
International Journal of Software Engineering and Knowledge Engineering
 World Scientific Publishing Company

1

AN EVALUATION OF MODEL-BASED SOFTWARE SYNTHESIS FROM
SIMULINK MODELS FOR EMBEDDED VIDEO APPLICATIONS

Andreas Doblander, Dietmar Gösseringer, Bernhard Rinner

Institute for Technical Informatics, Graz University of Technology,
Inffeldgasse 16/1, 8010 Graz, Austria

{doblander, goesseringer, rinner}@iti.tugraz.at
http://www.iti.tugraz.at

Helmut Schwabach

Video & Security Technologies, ARC Seibersdorf Research,
2444 Seibersdorf, Austria

helmut.schwabach@arcs.ac.at

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

In next generation video surveillance systems there is a trend towards embedded solutions. Digital
signal processors (DSP) are often used to provide the necessary computing power. The limited
resources impose significant challenges for software development. Resource constraints must be met
while facing increasing application complexity and pressing time-to-market demands. Recent
advances in synthesis tools for Simulink suggest a high-level approach to algorithm implementation
for embedded DSP systems. The model-based visual development process of Simulink facilitates
simulation as well as synthesis of target specific code. In this work the modeling and code
generation capabilities of Simulink are evaluated with respect to video analysis algorithms. Different
models of a motion detection algorithm are used to synthesize code. The generated code targeted at a
Texas Instruments TMS320C6416 DSP is compared to a hand-optimized reference. Experiments
show that an ad hoc approach to synthesize complex image processing algorithms hardly yields
optimal code for DSPs. However, several optimizations can be applied to improve performance.

Keywords: model-based design; automatic code generation; embedded video surveillance.

1. Introduction

Video surveillance systems show a trend of integrating image acquisition and analysis
with compression and network communication functionality into a single embedded
device1,2. High performance DSPs (digital signal processors) are often used to provide the
needed processing power. Such complex configurations impose significant challenges on
the software development. Tight resource constraints have to be met while facing
increasing application complexity and pressing time-to-market demands. Although
modern DSPs offer substantial computational resources code optimization is mostly
crucial for media applications3,4.

A. Doblander, D. Gösseringer, B. Rinner, H. Schwabach

2

It is a major challenge in embedded software development to increase the level of
abstraction while meeting tight resource constraints5. Recently added support for DSP
targets in the synthesis tools for Simulink6 simplifies high-level development for such
platforms. Block-oriented modeling also supports hierarchical designs that promote reuse
and address algorithmic complexity. Validation by simulation is already available in early
development stages. Synthesis tools in combination with target specific components are
used to generate production code for the embedded platform.

In this paper model-based development and synthesis using the Simulink
environment are explored. We intend to integrate synthesized algorithmic code into an
intelligent embedded multi-DSP camera for video surveillance. An evaluation of the
quality of DSP code synthesized using the Real-Time Workshop Embedded Coder
(RTW-EC) for Simulink is the main contribution of this work.

2. Related Work

There are a number of approaches to high-level or model-based embedded software
development. Platform-based development7, e.g., suggests a layered design with well
defined interfaces. Other popular methodologies are model-driven architecture (MDA)8
and UML-based methods9. All of these approaches raise the level of abstraction and
employ code synthesis which is also a key benefit of modeling in Simulink.

Component-based principles for distributed embedded systems are widely discussed
in the literature (e.g., Schmidt et al.10 in their CIAO framework). The focus of their work
is on supporting distributed application programming and automatic component interface
generation. In contrast, the approach used in this paper concentrates on code reuse and
synthesis of algorithmic code.

In Wybo and Putti11 the synthesis capabilities of Simulink are evaluated for
automotive powertrain control. Although most automotive applications have to meet hard
real-time deadlines their overall performance requirements are significantly smaller than
in video analysis. Similarly, an integrated modeling approach for audio signal processing
using Simulink and Texas Instruments DSPs is discussed by Hong et al.12.

Whalen and Heimdahl13 discuss requirements and problems of automatic code
generators for safety-critical systems. A special code generation environment for such
systems is described in Kim and Lee14.

3. High-Level Development for Embedded Video Surveillance Applications

Model-based design is a generic development paradigm that addresses system
specification, validation by simulation, model analysis, synthesis, and test. The key idea
is to build a model that satisfies the requirements and to use this model (or automatically
transformed models) for all further development steps including code generation.

 An Evaluation of Model-Based Software Synthesis from Simulink Models

3

In Fig. 1 the basic steps of a model-based development process for video analysis
applications are illustrated. Basically, all development phases depicted in Fig. 1 are
supported by Matlab/Simulink together with the Real-Time Workshop Embedded Coder
(RTW-EC) and the Embedded Target for Texas Instruments C64x DSPs (ET).
Algorithmic design (research phase) is usually performed using a high-level development
environment such as Matlab or C/C++ libraries. System level design translates the well-
defined algorithms into the domain of the modeling-language. Simulation is employed to
maintain a validated reference. Optionally, the model can be instrumented for target-side
testing. Finally, code is synthesized and can be executed on the target.

Taking into account timing constraints and resource requirements of algorithms in the
video surveillance domain, highly efficient code is needed. Unfortunately, current
modeling systems do not provide special video analysis function blocks that yield
efficient DSP code. Algorithms have to be modeled by intricate compositions of simple
blocks that are often transformed to suboptimal code. Therefore, optimizations are
needed to generate efficient code. Modifications on synthesized code are not an option.
They would break up the mapping between model and generated code such that the
model-based design process would be corrupted. The only choice is to optimize the
model.

For that purpose tools like Simulink provide mechanisms to extend their built-in
functionality. Such blocks can be written in a traditional programming language (e.g.
C/C++). When implementing custom modules to improve efficiency of synthesized code
one has to consider two important issues.
(i) Function granularity. Fine-grained modules with very basic functionality ensure high

flexibility and reusability. Coarser-grained modules, however, offer better
opportunities for optimizations by the compiler4.

(ii) Optimization level. Generic implementations in ANSI C ensures platform portability.
Target specific C implementation, i.e., C plus intrinsic instructions and compiler
directives, on the other hand, make use of proprietary hardware features, e.g., direct
memory access (DMA) and, therefore, yield performance gains.

Fig. 1. Generic model-based development process6,15.

A. Doblander, D. Gösseringer, B. Rinner, H. Schwabach

4

4. Experimental Evaluation

Experiments were conducted using the Matlab/Simulink R13 / R14 modeling
environment. A Texas Instruments C6416 DSP Starter Kit together with the Code
Composer Studio v2.21 IDE (CCS) was used as the development environment. The
following four different implementations of a motion detection algorithm (MD) with
different levels of optimization were profiled and compared:
(i) Reference. A manually coded, hand-optimized C implementation exploiting the

hardware capabilities of the TI C64x DSP.
(ii) Unoptimized model. The implementation synthesized from an ad hoc model without

special optimization.
(iii) Generic optimizations. An implementation synthesized from a model where generic

optimizations were applied. Target independent ANSI-C constructs were integrated.
Substantial improvements are achieved by extracting iterative parts of the model and
put them into custom blocks implemented in C. Nesting loops to support compiler
optimizations is a very promising approach here.

(iv) Target-specific optimizations. An implementation synthesized from a model where
target specific custom blocks were used. Adapted code segments from the manually
coded reference (i) written in C were integrated.

For the tests a video format with a resolution of 368 x 272 pixels was used. A model
was created for each case listed above. From each model code was generated and
imported to CCS for profiling. Profiling is also supported in the Simulink environment
but CCS offers more control over the profiling process. Results from CPU load profiling
are summarized in Tab. 1.

Tab. 1. Profiling results in CPU cycles split among different parts of the algorithm.

Module Reference
implementation (i)

Non-optimized
model (ii)

Generically
optimized
model (iii)

Target-specific
optimized
model (iv)

Downsampling 628752 27665088 5030016 639014
Buffering/Unbuffering 1408 37876 1592 1592
Sum of absolute differences 1520 85024 26832 1536
Generate pre-alarm 432 44116 3296 448

Overall 632112 27832104 5061736 642590

Tab. 2. Memory consumption in KB.

Module Reference
implementation (i)

Non-optimized
model (ii)

Generically optimized
model (iii)

Target-specific optimized
model (iv)

Code size 148 345 346 346
Data memory 111 115 116 116

Data memory consumption of the different examined cases differs only slightly (cf.

Tab. 2). Input video frame buffers make up about 85% of the total data memory
consumption. The rest is used for past frames for frame differencing. The synthesized

 An Evaluation of Model-Based Software Synthesis from Simulink Models

5

executables require more than twice the program memory of the reference
implementation.

5. Discussion

Code generated from the initial unoptimized model (ii) was 44 times slower than the
reference (i). With generic optimizations (iii) the execution time could be reduced to 18%
compared to the unoptimized model (ii). But this code was still eight times slower than
the reference (i). The second level of optimization utilized embedded C segments from
the reference as a simple target specific optimization. Now the obtained performance was
similar to that of the reference (i). Only an overhead of about two percent is still imposed
by the modeling environment. With generic optimization (iii) the code was about 7.88
times slower than the code with target specific optimizations (iv).

An important reason for the poor performance of the code generated from the
unoptimized model (ii) is that generated code often contains multiple sequential loops. In
the manually optimized version operations are compacted to a single loop. Compilers are
then able to better parallelize instructions resulting in a performance gain. Additionally,
blocks that are only used to interface special function blocks in the model often result in
redundant code in the synthesis process.

Another reason for performance losses is the inefficient use of the memory
subsystem. Even simple functional blocks such as buffering and unbuffering can lead to
degraded performance of synthesized code. Using DMA features of the target processor
could substantially increase data transfer performance. Especially, video analysis
algorithms benefit from DMA because a lot of data has to be transferred from and to
memory. It is almost always possible to fully load the CPU while DMA transfers are
performed in the background.

It is also shown that the use of specialized DSP instructions improves performance. In
Simulink such specialized code is incorporated into the model via custom blocks that
directly make use of target specific instructions or call into optimized (assembly)
libraries. Of course, there is a one-time overhead for implementing such custom blocks.
However, they can then be easily reused in similar projects without substantial effort.

6. Conclusion

Code profiling experiments of a motion detection algorithm indicate that model-based
design is a promising approach for embedded video surveillance applications. Reusability
and maintainability of the software are promoted by the high-level design. However,
complex embedded video surveillance applications with their resource limitations require
rather efficient algorithm implementations that often cannot be satisfied by code
generation from simple models. Therefore, model optimization is necessary because
optimizing the generated code would corrupt the model-based development flow.

In Simulink custom blocks can be used for model optimizations. Generally, there are
two major optimization levels. First, generic optimization concentrates on hardware

A. Doblander, D. Gösseringer, B. Rinner, H. Schwabach

6

independent model modifications. Target specific modifications, on the other hand, are
not easily portable to different hardware any more. Nevertheless, they yield the most
performance improvements in the synthesized code. To maximize the use of custom
optimizations a domain specific library of custom blocks can be created and reused for
similar projects.

Future work concentrates on the use of the code generation framework of Simulink to
synthesize algorithmic code for an embedded smart traffic surveillance camera4. The
code generation templates have to be adapted so that generated code can be used as
dynamically loadable modules in the software framework that is currently developed.

References

1. W.Wolf, B. Ozer and T. Lv. Smart cameras as embedded systems. IEEE Computer 35:9(2002)
48—53.

2. C. S. Regazzoni, V. Ramesh and G. L. Foresti. Introduction of the special issue. Proceedings
of the IEEE 89:10(2001) 1355—1539.

3. K. Karaday, V. Markandey, R. J. Gove and Y. Kim. Strategies for mapping algorithms to
mediaprocessors for high performance. IEEE Micro 23:4(2003) 58—70.

4. M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach. Real-time video analysis on an
embedded smart camera for traffic surveillance. In Proc. 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (2004), pp. 174—181.

5. A. Sangiovanni-Vincentelli and G. Martin. A vision for embedded software. In Proc. Int.
Conf. on Compilers, Architecture, and Synthesis for Embedded Systems (2001), pp. 1—7.

6. The MathWorks, Inc. The mathworks website (2005), http://www.mathworks.com.
7. A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign Magazine (Feb.

2002), http://EEDesign.com.
8. Object Management Group, Model Driven Architecture (2005), http://www.omg.org.
9. T. Schattkowsky and W. Mueller. Model-Based Specification and Execution of Embedded

Real-Time Systems, In Proc. Of the Design, Automation and Test in Europe Conference and
Exhibition (2004), pp. 1392—1393 Vol. 2.

10. K. Balasubramanian, N. Wang, C. Gill and D. C. Schmidt. Towards composable distributed
real-time and embedded software. In Proc. 8th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (2003), pp. 226—233.

11. D. Wybo and D. Putti. A qualitative analysis of automatic code generation tools for
automotive powertrain applications. In Proc. 1999 IEEE Int. Symp. on Computer Aided
Control System Design (1999), pp. 225—230.

12. K.H. Hong, W.S. Gan, Y.K. Chong, K.K. Chew, C.M. Lee and T.Y. Koh. An integrated
environment for rapid prototyping of DSP algorithms using Matlab and Texas instruments
TMS320C30. J. Microprocessors and Microsystems 24(2000) 349—363.

13. M. W. Whalen and M. P.E. Heimdahl. On the Requirements of High-Integrity Code
Generation. In Proc. of the 4th IEEE International Symposium on High-Assurance Systems
Engineering (1999), pp. 217—224.

14. J. Kim and I. Lee. Modular Code Generation from Hybrid Automata based on Data
Dependency. In Proc. 9th IEEE Real-Time and Embedded Technology and Applications
Symposium (2003), pp. 160—168.

15. G. Karsai, J. Sztipanovits, A. Ledeczi and T. Bapty. Model-integrated development of
embedded software. Proceedings of the IEEE 91:1(2003) 145—164.

