
images with VGA resolution at 25 frames per second via a 
FIFO memory to the processing unit. Real-time video 
analysis and compression is performed at the processing 
unit which is equipped with up to four digital signal 
processors (DSPs) TMS320C6415 from Texas 
Instruments. The DSPs deliver an aggregate computing 
performance of almost 20 GIPS while keeping the power 

consumption low. The DSPs are coupled via a local PCI 
bus which serves also as connection to the network 
processor (Intel XScale IXP425) in the communication 
unit. The communication unit provides access to the 
camera’s environment. The communication of the smart 
camera is basically two-fold. First, the communication unit 
manages the internal communication between either the 
DSPs and the DSPs and the network processor. Second, it 
manages the external communication, which is usually IP-
based. The XScale processor is operated by Linux due to 
large number of available tools and applications available 
under this operating system. [3] provides a more detailed 
insight into the hard- and software architecture of the smart 
camera. 

B. Software Architecture 

The software architecture of our smart camera is 
designed for flexibility and reconfigurability. The software 
architecture consists of several layers which can be 
grouped into: (1) The DSP framework, which is 
implemented on the DSPs, and (2) the SmartCam 
framework, running on the network processor. DSP 
Framework The main purpose of the DSP is (i) the 
abstraction of hardware and communication channels, (ii) 
the support for dynamic loading and unloading of 
applications, and (iii) the management of on-chip and off-
chip resources of the DSP system by utilizing Texas 
Instruments Reference Framework 5 [5]. SmartCam 
Framework The SmartCam framework (cp. figure 3) serves 
the following purpose: First, it provides abstraction of the 
DSPs to ensure platform independence of the agent-system 
and application layers. Second, the application layer uses 
the provided communication methods (messaging to the 
DSPs and IP-based communication to outer world) to 
exchange information, or work as a relay service, 
respectively. Finally, the agent-system layer is run on top 
of Java, whereas the agents are run as a part of the agent 
platform. 
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Figure 1: The architecture of the smart camera 



 

III. SURVEILLANCE SYSTEM ARCHITECTURE 

The architecture of the surveillance system consists of a 
large number of smart cameras deployed alongside 
highways or in tunnels. Since these smart cameras have 
limited computational resources, it is not possible to run all 
required surveillance tasks on a smart camera. Therefore, 
physically co-located smart cameras are combined into 
logical groups, so called surveillance clusters. 
Consequently, sets of surveillance tasks (e.g. accident 
detection, vehicle counting, vehicle classification) are then 
allocated to surveillance clusters. This is feasible, since 
events, observed by co-located cameras are causally 
associated with each other. Therefore, it is not important on 
which smart camera a surveillance task is allocated, as long 
as these surveillance clusters do not span a too large area. 
Not all surveillance tasks require small surveillance 
clusters; classifying and counting of vehicles, for example, 
may be spread over a larger area, while accident or fire 
detection tasks are usually allocated to smaller clusters. 
Therefore, a smart camera may be a member of several 
surveillance clusters (cp. Figure 2). The allocation of 
surveillance tasks to smart cameras is done dynamically 
during runtime by the presented task allocation system (see 
section 4), which is distributed over all smart cameras. 

In contrast to the presented surveillance tasks, which 
may be allocated to any smart camera in the surveillance 
cluster, there are also several surveillance tasks which are 
required to run on a specific smart camera. These tasks 
possess an affinity to a scene or a camera, respectively. 
Tracking algorithms, for example, require to be run on a 
specific camera, which observes the tracked object. These 
scene-affine tasks are also contained in a surveillance 
cluster, however, the task allocation system should allocate 
these tasks to the required smart cameras. Note that scene-
affine tasks might be allocated to a different camera. In this 
case, however, the communication load would significantly 
be increased because raw images would have to be 
transferred from one camera to another. 

IV. TASK ALLOCATION 

The goal of the task allocation system is to find a 
mapping of tasks to smart cameras which satisfies all 
requirements and is optimal with respect to a specified 
metric, i.e., some cost function. Since the surveillance tasks 
have firm real-time requirements, the task allocation system 
has to take care that no deadlines are missed due to an 
overload of a camera or a camera’s subsystem, 

respectively. The re-allocation of tasks may be necessary 
due to events, raised by hardware or software: (1) 
Hardware events usually originate from changed resource 
availability due to added or removed cameras, hardware 
breakdown, or re-usability of recovered resources. (2) 
Software events are caused by changes in resource 
requirements due to changes in the task set of the 
surveillance cluster, or because of changes in the quality-
of-service level (QoS) of tasks, i.e., due to detected events 
in the observed scene. The allocation of tasks to smart 
cameras is done in two steps. (1) In the first step, all 
feasible allocations of tasks to smart cameras (allocations 
where all real-time requirements are satisfied) are 
determined. (2) In the second step, the optimal allocation 
of tasks is chosen by using a cost function. 

A. Find Feasible Allocations 

The determination of feasible allocation of tasks to 
smart cameras is a distributed constraint satisfaction 
problem (CSP) [10]. CSPs are defined by a set of variables 
T={T1,…,Tn}, which hold values of a finite domain D, and 
a set of k constraints C={C1,…,Ck}. In our case, the 
surveillance tasks to allocated to the cameras of the 
surveillance cluster are the variables T, and the stored value 
is the identifier of the hosting smart camera. The domain is 
defined as D={1,…,m}, therefore, Ti=j indicates the 
allocation of task i to smart camera j. A feasible allocation 
of tasks to cameras means, that all resource requirements 
can be satisfied, since an overload of even a single resource 
would lead to a violation of real-time deadlines. In order to 
formulte the constraints, two functions which determine the 
resource requirements of the tasks and the resource 
availability on the smart cameras are defined. Therefore, 
req(Res, i) determines the requirements to resource Res 
(where },,,{Re IRQDMAMemCPUs∈ )of task i, 

while the availability of resource Res on smart camera j is 
determined by avail(Res, j). The feasible allocations of  
tasks are all combinations of tasks, where (i) all resource 
requirements of tasks are met, while (2) no resource on any 
smart camera is overloaded, and (3) all tasks are allocated 
to a smart camera. 

In order to distribute the determination of feasible 
allocations to all smart cameras, the domain D is split into 
m sub-domains D1,…,Dm, each comprised of a single value 
Dl=l. This way, each smart camera determines all feasible 
allocations of tasks on itself, which is done in parallel on 
the smart cameras. Finally, all feasible allocations are 
merged into a set of feasible allocations, which (1) include 
all required tasks, and (2) do not allocate a task to two smar 
cameras concurrently. 

B. Find Optimal Allocation 

From the set of feasible allocations the optimal 
allocation concerning (i) the number of migrations, (ii) the 
amount of communication between the cameras, and (iii) 
the quality-of-service has to be found. Therefore, we use a 
cost function, which takes (1) resource cost, (2) data-
transfer cost, (3) migration cost, (4) affinity cost, and (5) 
quality-of-service cost into account. Consequently, we 
calculate the oveall cost for each feasible allocation and 
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Figure 2: A surveillance scene with tree clusters 



choose the one with the lowest cost as new allocation of 
tasks. Note that the weight of each cost can be scaled, 
therefore, it is possible to set an emphasis on a certain cost 
during optimization. 

 

C. Reallocation Scenarios 

As mentioned before, two scenarios are possible, where 
a reallocation of tasks is necessary. However, we handle 
the scenarios differently to improve the performance of the 
system. 

Increased Requirements / Decreased Resource Availability 
Increased requirements or decreased resource 

availability indicates a higher system load. Therefore, the 
number of feasible allocations will decrease, since less 
combinations of tasks will satisfy the constraints of the 
CSP. Therefore, the value of the changed resource or 
availability is updated in the set of feasible allocations F. 
Finally, the feasible allocations are re-checked and 
infeasible allocations are removed from F. 

This re-checking process does not require to recalculate 
all possible allocations, therefore, the time required for 
determination of the new allocation is reduced 
dramatically. 

Decreased Requirements / Increased Resource Availability 
In contrast to the upper scenario, the decrease of 

requirements or increase of resource availability can be 
seen as a reduced load of the system. Consequently, the 
number of both, partial and complete, allocations will 
increase. Therefore, all feasible allocations have to be re-
computed. This approach leads to longer execution times, 
however, as the service quality will rise by this 
reallocation, the real-time deadlines are not as firm as in 
the upper scenario. 

V. IMPLEMENTATION 

For the implementation of our surveillance system we 
have chosen to use mobile agent technology. Mobile agents 
are most suitable for our system, since they support 
mobility, autonomy, and platform independence. 

A. Agent System 

We have chosen to use the diet-agents (see  
http://diet-agents.sf.net) system since it includes all 
required features like mobility, autonomy, and platform 
independence and is reasonable small, which is inevitable 
for embedded systems. However, extensions to the agent 
system were necessary to add the support for the DSPs, and 
the decentralized management of the surveillance clusters. 

DSP Agencies 
Agencies provide the environment for agents to live in. 

An extension to standard agencies is required to support 
multiple surveillance clusters. Therefore, a logical 
grouping of agents within the agency (cp. surveillance 
clusters A, B and x in Figure 3) is desirable. We have 
implemented a cluster-information agent (CIA), which 
hosts local knowledge of other cameras belonging to the 

surveillance cluster, and provides lookup services for 
agents within the surveillance cluster. 

The integration of the DSPs into the agent system is 
done by one DSP integration agent (DIA) per DSP in the 
system. This DIA is a stationary agent, which manages 
message registrations, message dispatching, and binary 
downloads to the DSP. 

Two basic agent types are deployed within the agent 
system: (1) Management-oriented SmartCamagents, which 
are not included in the task allocation system, and (2) DSP-
agents, which implement algorithmic functionality to be 
executed on a DSP. Since the implementation of the 
SmartCam agents is quite straightforward, only the DSP 
agents will be discussed in detail in the next section. 

DSP Agents 
DSP agents are an enhancement of usual agents, as they 

are the base of the task allocation system. Therefore, DSP 
agents include their requirements to the system and their 
cost parameters. Additionally, the cost calculation 
functionality is added to these agents(cp. Figure 4). As the 
computational intensive parts of these agents are executed 
on the DSPs, the agents contain a binary, which is 
downloaded to the DSP and dynamically integrated into the 
system by the DSP framework. Therefore, the agents 
maintains communication channels to the DSP by using the 
world’s DSP integration agent (DIA). In case of migration 
the agent notifies the DSPs task to stop computation and to 
transmit the persistent intermediate results to the agent. 
After migration the agent loads the binary to the DSP and 
transmits the stored intermediate results to the DSP. This 

Figure 3: The DSP Agency 



enables the algorithm to continue computation or to use the 
intermediate results as new starting values, respectively. 

B. Task Allocation 

This section outlines the actions taken during a 
reconfiguration of a surveillance cluster. Since our goal is a 
flexible, scalable and distributed implementation we have 
chosen to realize the task allocation system using mobile 
agents. 

A new allocation is always initiated by a smart camera, 
either due to a hardware event (changes of availability) or a 
software event (changes of requirements). This camera 
initiates the reallocation by broadcasting the request-for-
requirements to all agents, that encapsulate the surveillance 
tasks, within the surveillance cluster. After the agents 
receive this request, they broadcast their requirements to all 
smart cameras in their surveillance cluster. Additionally, all 
agents calculate their costs for every smart camera and 
transmit the cost values to the initiating camera. The smart 
cameras determine in parallel the partial allocations, which 
have to be merged in the next step. As the smart cameras 
are comprised of more DSPs, the partial allocations for the 
DSPs are merged. To further merge the partial allocations, 
half of the smart cameras (determined during the creation 
of the surveillance cluster) create allocationmerging agents 
(AMA), which pick up the merged partial allocation and 
migrate to predetermined smart cameras (which comprise 
the other half of the surveillance cluster), where they grab 
the partial allocation, and merge both, the local and the 
included partial allocations. After the merging process, the 
agents migrate to the next smart camera, as defined by the 
fixed itinerary, and merge their partial allocation with the 
partial allocation provided by another AMA. This way the 
partial allocations are merged to a final allocation, whereas 
the last allocation merge is done on the initiating smart 
camera. The merging process corresponds to a binary tree, 
therefore ld(m) (where m is the number of smart cameras) 
sequential steps have to be done. 

The initiating smart camera has to determine the most 
appropriate task allocation, therefore, the costs, as 
submitted by the agents, are accumulated for every task 
allocation. Consequently, the task allocation with the 
lowest cost is selected as the new task allocation. Since the 
selection of the most appropriate task allocation is based on 
the costs of the agents, the desired optimization goal like 
the number of migrations, degradation of quality-of-
service, or balanced use of resources can be achieved by 
adapting the scaling factors of the cost classes. Finally, the 

new task allocation is broadcast to all smart cameras and 
agents, which may update their QoS level, or migrate to 
another smart camera then. To enable the fast 
reconfiguration by removing feasible task allocations, also 
the set of feasible task allocations is broadcast to all smart 
cameras in the surveillance cluster after the system has 
settled. 

C. Harware Setup 

To verify, test and evaluate the presented agent system, 
we have used two hardware platforms. A prototype of our 
smart camera and PCs equipped with DSP boards. The 
prototype of our smart camera consists of an Intel 
IXDP425 Development Board, which is equipped with an 
Intel IXP425 network processor running at 533 MHz. This 
processor features onchip Ethernet MACs, serial 
communication ports and a PCI host controller. The board 
is operated with Linux Kernel 2.6.8.1, which allows the 
usage of standard software packages, and enables 
interoperability with PC-based Linux systems. To enable 
the interaction with the DSPs, the SmartCam framework is 
run on top of Linux. The board supports up to four DSP 
boards, however, our prototype is equipped with two 
Network Video Development Kits (NVDK) from ATEME. 
Each board is comprised of a TMS320C6416 DSP from 
Texas Instruments, running at 600 MHz, with a total of 264 
MB of on-board memory. Image acquisition is done using 
the National Semiconductor LM9618 monochrome CMOS 
image sensor, which is connected to one of the DSP 
boards. 

Due to the lack of additional smart camera prototypes, 
we are using two Pentium-III personal computers (PCs) 
running at 1 GHz, which are equipped with one Network 
Video Development Kit (NVDK) from ATEME. We are 
using the analog video inputs from the DSP card to grab 
the required video data. These video inputs are fed by 
analog cameras or VCRs. 

 

VI. EXPERIMENTS 

In order to verify and evaluate the presented task 
allocation system, we created a surveillance cluster, 
comprised of the smart camera prototype and two PCs. We 
have used four different agent types for our experiments: 
(1) A MPEG-4 video compression agent, (2) a stationary-
vehicle detection (StVD) agent, (3) a vehicle count agent, 
and (4) a vehicle classifier agent. The MPEG-4 agent and 
the stationary-vehicle detection agent [2] are well tested 

Figure 4: A DSP Agent 

Figure 5: The prototype of the smart camera 



and evaluated agents, however, the vehicle count and 
vehicle classify agents only simulated real behavior. A total  

of six agents have been instantiated from these four 
classes, where we used three MPEG-agents (as every 
camera has to  

transmit a live video stream), and one agent of every 
other agent-type. 

Table 1 enlists the execution times of the two stages of 
the task allocation. On the PCs we have used two Java 
virtual-machines: (a) Sun’s JDK 1.4.2, which uses a just-in-
time (JIT) compiler, and therefore reaches better 
performance values, while (b) the JamVM virtual machine2 
is designed as an interpreter and therefore requires higher 
execution times. Lines 1a, 2a, and 3a represent the 
execution times if all six tasks had to be considered. As 
line 2a shows, that the merging process, resulting with a 
total of 2880 feasible task allocations, requires the most 
amount of time, therefore we have implemented the core 
calculation functions of steps 1 and 2 also in C++ to 
achieve acceptable performance. In a second scenario we 
have removed the MPEG-4 encoding agents from the 
surveillance cluster, and allocated them statically to the 
cameras. The results of the dynamic allocation of the 
resulting three agents is enlisted in lines 1b, 2b, and 3b in 
table 1. 

Finally, we have also evaluated the performance of the 
task allocation system at increasing system load. Line 4 
enlists the times required to check all 2880 allocations for 
feasibility. These results show, that the system responds in 
a timely manner to increased system load. 

VII. CONCLUSION 

In this paper we have presented a resource-aware 
dynamic task-allocation system targeting embedded smart 
cameras. Surveillance tasks are not allocated to the smart 
cameras directly, but to groups of smart cameras, 
surveillance clusters, within the tasks are allocated by the 
smart cameras in a distributed manner. We show that the 
task allocation can be formulated as a distributed constraint 
satisfaction problem (DCSP) and present a solution for this 
DCSP. Therefore we combine the results of the DCSP with 
a cost function to retrieve the optimal allocation of tasks. 
Finally, we discuss the mobile-agent based implementation 
of the system and present results achieved by evaluation of 
the implemented system. 

Future work includes (1) the further evaluation of the 
system, using more complex scenarios, (2) the tighter 
combination of finding feasible allocations and calculating 

the costs for an allocation in order to delete expensive 
allocations at an early stage, (3) the test and evaluation of 
the system in real-world scenarios, and (4) the integration 
of learning agents into surveillance clusters, which 
influence the behavior of the system by adapting the cost 
function based on previous behavior, events, and actions.  
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Case 
Executed by 

PC 
JDK 1.4 

PC 
JamVM 

SmartCam 
JamVM 

SmartCam 
Native/C++ 

1a Partial Allocations (6 Ag.) 20 ms 14 ms 79 ms 13 ms 
1b Partial Allocations (3 Ag) 14 ms 7 ms 55 ms 9 ms 
2a Merge Solutions (6 Ag) 766 ms 4.852 ms 21.363 ms 2.360 ms 
2b Merge Solutions (3 Ag) 9 ms 5 ms 31 ms 4 ms 
3a Overall allocation determination (6 Ag) 786 ms 4.866 ms 21.442 ms 2.373 ms 
3b Overall allocation determination (3 Ag) 23 ms 12 ms 86 ms 13 ms 
4 Pruning of infeasible allocations (6 Ag) 14 ms 32 ms 172 ms 26 ms 

Table 1: Running times of the task allocation 


