
Improving Fault-Tolerance in Intelligent Video
Surveillance by Monitoring, Diagnosis and

Dynamic Reconfiguration

Andreas Doblander1, Arnold Maier1, Bernhard Rinner1 and
Helmut Schwabach2

1Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

{doblander,maier,rinner}@iti.tugraz.at
2Video & Safety Technology,

ARC Seibersdorf research, Seibersdorf, Austria
helmut.schwabach@arcs.ac.at

Abstract — In this paper, we present an approach for improving fault-tolerance
and service availability in intelligent video surveillance (IVS) systems. A typical IVS
system consists of various intelligent video sensors that combine image sensing with
video analysis and network streaming. System monitoring and fault diagnosis fol-
lowed by appropriate dynamic system reconfiguration mitigate effects of faults and
therefore enhance the system’s fault-tolerance. The applied monitoring and diagno-
sis unit (MDU) allows the detection of both node- and system-level faults. Lacking
redundant hardware such reconfigurations are established by graceful degradation of
the overall application. An optimizer module that performs multi-criterion optimiza-
tion is used to compute a new degraded system configuration by trading off quality
of service (QoS), energy consumption, and service availability. We demonstrate the
functionality of our approach by an illustrative example.

1 Introduction
A typical intelligent video surveillance (IVS) system consists of various intelligent video
sensors that combine image sensing with video analysis and network streaming. The
design of these processing units allows to yield various parameters of a captured scene
and to compress a live video-stream simultaneously. It is, therefore, a distributed system
of collaborating intelligent cameras. Typically, the system nodes, i.e. intelligent cameras,
are implemented as embedded multi-processor systems operating autonomously.

Typical video analysis algorithms are our target application for traffic surveillance in-
cluding motion detection, MPEG-4 encoding, tracking of objects, detection of stationary
vehicles as well as the calculation of traffic statistics (such as average speed, number of
cars etc.). Obviously, quality of service (QoS) is a major concern in video surveillance.

194



DOBLANDER, MAIER, RINNER, SCHWABACH

Thus, IVS systems typically contain dedicated QoS-management mechanisms. Further-
more, QoS is closely related to power consumption making power-awareness an important
design aspect as well. In recent work [1] we therefore take advantage of QoS-triggered
dynamic power management.

Additionally, maintaining a high degree of service availability is also an important de-
sign goal for autonomous operation of an embedded distributed system [2]. This work
focuses on improving service availability in IVS systems by enhancing its fault-tolerance.
System monitoring and fault diagnosis followed by appropriate system reconfiguration
mitigate effects of faults. Lacking redundant hardware such reconfigurations are estab-
lished by graceful degradation of the overall application. Multi-criterion optimization
is used to compute a new (degraded) system configuration by trading off QoS, energy
consumption, and service availability.

2 Related Work
Typical QoS-parameters in video surveillance are video data quality and its distortions in
network transmission (jitter). Further parameters include quality metrics such as image
size, data rate or blockiness or the number of frames per second (fps). In case of low
energy in parts of the system, service availability and QoS may get seriously affected and
degraded. Thus, there is a close link of these three parameters in IVS systems.

In literature, there is an emphasis on investigating the trade-off between energy and
QoS. In [3] for instance, the authors investigate the trade-off between image quality and
power consumption in wireless video surveillance networks. The work mainly focuses on
the evaluation of sophisticated image compression techniques. However, existing imple-
mentations lack of comprehensive handling of these three correlating parameters.

Fault-tolerance in embedded real-time systems is often achieved by checkpointing mech-
anisms. In [4], an adaptive checkpointing algorithm is proposed that also minimizes en-
ergy consumption. That is, a schedule is derived that includes the checkpointing task
in a way that dynamic voltage scaling is most effective. In our system, however, we
do not have the (non-volatile) memory capacity and the computational resources for a
checkpointing approach. In general purpose distributed computing it is common to use
redundant hardware and employ load sharing techniques to increase fault-tolerance (see,
e.g., [5]).

Given the tight cost constraints in the embedded market, however, we cannot afford
hardware redundancy but depend on graceful degradation. Similarly to [6] we also distin-
guish between system-level and application-level fault-tolerance techniques. In this work
the component faults, e.g., processor failures, are handled by system-level mechanisms.
Whereas, inconsistent observations of multiple cameras are addressed by the application
logic. There are also several approaches for integrating fault-tolerance techniques into the
middleware layer of distributed real-time and embedded systems. The goal is to shift the
trade-off between real-time execution and fault-tolerance from design time to runtime to
support the application developer [7]. In our ongoing work we currently have not spent
much attention on that issue but we will focus on it in future work.

The field of multi-criterion optimization (MCO) [8] often deals with conflicting objec-
tives. In the given work, MCO is applied for three different objectives (i.e. energy, QoS
and fault-tolerance).

195



IMPROVING FAULT-TOLERANCE BY DYNAMIC RECONFIGURATION

3 System Description
The considered video surveillance system is organized as a network of distributed smart
cameras [9]. Each node is an embedded multi-processor platform equipped with a CMOS
image sensor for video acquisition. A network processor (Intel XScale IXP425) and sev-
eral DSPs (Texas Instruments TMS320C64x) provide the necessary communication ca-
pabilities and computing power for video analysis algorithms. Currently, the prototype
node [10] is realized comprising two DSPs and one network processor that serves as the
managing unit and connects the camera to an Ethernet network. All three processors are
connected by a PCI bus. A VGA image sensor is directly connected to one DSP. Alterna-
tive network media such as GSM/GPRS or WLAN are also possible.

Due to the heterogeneous processor hardware the software architecture comprises two
major parts. The network processor hosts the so called SmartCam-Framework (SC-FW)
which is run on top of Linux. As a counterpart on the DSPs the DSP-Framework (DSP-
FW) is run on top of the DSP/BIOS operating system from Texas Instruments. Com-
munication between framework parts is based on messages and organized in a publish-
subscribe architecture. A block diagram of the fundamental software architecture is de-
picted in Figure 1.

Figure 1: Overview of the software architecture of an intelligent camera node in our
distributed surveillance system.

A key functionality in the software framework is the support for task migration. The
dynamic loader (DL) provides dynamic linking for the DSPs and, therefore, allows for
software reconfiguration at runtime. Tasks can be migrated to another DSP on the same
node or to a DSP on a remote node. All algorithms, that is all parts depicted in the top
most layer of the DSP Framework part on the right side of Figure 1, are dynamically
added and removed as needed.

To assure eligible migrations there is a resource manager (RM) that keeps track of
important system resources—CPU load, memory usage and DMA channel allocations for

196



DOBLANDER, MAIER, RINNER, SCHWABACH

each processor, as well as PCI bus and network utilization for the overall node. Using this
information it can be determined if there are sufficient resources on the target host for a
planned migration.

The actual applications on the smart camera are video analysis and compression algo-
rithms. Currently, four algorithms are considered:

- Motion detection to detect motion, camera blackouts and whiteouts.

- MPEG-4 encoder for video compression.

- Stationary vehicle detection, which can also be used for detecting lost cargo.

- Traffic statistics for computing average traffic speed, driving lane utilization and
other dynamic traffic parameters.

- Vehicle Tracking (VT), e.g., to track hazardous-cargo vehicles along tunnels.

Unfortunately, the above algorithms are very demanding with respect to computing
resources and so it is hardly possible that all run simultaneously. However, not all al-
gorithms are equally important at all times. So it is possible to reduce the QoS of less
important components to permit others to be run, too. Different quality levels are dis-
tinguished in terms of frame rate and image size. In our system, each algorithm has to
support three different QoS-levels Qi:

- Full quality (Q1)

- Reduced quality (Q2)

- Minimum quality (Q3)

Algorithms provide a dedicated interface for adjusting these three QoS-level settings.
A QoS-level switch can be initiated by an algorithm itself or by the system software
in reaction to special events. This interface also provides means for exchanging alive
messages and status information with the monitoring and diagnosis unit (MDU).

The functionality of the MDU and the optimizer module is the main topic of this paper
and is described in Sec. 4 and Sec. 5, respectively.

4 Monitoring and Diagnosis
A key requirement for dynamically reacting to faults and failures is to detect abnormal
behavior and isolate affected system components. It is important for the reconfiguration
process to have information about which resources are not available after a fault has oc-
curred. In the system described in the previous section it is the responsibility of a special
monitoring and diagnosis unit (MDU) to indicate faulty system behavior. A resulting
diagnosis is then presented to the configuration manager as seen in Figure 2.

A major concern of this ongoing work is establishing eligible system configurations
by multi-criterion optimization in case of faults. Monitoring and diagnosis techniques
applied to yield necessary diagnostic information are, therefore, only briefly described.

The IVS system as described in Section 3 can be viewed from two perspectives. First,
the system view considers the overall distributed application. That is, all nodes (hardware
and system software) including all algorithms running on these nodes. Second, the node
view considers only a single node.

197



IMPROVING FAULT-TOLERANCE BY DYNAMIC RECONFIGURATION

IVS-SYSTEM

Monitoring &
Diagnosis Unit (MDU)

Optimization &
Reconfiguration

System Model Fault Model

Faults

Global Optimization Goals

Figure 2: Basic concept of monitoring, diagnosis and reconfiguration in IVS systems.

According to these two different views the monitoring and diagnosis process comprises
also a system-level part and a node-level part. For local faults only the MDU of the
corresponding node is involved in the monitoring and diagnosis procedure. Node-level
faults that are currently diagnosable are:

- Crash-faults of DSPs. These faults are detected by a software watchdog. All com-
munication by any algorithm on the DSP resets the watchdog timer. If there is no
other communication then polling is employed.

- Crash-faults of algorithms. Similar to the procedure above also communication of
each algorithm is monitored. A fault is detected if an algorithm is not communi-
cating actively and does not reply to polls on its M&D interface as indicated in
Figure 1.

- Memory leaks. Substantial increase in dynamic memory consumption (heap size) in
an unchanged system state indicates a memory leak.

More interesting, however, are the system-level faults. Detection of system-level prob-
lems involves multiple nodes sharing monitoring information and exploiting application
specific knowledge. Faults of this category that are currently diagnosable are:

- Blackout of a node.

- Value-faults of instances of the stationary vehicle detection algorithm.

- Value-faults of instances of the traffic statistics algorithm.

A node blackout is detected if a node does not respond to periodic alive messages from
its neighbors. To detect and diagnose erroneous algorithm behavior, i.e. value-vaults
of algorithms, a majority decision is employed. Each node compares its own results to
the results of its two nearest neighboring nodes. Because in typical traffic surveillance
applications it can be expected that cameras within a dedicated geographical area observe
very similar events.

Assuming that all camera nodes are arranged in regular intervals alongside a freeway
(or tunnel) observations of neighboring cameras are equal but appear at different times.
Of course, this kind of majority decision is only possible if comparable results are avail-
able on all three concerned nodes. The distributed diagnosis is performed by a simple
communication protocol based on [11] and [12]. This kind of majority decision is only
possible if comparable results are available on all three concerned nodes.

198



DOBLANDER, MAIER, RINNER, SCHWABACH

5 Optimization and Dynamic Reconfiguration
Generally, determining a new configuration is a mapping of intended functionality onto
remaining system resources. The optimizer determines a set of feasible configurations by
comparing the algorithms resource requirements and the available resources on the node.
By adding ”maximum availability” to ”minimum energy consumption” and ”maximum
QoS” we get a total of three different optimization criteria. Thus, the goal of optimization
may vary in between these three objectives. As these are conflicting criteria the resulting
system configuration will always be subject to a trade-off.

It is the optimizer’s task to compute a node configuration CNode = {Cai
, . . . , CaN

},
where Cai

= [qj, dk] with qj ∈ {Q1, . . . , Q3} is the QoS, D = {d1, . . . , dM} are the DSPs
within a node, and A = {a1, . . . , aN} are the available algorithms in the system. The set
of algorithms currently assigned to a DSP dk is written as Adk

where Adk
⊆ A.

The objective functions for the described system are

ENode =
∑

ai∈Adk

Eai
(1)

QNode =
∑

ai∈Adk

Vai
, where Vai

=




3, qj = Q1

2, qj = Q2

1, qj = Q3

(2)

RNode =
∑

ai∈Adk

Rai
. (3)

The energy consumed by an algorithm (Eai
) is taken from a look-up table that is usually

determined by experiment. Every algorithm has to provide a profile with information on
its required resources (e.g., memory usage and DMA channels) and the resulting load on
a specific CPU. Therefor, the resource utilization of each algorithm (Rai

) is taken from
this profile table. It is assumed that low resource utilization results in more redundancy
and therefor increased fault-tolerance.

Given the conflicting objective functions in Equations 1 to 3 the optimizer has to solve
the problem

min(ENode)

max(QNode) (4)
min(RNode)

subject to Cai
∈ S

where S is the set of all possible configurations whose resource requirements can be
satisfied on the node.

If the node’s optimizer does not find a feasible solution to the problem in Equation 4
then the two nearest neighbors of the node are also considered in the solution process.

For setting a specific system configuration the optimizer uses the framework’s capa-
bilities for dynamic software reconfiguration. Possible mechanisms are changing quality
levels of algorithms, migrating algorithms to other nodes or removing an algorithm from
the system.

199



IMPROVING FAULT-TOLERANCE BY DYNAMIC RECONFIGURATION

d1 d2

Q1 Q2 Q3 Q1 Q2 Q3

a1 3 2 1 6 4 2
a2 6 4 2 9 6 3

Table 1: Determined energy consumption.

d1 d2

Q1 Q2 Q3 Q1 Q2 Q3

a1 30 20 10 60 40 20
a2 60 40 20 90 60 30

Table 2: Determined resource requirements.

6 Illustrative Example
We demonstrate the functionality of the multi-criterion optimizer by the following setup.
We consider two DSPs (d1, d2) with a total of four algorithms (a1, . . . , a4). Only a1 and
a2 are running on the observed node. The system policy forces that algorithm a1 is run at
quality level Q1. Algorithm a2 may run either at level Q1 or Q2.

Energy consumption and resource requirements are determined by profiling experi-
ments and are summarized in Table 1 and Table 2, respectively. Maximum available
resource for both DSPs is limited to 100. Equation 5 and Equation 6 define all possible
configurations for algorithm a1 and algorithm a2, respectively.

Ca1 = {ca1,1, ca1,2} = {[Q1, d1], [Q1, d2]} (5)
Ca2 = {ca2,1, ca2,2, ca2,3, ca2,4} = {[Q1, d1], [Q1, d2], [Q2, d1], [Q2, d2]} (6)

Given the above resource limitation of the two DSPs, the set of feasible configurations is
defined as

C = {C1, . . . , C8} = {{ca1,1, ca2,1}, {ca1,1, ca2,2}, {ca1,1, ca2,3}, {ca1,1, ca2,4}, (7)
{ca1,2, ca2,1}, {ca1,2, ca2,2}, {ca1,2, ca2,3}, {ca1,2, ca2,4}}. (8)

For each of the above configurations Ci the values of the objective functions in Equa-
tions 1– 3 can now be calculated.

EC = {EC1 , . . . , EC8} = {9, 12, 7, 9, 12, 15, 10, 12} (9)
RC = {RC1 , . . . , RC8} = {90, 120, 70, 90, 120, 150, 100, 120} (10)
QC = {QC1 , . . . , QC8} = {6, 6, 5, 5, 6, 6, 5, 5} (11)

From Equation 4 together with Equations 9– 11 it can easily be seen that C3 is optimal
with respect to energy consumption and redundancy (i.e. fault-tolerance), but C3 is not
optimal concerning overall quality. As there is no configuration that is optimal in all
respects different global policies are employed to choose a final solution. If quality was
most important C1 would be the best configuration selected by the optimizer.

200



DOBLANDER, MAIER, RINNER, SCHWABACH

7 Conclusion
In this work we investigate a method for improving fault-tolerance and service availability
in intelligent video surveillance (IVS) systems. Therefore, capabilities for monitoring,
diagnosis and dynamic reconfiguration are added to the system. In case of faults a multi-
criterion optimizer determines a new degraded system configuration maintaining as much
functionality as possible. In an illustrative example we demonstrate the functionality of
our approach.

Future work includes the evaluation of different sizes of the involved neighbored nodes
for the case if a single node does not deliver a feasible solution for the optimal configura-
tion. Especially for time-sensitive and safety-critical applications like traffic surveillance
it is important to guarantee well defined time bounds also for a distributed implementa-
tion. Thus, we also intend to extend our approach to include means for achieving bounded
detection latency and bounded recovery time. Furthermore, we aim in a better integration
of the fault-tolerance mechanism into our software framework (i.e. middleware) to make
them less dependent on a specific application and support application development.

References
[1] A. Maier, B. Rinner, H. Schwabach, and T.Trathnigg. Combined Management of Power- and Qual-

ity of Service in Distributed Embedded Video Surveillance Systems. In Proceedings of the First
Workshop on Power-Aware Real-Time Computing, Pisa, Italy, 2004.

[2] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. IEEE Computer, pages 41–50,
2003.

[3] C.F. Chiasserini and E. Magli. Energy Consumption and Image Quality in Wireless Video-
Surveillance Networks. In Proceedings of the 13th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 2002.

[4] Y. Zang and K. Chakrabarty. Energy-Aware Adaptive Checkpointing in Embedded Real-Time Sys-
tems. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE’03), 2003.

[5] L. Lundberg, D. Hggander, K. Klonowska, and C. Svahnberg. Recovery Schemes for High Avail-
ability and High Performance Distributed Real-Time Computing. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS’03), 2003.

[6] J. Haines, V. Lakamraju, I. Koren, and C.M. Krishna. Application-Level Fault Tolerance as a Com-
plement to System-Level Fault Tolerance. Journal of Supercomputing (Kluwer), pages 53–68, 2000.

[7] T. Bracewell and P. Narasimhan. A Middleware for Dependable Distributed Real-Time Systems. In
Proceedings of the Joint Systems and Software Engineering Symposium, 2003.

[8] C. Coello Coello. A Short Tutorial on Evolutionary Multiobjective Optimization. In Proceedings of
the First International Conference on Evolutionary Multi-Criterion Optimization, 2001.

[9] W. Wolf, B. Ozer, and T. Lv. Smart Cameras as Embedded Systems. IEEE Computer, pages 48–53,
2002.

[10] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach. Real-Time Video Analysis on an Em-
bedded Smart Camera for Traffic Surveillance. In Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada, 2004.

[11] J. G. Kuhl and S. M. Reddy. Fault-Diagnosis in Fully Distributed Systems. In Proceedings of the
11th IEEE International Symposium on Fault-Tolerant Computing (FTCS-11), 1981.

[12] A. Subbiah and D. M. Blough. Distributed Diagnosis in Dynamic Fault Environments. IEEE Trans.
on Parallel and Distributed Systems, pages 453–467, 2004.

201




