
A Novel Software Framework for Power-Aware Reconfiguration in Distributed

Embedded Smart Cameras

Andreas Doblander, Arnold Maier, Bernhard Rinner

Institute for Technical Informatics
Graz University of Technology, AUSTRIA

{doblander, maier, rinner}@iti.tugraz.at

Helmut Schwabach

Video and Safety Technology

ARC Seibersdorf research, AUSTRIA

{helmut.schwabach}@arcs.ac.at

Abstract

Intelligent video surveillance (IVS) systems are based

on so called smart cameras that combine video sensing,

processing and communication within a single embedded

device. Maximizing the service-level and minimizing the

power consumption are two important but conflicting ob-

jectives in IVS. In this paper we present a novel software

framework for power-aware reconfiguration in distributed

intelligent video surveillance (IVS) systems. The multi-

layer heterogenous software framework hosts services for

power-aware system-level task distribution and is based

on a publisher-subscriber middleware approach. An on-

line multi-criterion optimizer permanently computes opti-

mal camera configurations with respect to a given cost

model for both power consumption and service-levels.

1. Introduction

Intelligent video surveillance (IVS) is based on the re-

cent development of so called smart cameras and is getting

more and more attention in industry and research. Smart

cameras [15, 2] combine video sensing, processing and

communication within a single embedded device. Networks

of distributed smart cameras are an emerging technology for

a broad range of important applications. Through coopera-

tion among individual cameras these networks have the po-

tential to realize many more challenging applications than

traditional systems. An IVS system may be partitioned into

logical groups of typically co-located smart cameras—so-

called surveillance clusters.

Typically, smart cameras have to execute demanding

video processing and compression algorithms [6]. Further-

more, power-awareness is also of major importance in IVS.

Especially in solar-powered cameras it leads to prolonged

operation time and smaller device sizes. Recent technolo-

gies such as Power-over-Ethernet are also deployed in em-

bedded designs but do have strict limitations in the amount

of available energy. Thus, maximizing the service-level

and minimizing the power consumption are two important

but conflicting design objectives for IVS systems. Since

service-level and power requirements change during oper-

ation online optimization for both objectives followed by

dynamic reconfiguration is desirable. The problem of find-

ing optimal camera configurations can be formulated as a

combinatorial multi-criterion optimization (MCO) problem

with the two above mentioned objectives.

A camera configuration consists of various IVS services,

i.e., video analysis algorithms, in different QoS-levels on

given hardware resources. Some surveillance services do

not have to be assigned to a specific camera but they may be

relocated within a surveillance cluster. Flexibility of algo-

rithm configurations, i.e., how tasks are composed to build

the application, as well as scalability concerning the num-

ber and the different types of employed surveillance tasks

have to be addressed by the software framework.

The SmartCam [2] is a fully embedded system and

serves as the hardware platform for this work. It is realized

as a scalable, embedded multi-processor platform consist-

ing of a network processor and a variable number of digital

signal processors (DSPs) and is especially targeted for a use

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

in distributed IVS setups. A multilayer heterogeneous soft-

ware framework has been implemented that hosts services

for power-aware system-level task distribution. It is based

on a publisher-subscriber middleware approach that allows

dynamic reconfiguration of services, i.e., the algorithms ex-

ecuted on the DSPs. This is in contrast to current practice

where functionality is mostly changed by re-programming a

device with a new software image. Furthermore, it contains

an online multi-criterion optimizer that permanently com-

putes feasible camera configurations with respect to a given

cost model for both power consumption and service-levels.

2. Related work

Middleware for distributed and embedded systems is a

very active research field. A lot of work has been done to

support transparent communication and to ease distributed

application development. Unfortunately, middleware tech-

nologies from general purpose computing, such as, e.g.,

Microsoft DCOM [14], Java RMI [11] and OMG CORBA

[12] are not suitable for very resource limited devices [8] as

smart cameras are.

An interesting approach is the “Self-*” architecture [5].

It is a data-flow oriented and component-based middleware

framework that is aimed for dependable pervasive comput-

ing systems.

The notion of runtime configuration capable embedded

systems by Nitsch and Kebschull [10] is quite similar to our

understanding of a dynamically configurable system. How-

ever, we do not consider hardware reconfiguration as sug-

gested in their work. Nitsch and Kebschull also use Enter-

prise Java Beans as enabling technology which is too re-

source intensive for our application.

A popular inter-process communication model for re-

altime systems is the realtime publisher/subscriber model

(RT-PS) [13]. It supports loose coupling of tasks by

message-oriented communication. As the registration of

data sources and sinks can be done at runtime the RT-PS

approach was chosen as the basis for our software frame-

work.

Minimizing the power consumption and maximizing

service-levels in IVS are—similar to a lot of other real-

world problems—two conflicting objectives for optimiza-

tion and therefore are referred to as multi-criterion opti-

mization (MCO) problems [3]. Solving a MCO-problem

does not result in a single scalar that represents an optimal

value but in a set of several so called non-dominated solu-

tions (also referred to as Pareto-optimal solutions). How-

ever, none of the Pareto-optimal solutions is ’better’ than

another one in general but only in at least one criterion.

So called evolutionary approaches include genetic algo-

rithms (GAs) that are used to solve MCO problems. GAs

are heuristic search algorithms that are based on the evolu-

tionary ideas of natural selection and genetics. They are an

applicable and robust approach especially for MCO prob-

lems with a large and complex search space. All genetic

algorithms are based on the same generic concept. They

start by a random initial population and generate better pop-

ulations in each iteration by the principles of mutation and

crossover. Each individual gets tested if it fits as possible

solution due to a given cost function of each objective func-

tion [9].

Each camera configuration corresponds to a certain uti-

lization of hardware components. Therefore, the approach

presented in this paper takes use of dynamic power man-

agement (DPM) in order to minimize the power consump-

tion [1]. DPM is based on the observation that a lot of power

is wasted because of system components that are fully pow-

ered up even if they are not in use.

3. A novel software framework for distributed
smart cameras

3.1. Software architecture

The main focus of the SmartCam software architecture is

flexibility and reconfigurability. It consists of several layers

which can be grouped into (i) the DSP-Framework (DSP-

FW), running on DSPs, and (ii) the SmartCam-Framework

(SC-FW), running on a network processor. This architec-

ture is based on the abstraction that the application logic

is running on the network processor and dynamically loads

and unloads the actual IVS services (i.e., algorithms) onto

the DSPs as needed. Thus, the software framework fulfills

the main prerequisite for enabling dynamic camera recon-

figuration. An overview of the software architecture of our

smart camera is depicted in Figure 1.

SmartCam Framework The SC-FW that is illustrated in

the left part of Figure 1 serves two main purposes. First, it

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Figure 1. The overall software architecture of our smart camera.

provides an abstraction of the DSPs to ensure platform inde-

pendence of the application layer. Second, the application

layer uses the provided communication methods, i.e., inter-

nal messaging to the DSPs and external IP-based communi-

cation, to exchange information or offer data relay services

for the DSP-FW.

Modules of this part of the software architecture support

application development in that they provide high-level in-

terfaces to DSP algorithms and functions of the DSP-FW.

To further ease application development the SC-FW on the

network processor is running on top of a standard LINUX

kernel.

DSP Framework The DSP-FW, as indicated in the right

part of Figure 1, runs on every DSP in the system. It is built

upon the DSP/BIOS realtime operating system (RTOS)

from Texas Instruments. The main purposes of the DSP-

Framework are (i) the abstraction of the hardware and com-

munication channels, (ii) the support for dynamic load-

ing and unloading of application tasks, and (iii) the man-

agement of on-chip and off-chip resources of the DSP. Of

course, the sensor interface module is only needed on the

DSP to which the image sensor is connected. The key func-

tionality in the DSP-Framework is the publisher-subscriber

middleware that is described in Section 3.3 in more detail.

All IVS services (i.e., video analysis algorithms) and

also some framework components can be loaded and un-

loaded at runtime by the Dynamic Loader module. Actu-

ally, only modules of the DSP-FW in dark shade in Figure 1

have to be available at startup. All other components can be

dynamically loaded at runtime.

3.2. Online optimization and power-aware

reconfiguration of camera configura-

tions

Regardless if a camera configuration is set directly via a

user interface, by a scheduled profile or even autonomously

by the IVS system itself, it is desirable that only config-

urations with an optimal power- and service-level tradeoff

are selected. The SC-FW, therefore, also includes an im-

plementation of a multi-criterion optimizer for online opti-

mization of the camera configuration. It employs a specially

tailored online genetic algorithm that is suitable for solving

the considered MCO problem with respect to a given cost

model under soft realtime demands. The model contains in-

dividual costs for both quality-of-service (QoS) and its cor-

responding power-consumption for each service executed

on a smart camera.

The MCO delivers Pareto-optimal feasible camera con-

figurations that represent a full set of different tradeoffs in

power consumption and service level. Thus, it allows the

configuration manager to choose only optimal configura-

tions among a pre-computed set of camera configurations.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

For instance, whenever possible multiple services are run

on a single DSP instead of utilizing two (or more) DSPs in

order to reduce power consumption. The MCO, however,

gets re-triggered whenever a (new) service is to be started

or stopped or the capacity of available hardware resources

(i.e., DSPs or network bandwidth) is changed.

The SmartCam configuration manager sets an onboard

camera configuration due to configurable goals. It starts or

stops IVS services on the DSPs but also triggers dynamic

power management. Like this the DSPs get dynamically

powered on and off due to their utilization in a camera con-

figuration.

In case of low-energy, for instance, a camera configura-

tion that utilizes less hardware resources is desired in order

to gain more power savings by onboard DPM. Within the

domain of the network processor DPM may only be par-

tially applied because of the permanent use of affected com-

ponents. An exception is the implementation of a suspend-

mode of the entire camera.

Within the domain of the DSPs, more possibilities exist

for DPM. Due to dynamic loading and unloading of appli-

cation tasks on the DSPs, a DSP may get powered down

completely by the SmartCam configuration manager if the

camera is in an appropriate configuration. Furthermore, on-

line DPM of the DSP cores and peripheral components such

as video decoders or memories is applied. The DSP/BIOS

RTOS provides so called ’hooks’ that are called upon spe-

cific events such as task switches. The local power man-

agers of the individual DSPs are called from such hooks at

every task switch. These power managers maintain a data

structure for each individual task, containing data about all

corresponding components including the DSP core and pe-

ripheral components (e.g. video decoders) that are used by

the task [7].

3.3. Publisher-subscriber middleware

The publisher-subscriber architecture is an integral part

of the DSP-FW [4]. It aims at providing seamless and

flexible connections between the algorithms running on the

DSPs. Furthermore, it has to provide the basic means for

supporting application reconfigurations aimed at reducing

power consumption.

From the framework’s point of view every video analy-

sis algorithm is a separate entity that is executed in its own

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration Registration

Look-up /
Add Item

Data

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Figure 2. The publisher-subscriber architec-
ture within a single DSP.

thread. Interconnections of the algorithms are defined by

the application. For communication between algorithms on

the same DSP an operating system mechanism called mail-

box is employed. Mailboxes provide buffered communica-

tion and also allow for synchronization as tasks are blocked

when they are waiting for data delivered by the mailbox.

In video applications a large amount of data has to be han-

dled. To use the limited memory of the DSPs efficiently im-

age data is not copied when sent between algorithms on the

same DSP. Only references to actual data are exchanged.

Small messages like system commands or monitored per-

formance information are directly posted to mailboxes. Fig-

ure 2 depicts the situation for two algorithms residing on the

same DSP. The first algorithm provides a data service X that

the second uses for further processing.

The publisher-subscriber manager (PSM) is the author-

ity where algorithms can register as data providers or data

consumers. That is, they register a publication or a subscrip-

tion, respectively. There is one PSM running on each DSP

and on the network processor. When an algorithm wants to

register a service it first instantiates a publisher or subscriber

object depending on whether a publication or subscription

is needed. This object then registers itself with the PSM.

The newly registered service is also added to the directory

service (DS) where it can be looked up later on. As algo-

rithms can reside on different DSPs within a SmartCam it

is also necessary that each PSM can discover services that

have registered with a different PSM. Therefore, the net-

work processor also hosts a PSM that relays service requests

between PSMs on different DSPs.

Properties objects (PrO) are used to describe published

data and subscriptions, respectively. Each publisher and

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

subscriber object owns a PrO that represents its QoS config-

uration. Examples for properties include image resolution

and frame rate. In the service discovery process the PrOs

are used to match subscribers to appropriate publishers by

comparing their properties.

A publisher object (PO) is instantiated for each message

type an algorithm wants to publish to other tasks. On in-

stantiation the PO handles the registration with the PSM.

Every publisher keeps a PrO that contains a description of

the provided service. When data is ready for transmission

from the algorithm the PO posts this data as a message to

the mailboxes of all subscribers registered for the service.

If there are subscribers residing on different DSPs a proxy

mechanism is used. This procedure is described in more

detail in Section 3.3.

Tasks that require a data service of another algorithm in-

stantiate a subscriber object (SO). This SO then registers

with the PSM. In order to receive data a mailbox is created

using operating system services. To define the required data

quality also every SO owns a PrO. In the registration pro-

cess the PSM looks up the appropriate service using the di-

rectory service DS (cf. Section 3.3). If a fitting service is

found then the discovered publisher stores a reference to the

mailbox of the requesting SO so that messages can be sent

to it.

Medium abstraction and remote subscription In case

of algorithms residing on different DSPs, i.e., a so-called

remote subscription, an extension to the plain architecture

described above is needed. A special object for abstracting

from the communication medium is used to establish the

connection. This medium abstraction object (MAO) is part

of the middleware layer and is present on every processor of

the platform. In general it is possible to use it for different

communication media. But currently it is only used for pro-

viding abstract communication over the local PCI bus of the

SmartCam. Figure 3 illustrates the case of two algorithms

residing on two different DSPs in more detail.

It can be seen from Figure 3 that in contrast to the single

DSP case (cf. Figure 2) each MAO creates a local proxy

SO or PO on the sending and receiving DSP, respectively.

These proxy objects behave like normal POs and SOs. The

MAO, however, transfers the actual data over the local PCI

bus instead of passing references.

Directory service and service discovery All publishings

and subsciptions are listed in the directory service (DS)

together with their properties. A search algorithm based

on service names and QoS parameters is used to discover

matching data service. If there is no matching PO or SO

for a registering SO or PO, respectively, then a remote ser-

vice discovery process is initiated by the local PSM. In a

remote lookup the local PSM queries the PSM residing on

the network processor that in turn keeps records of PSMs of

all other DSPs. Therefore, all available services in the sys-

tem are taken into account as all PSMs use their associated

directory services in the search.

4. Implementation and experimental results

The SmartCam platform is based on an Intel IXDP425

development board comprising an Intel IXP425 XScale net-

work processor running at 533 MHz. It is equipped with 16

MB of flash memory and 256 MB of SDRAM. Two to four

ATEME NVDK PCI boards each comprising a Texas In-

struments TMS320C6415 DSP running at up to 1 GHz are

plugged into the base board. Each NVDK is equipped with

264 MB of SDRAM. The XScale is operated by a LINUX

kernel version 2.6.10 and the DSPs run the Texas Instru-

ments DSP/BIOS RTOS kernel as provided with the Code

Composer Studio 3.0 development environment.

4.1. Performance analysis of the publisher-

subscriber middleware

The overall memory footprint of the PS-MW is only

15.78 KB. Total memory consumption overhead, of course,

depends on the number of publishings and subscriptions in

the system as each of them requires a PrO and a PO or

SO, respectively. In a typical setting with two algorithms

per DSP and each algorithm providing one service and sub-

scribes to one service this yields a total memory overhead

of the middleware of 3.71 KB per DSP.

The PS-MW management overhead at system startup

and for PO and SO creation/registration was measured to

be about ten microseconds only. Message transfer overhead

of our light-weight PS-MW is about 16.35% compared to a

plain mailbox transfer. Note that in this scenario one pub-

lisher with exactly one connected subscriber on the same

DSP was examined.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Publisher-
Subscriber
Manager
(PSM)

Directory
Service

(DS)

Medium
Abstraction

Object
(MAO)

Publisher
Object
(PO)

Service X

Properties
Object
(PrO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Mailbox

Medium
Abstraction

Object
(MAO)

Publisher-
Subscriber
Manager
(PSM)

on the network
processor

D
at

a

D
at

a

Look-up /
Add Item

Look-up /
Add Item

Registration

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 S

ub
sc

rib
er

 O
bj

ec
t

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 P

ub
lis

he
r

O
bj

ec
t

Creates
Creates

R
egistration

Get remote
registration
information

Get remote
registration
information

R
eg

is
tr

at
io

n
DSP 1 DSP 2

Network Processor

Processor boundaries

Figure 3. Extended publisher-subscriber architecture to connect algorithms on different DSPs.

In another scenario we examined a multicast communi-

cation scheme with one publisher and several subscribers

connected to it on the same DSP. The significant time mea-

sure in this case is the overall time needed to transfer the

published message to all subscribed tasks. In this scenario

the transfer time increases almost linearly by approximately

1 μs for each subscriber.

Transfer overhead for communication of algorithms re-

siding on different DSPs stems from the indirection in the

involved MAOs and the proxy PO as well as the proxy SOs.

It can be seen from Table 1 that multiple subscribers on the

same remote DSP yield less overhead than if they all reside

on different DSPs. This is due to less management overhead

in the target MAO.

4.2. Evaluation of the online multi-criterion

optimizer

The considered MCO problem is evaluated for its use

in IVS with an implementation of an genetic algorithm on

the SmartCam. We therefore use an input data model with a

maximal number of service tasks that is typical for IVS. The

Number Transfer overhead (μs)

of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 - - - -

2 4.69 5.24 - -

3 5.91 6.44 7.49

Table 1. Message transfer overhead time for
publisher and subscribers residing on differ-
ent DSPs relative to direct PCI transfers.

values for the power- and service costs of the tasks that form

the cost model are based on previously measured values for

the DSP’s processor utilizations and corresponding power

consumption including all different QoS-levels of all given

services.

The genetic algorithm starts with a random initial pop-

ulation of individuals that represent camera configurations

and improves its results up to a maximum number of it-

erations. The individuals form a population as a function

of their costs for both optimization objectives, i.e., power

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

consumption and service quality. In the given evaluation,

the MCO is executed for s=6 different tasks in up to q=5

QoS levels on r=2 DSPs as listed in Table 2. Experimen-

tal results from previous performance evaluations of the ge-

netic algorithm have indicated that setting a mutation-rate

of m=0.08, and a crossover-rate of c=0.14 respectively is

suitable in order to obtain Pareto-optima as fast as possible.

DSPs Services Corresponding Number
of QoS-Levels

r = 2 s = 6 q1 = 5, q2 = 4, q3 = 2,
q4 = 3, q5 = 4, q6 = 5

Table 2. Parameter setup for the MCO.

For better evaluation of the MCO, the output data of the

genetic algorithm has been compared with the Pareto-set

of a separately implemented greedy optimization algorithm

that considers every possible configuration of the whole

search space. In particular, useful optimization results were

obtained already after about 30% of the genetic algorithm’s

total execution time. By this time, the genetic algorithm

has already found 90% of all theoretically existing Pareto-

optimal camera configurations.

Figure 4 depicts the population of camera configurations

that has been computed on the SmartCam by the genetic

algorithm of the MCO in about 40% of its total execution

time. It shows that the optimizer has generated a population

that is already close to the theoretical Pareto-set that has

been computed by the greedy algorithm that are plotted as

Optimal Individuals in the figure.

Note that the leftmost point in Figure 4 represents a cam-

era configuration with the most services executed in their

best QoS levels but also with the highest power consump-

tion. In contrast, the rightmost point is a configuration with

the worst QoS but also with the lowest power consumption

due to low device activity in the camera.

As also can be seen in Figure 4, there is a little gap in the

computed Pareto-set of camera configurations. It marks the

point where it can be switched between camera configura-

tions that utilize one DSP or two DSPs, respectively. In the

case of using the single-DSP instead of the two-processor

camera configuration, a small degradation of the overall ser-

vice quality leads to a decrease of power consumption of

about 10%.

Because dynamic power management is applied to DSPs

of the SmartCam and therefore they may get dynamically

powered-down, the performance of MCO has been evalu-

ated on the network processor of the SmartCam. For the

computation of the population depicted in Figure 4, the

MCO performed the optimization in 1377ms on the IXP425

processor. This turns out as suitable for the given soft real-

time requirements in typical IVS-applications. Thus, online

MCO is feasible for its implementation on embedded smart

cameras.

5. Conclusion

In traffic surveillance there is a trend towards distributed

intelligent surveillance cameras. These smart cameras pro-

vide on-site video analysis to detect dangerous traffic situa-

tions. High performance embedded computing platforms

are required to provide enough computing power for the

video analysis algorithms. In previous work [2] we devel-

oped the SmartCam that is a heterogeneous multi-processor

prototype of an embedded smart camera. It comprises a net-

work processor and up to ten DSPs.

Limited resources on the embedded platform prohibit

to run all analysis algorithms simultaneously. There-

fore, all algorithms are loaded and unloaded on demand

at runtime. To support communication between dynami-

cally changing algorithms on the DSPs a middleware layer

that supports loose coupling of tasks is required. In this

work a very light-weight real-time publisher-subscriber

middleware (PS-MW) for the SmartCam platform is pre-

sented. Furthermore, we use a genetic algorithm that

is specially tailored for embedded smart cameras for on-

line multi-criterion optimization (MCO) with respect to the

two desired objectives ’maximizing the service-level’ and

’minimizing the power consumption’. Optimization re-

sults are then used to reconfigure services to get an opti-

mal trade-off between power consumption and Quality-of-

Service. Experimental results demonstrate the efficiency

of the publisher-subscriber implementation and the feasibil-

ity of our approach for online computation of power-aware

camera configurations.

In ongoing efforts middleware fault tolerance mecha-

nisms are currently intensively investigated to make the

SmartCam more robust. Future work will also focus on

the implementation of a context-sensing and analysis unit

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

C
os

ts
 (

no
rm

al
iz

ed
)

Quality Costs (normalized)

Dominated Individuals
Optimal Individuals

Non-Dominated Individuals

Figure 4. An approximated set of Pareto-optimal camera configurations computed by the MCO.

on the SmartCam SW-FW to further improve autonomous

operation in a network of many distributed smart cameras.

References

[1] A. Bogliolo, L. Benini, and G. D. Micheli. A Survey of De-

sign Techniques for System-Level Dynamic Power Manage-

ment. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(3), June 2000.

[2] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and

H. Schwabach. Distributed embedded smart cameras for

surveillance applications. Computer, 39(2):40–47, Feb.

2006.

[3] C. C. Coello. A Short Tutorial on Evolutionary Multiobjec-

tive Optimization. In Proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization,
Zuerich, Switzerland, pages 21–40, 2001.

[4] A. Doblander, B. Rinner, N. Trenkwalder, and A. Zo-

ufal. A middleware framework for dynamic reconfigura-

tion and component composition in embedded smart cam-

eras. WSEAS Transactions on Computers, 5(3):574–581,

Mar. 2006.

[5] C. Fetzer and K. Högstedt. Self*: A data-flow oriented

component framework for pervasive dependability. In Pro-
ceedings of the Eighth IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, pages 66–

73. IEEE, Jan. 2003.

[6] G. L. Foresti, C. Mähönen, and C. S. Regazzoni. Multi-
media video-based surveillance systems. Kluwer Academic

Publishers, 2000.

[7] A. Maier, B. Rinner, W. Schriebl, and H. Schwabach. Online

Multi-Criterion Optimization for Dynamic Power-Aware

Camera Configuration in Distributed Embedded Surveil-

lance Clusters. In Proceedings of the 20th IEEE Interna-
tional Conference on Advanced Information Networking and
Applications, Vienna, Austria, Apr. 2006.

[8] C. Mascolo, L. Capra, and W. Emmerich. Mobile computing

middleware. In E. Gregori, G. Anastasi, and S. Basagni,

editors, Advanced Lectures on Networking: NETWORKING
2002 Tutorials, volume 2497 of Lecture Notes in Computer
Science, pages 20–52. Springer, 2002.

[9] K. Miettinen, editor. Evolutionary Algorithms in Engineer-
ing and Computer Science. John Wiley and Sons, 1999.

[10] C. Nitsch and U. Kebschull. The use of runtime configu-

ration capabilities for network embedded systems. In Pro-
ceedings of the 2002 Design, Automation and Test in Europe
Conference and Exhibition, page 1093. IEEE Computer So-

ciety, Mar. 2002.

[11] E. Pitt and K. McNiff. Java.rmi: The Remote Method Invo-
cation Guide. Addison Wesley, June 2001.

[12] A. Pope. The Corba Reference Guide: Understanding the
Common Oject Request Broker Architecture. Addison Wes-

ley, Jan. 1998.

[13] R. Rajkumar, M. Gagliardi, and L. Sha. The real-time

publisher/subscriber inter-process communication model for

distributed real-time systems: Design and implementation.

In Proceedings of the Real-Time Technology and Applica-
tions Symposium, pages 66–75. IEEE, May 1995.

[14] R. Sessions. COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[15] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded

systems. Computer, 35(9):48–53, Sept. 2002.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

