
An Efficient Middleware for Power-Aware Service Reconfiguration in
Multi-DSP Smart Cameras

Andreas Doblander, Arnold Maier, Bernhard Rinner
Institute for Technical Informatics,
Graz University of Technology

Inffeldgasse 16/1, 8010 Graz, Austria
E-Mail: {doblander, maier, rinner} @iti.tugraz.at

Abstract

Traffic video surveillance applications are increasingly
maturing to intelligent infrastructures based on networks
of embedded smart cameras. These smart cameras pro-
vide on-board real-time video analysis and streaming. In
previous work a hardware platform for a smart camera
was proposed. This work now presents a software frame-
work for power-aware service reconfiguration in embed-
ded multi-DSP smart cameras. An efficient publisher-
subscriber communication scheme together with dynamic
loading capabilities enable reconfiguration at runtime.
Depending on the observed scenario an optimal cam-
era configuration is chosen. A multi-criterion optimizer
implemented as a genetic online algorithm continuously
computes optimal algorithm configurations by minimizing
power-consumption and maximizing quality-of-service.
Based on a cost-function an appropriate configuration is
chosen among the set ofPareto-optimal solutions.

1.Introduction
Intelligent video surveillance (IVS) based on smart

cameras is getting more and more attention in the industry.
Smart cameras [15] are equipped with high-performance
on-board computing and communication devices. They
combine video sensing, processing and communication
within a single embedded device. Networks of distributed
smart cameras are an emerging technology for a broad
range of important applications, including smart rooms,
surveillance, tracking and motion analysis.

Typically, the cameras have to execute demanding
video processing and compression algorithms [9]. These
surveillance tasks running on the cameras offer different
QoS4evels and may be adapted in response to events de-
tected in the monitored area. The distributed surveillance
architecture has, therefore, to be scalable and flexible.

In previous work we have designed a smart camera-
the SmartCam [5] as a fully embedded system. The
smart camera is realized as a scalable, embedded high-
performance multi-processor platform consisting of a net-
work processor and a variable number of digital signal
processors (DSP).

Flexibility of algorithm configurations, i.e., how tasks
are composed to build the application, as well as scal-
ability concerning the number and the different types
of employed surveillance tasks have to be concerned.
Low power consumption and efficient resource utiliza-
tion are prerequisites in an embedded setting. In a video
surveillance application there are potentially many differ-

Andreas Zoufal
Video and Safety Technologies,
ARC Seibersdorf research
2444 Seibersdorf, Austria

E-Mail: andreas.zoufal@arcs.ac.at

ent video analysis algorithms intended to run. However,
in a typical setting not all algorithms are required at all
times. In dynamically reconfiguring the set of running
algorithms, i.e., services, resources can be optimally uti-
lized while minimizing power consumption and maximiz-
ing Quality-of-Service (QoS). A software framework for
such dynamic power-aware service reconfiguration is de-
vised in this work.

2.Related Work
Middleware for distributed and embedded systems is a

very active research field. A lot of work has been done
to support transparent communication and to ease dis-
tributed application development. Unfortunately, middle-
ware technologies from general purpose computing, such
as Microsoft DCOM [1], Java RMI [3] and OMG CORBA
[2] are not suitable for very resource limited devices [11]
as smart cameras are.
An interesting approach is the "Self-*" architecture [8].

It is a data-flow oriented and component-based middle-
ware framework that is aimed for dependable pervasive
computing systems.
The notion of runtime configuration capable embedded

systems by Nitsch and Kebschull [13] is quite similar to
our understanding of a dynamically configurable system.
However, we do not consider hardware reconfiguration as
suggested in their work. Nitsch and Kebschull also use
Enterprise Java Beans as enabling technology which is too
resource intensive for our application.
A popular inter-process communication model for real-

time systems is the realtime publisher/subscriber model
(RT-PS) [14]. It supports loose coupling of tasks by
message-oriented communication. As the registration of
data sources and sinks can be done at runtime the RT-PS
approach was chosen as the basis for our software frame-
work.

Minimizing the power consumption and maximizing
service-evels in IVS are similar to a lot of other real-
world problems two conflicting objectives for optimiza-
tion and therefore are referred to as multi-criterion opti-
mization (MCO) problems [6]. Solving a MCO-problem
does not result in a single scalar that represents an optimal
value but in a set of several so called non-dominated solu-
tions (also referred to as Pareto-optimal solutions). How-
ever, none of the Pareto-optimal solutions is "better" than
another one in general but only in at least one criterion.

So called evolutionary approaches include genetic al-
gorithms (GAs) that are used to solve MCO problems.
GAs are heuristic search algorithms that are based on the
evolutionary ideas of natural selection and genetics. They

0-7803-9521-2/06/$20.00 §2006 IEEE. 2985

are an applicable and robust approach especially forMCO
problems with a large and complex search space. All ge-
netic algorithms are based on the same generic concept.
They start by a random initial population and generate bet-
ter populations in each iteration by the principles of mu-
tation and crossover. Each individual gets tested if it fits
as possible solution due to a given cost function of each
objective function [12].
Each camera configuration corresponds to a certain uti-

lization of hardware components. Therefore, the approach
presented in this paper takes use of dynamic power man-
agement (DPM) in order to minimize the power consump-
tion [4]. DPM is based on the observation that a lot of
power is wasted because of system components that are
fully powered up even if they are not in use.

3.System Architecture
3.1.SmartCam Platform Overview

In previous work [5] we introduced our SmartCam
as a prototype for an embedded smart camera for video
surveillance. It has been designed as a low-power, high-
performance embedded system comprising (i) the sensing
unit, (ii) the processing unit, and (iii) the communication
unit.
A CMOS image sensor is the heart of the sensing unit.

It delivers images with VGA resolution and up to 30
frames per second. The processing unit can be equipped
with up to ten TMS32OC64x DSPs from Texas Instru-
ments to adapt computing performance to the require-
ments of the real-ime video analysis and compression
tasks targeted for the smart camera. An aggregate per-
formance of up to 80 GIPS can be delivered by the DSPs
while keeping the power consumption low.
As the central part of the communication unit a network

processor (Intel XScale) establishes the internal and exter-
nal communication. Internal communication is performed
via the PCI bus between either the DSPs or the DSPs and
the network processor. IP-based external communication
is provided via Ethernet or GSM/GPRS.
The software architecture of our smart camera is de-

signed for flexibility and reconfigurability. It consists of
several layers which can be grouped into (i) the DSP-
Framework (DSP-FW), running on the DSPs, and (ii) the
SmartCam-Framework (SC-FW), running on the network
processor. This architecture is based on the abstraction
that the application logic is running on the network pro-
cessor and loads and unloads the actual analysis algo-
rithms onto the DSPs as needed. An overview of the soft-
ware architecture of our smart camera is depicted in Fig-
ure 1.
The SC-FW that is illustrated in the left part of Fig-

ure 1 serves two main purposes. First, it provides an ab-
straction of the DSPs to ensure platform independence of
the application layer. Second, the application layer uses
the provided communication methods, i.e., internal mes-
saging to the DSPs and external IP-based communication,
to exchange information or offer data relay services for
the DSP-FW. Modules of this part of the software archi-
tecture support application development in that they pro-
vide high-evel interfaces to DSP algorithms and functions
of the DSP-FW. To further ease application development

the SC-FW on the XScale is running on top of a standard
LINUX kernel.
The DSP-FW, as indicated in the right part of Figure 1,

runs on every DSP in the system. The main purposes
of the DSP-FW are (i) the abstraction of the hardware
and communication channels, (ii) the support for dynamic
loading and unloading of application tasks, and (iii) the
management of on-chip and off-chip resources of the DSP.
Of course, the sensor interface module is only needed on
the DSP to which the image sensor is connected. The key
functionality in the DSP-FW is the publisher-subscriber
subsystem. The DSP-FW is built upon the DSP/BIOS
real-ime operating system from Texas Instruments.

All video analysis algorithms and several framework
components of the DSP-FW can be loaded and unloaded
at runtime by the Dynamic Loader module. Actually, only
modules of the DSP-FW in dark shade in Figure 1 have to
be available at startup. All other components can be dy-
namically loaded at runtime.

3.2.Publisher-Subscriber Subsystem
The publisher-subscriber architecture is an integral part

of the DSP-FW. It aims at providing seamless and flexible
connections between the algorithms running on the DSPs.
Furthermore, it has to provide the basic means for support-
ing application reconfigurations aimed at reducing power
consumption or realizing graceful degradation in case of
failures.
From the framework's point of view every video anal-

ysis algorithm is a separate entity that is executed in its
own thread. Interconnections of the algorithms are de-
fined by the application. In previous work we used stati-
cally defined relations among different data services, i.e.,
algorithms, to simplify inter-ask communication. This
resulted in a very efficient message exchange over the
PCI bus. However, the static bindings of data produc-
ers and consumers substantially restricted flexibility in
dynamically combining algorithms. Furthermore, algo-
rithms had to directly invoke PCI communication primi-
tives which reduces portability. To overcome these limi-
tations a publisher-subscriber middleware layer (PS-MW)
has been introduced [7].

Communication between algorithms on the same DSP
an operating system mechanism called mailbox is em-
ployed. Mailboxes provide buffered communication and
also allow for synchronization as tasks are blocked when
they are waiting for data delivered by the mailbox. In
video applications a large amount of data has to be han-
dled. To use the limited memory of the DSPs efficiently
image data is not copied when sent between algorithms
on the same DSP. Only references to actual data are ex-
changed. Small messages like system commands or moni-
tored performance information are directly posted to mail-
boxes. Figure 2 depicts the situation for two algorithms
residing on the same DSP. The first algorithm provides a
data service X that the second uses for further processing.
The publisher-subscriber manager (PSM) is the author-

ity where algorithms can register as data providers or data
consumers. As algorithms can reside on different DSPs
within a SmartCam it is also necessary that each PSM
can discover services that have registered with a different

0-7803-9521-2/06/$20.00 §2006 IEEE. 2986

Software-Framework

SmartCam-Framework

UserMode (Application Layer)

SmartCam Configuration Manager Goals

RTPideoStreming Multi-Criterion Resource Monitorr
RIP Video Streaming Optimizer (MCO) (RM)

. SmartCam Framework Middeware Layer
Other

Standard Publisher- Medium Directory
Linux AppS Subscriber Abstraction Service

Manager (PSM) Object (MAO) (DS)

Kernel Mode

Dynamic

ManagemnIt Linux Kernel
(DPM))....

DSP Kernel Module

PCI Messaging and Synchronization

Processor DSP-FrameL4vBoundary

DSPAIgorithms

Algorithm Algorithm 2

(e.g, MPEG-4 (e.g., Stationary
I Encoding) Vehicle Detection)

LkSP-Framework

Subscriber
Manager
(PSM)

vork

Medium
Abstraction Directory

Object Service
(MAO) (DS)

CMOS
PCsI Dynamc Sensor

Messag_ng Loader
Interface

DSP/BIOS
red-tumd operatimi spiern

Network-Processor

Algorithm n

(e.g., Vehicle
Tracking)

DSP-
Resource
Manager
(RM)

Dynamic Power
Management
(DPM) of DSP
and Peripherials

DSP

PCI Bus

Figure 1. The overall software architecture of our smart camera. In the left part of the figure the so-called
SmartCam-Framework is illustrated while the right part shows the so-called DSP-Framework.

Data Source

Directory ~~~~Publisher-Derireory -- Look-up /-----Subscriber(Se Add Item Manager
DS) istration RegisraPSM)

Registration'_ Registration

Task A

Data Sink

Task B

Figure 2. Principle relations between objects of the
publisher-subscriber architecture. Only local con-

nections within a single DSP are sketched.

PSM. Therefore, the network processor also hosts a PSM
that relays service requests between PSMs on different
DSPs. Properties objects (PrO) are used to describe pub-
lished data and subscriptions in detail. Based on this in-
formation publishers and subscribers are able to discover
each other and to connect at runtime. It is the responsibil-
ity of every algorithm to provide this information when it
registers a service with the PSM. A publisher object (PO)
is instantiated by every task that provides data services
while tasks that require a data service of another algo-
rithm instantiate a subscriber object (SO). These modules
are communicating with the PSM to establish algorithm
connections.

In case of algorithms residing on different DSPs, i.e.,
a so-called remote subscription, an extension to the plain
architecture described above is needed. A special object
for abstracting from the communication medium, i.e., the
PCI bus, is used to establish the connection. This medium
abstraction object (MAO) is part of the middleware layer
and is present on every processor of the platform.
The MAO takes the role of the local SO and PO on the

involved DSPs, respectively. That is, on the DSP with the

data source the MAO instantiates a proxy SO and on the
DSP with the data sink a proxy PO is created. These proxy
objects behave like normal publishers and subscribers and
enable transparent communication for the algorithm also
between different DSPs. Remote subscriptions are limited
by a resource manager to eliminate bus overloading so that
real-ime conditions are not violated.

For a convenient service discovery the PS-MW pro-
vides a directory service (DS) where all published services
are listed together with their properties. To enable system-
wide service discovery the DS is organized as a distributed
service where all DSPs and the network processor each
host a DS module. Entries of all DS modules are continu-
ally synchronized to ensure a consistent overall directory.

4.Dynamic Optimization of Service Configu-
rations
The reconfigurability provided by the PS-MW is the

basis for the power-aware reconfiguration in a cluster of
smart cameras. A configuration manager (cf. Figure 1)
on each camera is responsible for invoking an optimizer
to find an optimal camera configuration which is then set
by the configuration manager.

During operation, the system performs power-aware
reconfiguration within a distributed cluster of embedded
smart cameras by applying at least one of the following
actions:
1. Adaptation of the IVS-services' QoS4evels
2. Reallocation of IVS-services, i.e., algorithms, within
a smart camera ("intra-camera") and/or within multiple
smart cameras ("intra-cluster")
3. Intra-camera DPM of hardware components (e.g., of
processing units) and/or intra-cluster DPM of whole cam-
eras (e.g., by temporary turning them off)
The problem of setting system configurations that are

"optimal" in terms of QoS and power consumption can be
seen as multi-criterion optimization problem. Therefore,
a genetic online algorithm is employed that is suitable for
solving the considered MCO problem on embedded smart

0-7803-9521-2/06/$20.00 (2006 IEEE. 2987

cameras under soft-realtime demands. It delivers a set of
so called Pareto-optimal cameras configurations with re-
spect to a given cost model that contains individual costs
for both QoS and its corresponding power-consumption
for each service executed on a smart camera. Figure 3
shows the a possible camera reconfiguration by switching
to a configuration with less power costs but only a small
QoS degradation.
The genetic algorithm can get triggered during opera-

tion by (1) the onboard configuration manager, or by (2)
remote requests from other cameras. In both cases, the al-
gorithm's input data needs to specify the optimization's
search space and the cost functions for both optimiza-
tion objectives. The search space is defined by the num-
ber of services s that are executed in up to q, different
QoS4evels on up to r hardware resources (i.e., processing
units).

Equation 1 formulates the cost function for power con-
sumption on a smart camera:

Costspower E Costspower(i) *ppi(s, qs) (1)
i=o

In this equation, ,ui (s, qs) is an individual weighting func-
tion for the actual processor utilization that is caused by a
service s in its QoS4evel qs on the considered hardware
component i.
The weighting function ,ui (s, qs) is likely to be defined

as '1' when the hardware component i is in its operational
state that consumes the maximal amount of power, and it
is defined as '0' when the resource is turned off. Any re-
source utilization in between these boundaries depends on
the relation of the components activity to idleness and is
therefore a result of the amount and quality of the services
that affect the device. Therefore, one objective function
of the MCO aims at delivering configurations that tend to
have costs toward zero (Costspower 0).

Equation 2 formulates the cost function for service
quality on a smart camera:

(OStSQual ity

In this equation i(qs, r) is a weighting function for
each QoS4evel q, that is currently executed and causes
an utilization of a hardware resource r.
The weighting function i (qs, r) corresponds to the q,

QoS4evels of each service i and is in contrast to the
costs for power consumption defined as '1' for the mini-
mal QoS of the corresponding services and it is defined as
'0' if the best QoS is set.
The algorithm itself is based on an iterative genetic al-

gorithm. It performs a randomized computation of feasi-
ble Pareto-optimal camera configurations and is described
in more detail in [10].

Furthermore, the approach also covers the permanent
sensing and analysis of application-and situation specific
contextual information. The contextual information in an
IVS-cluster is composed of numerous events that need to
be sensed and analyzed. The events normally have an

Table 1. Runtime memory requirements of middle-
ware objects.

Middleware Value
Component (in Byte)
Publisher-Subscriber
Manager (PSM) 472
Directory Service (DS) 256
Publisher Object (PO) 192
Subscriber Object (SO) 96
Properties Object (PrO) 34-72

impact on the service-evel and power consumption of a
smart camera.
They may be generated within the camera itself, within

the cluster (i.e., a camera causes an event that gets sensed
by other cameras), or by direct user interaction. Since the
information is brought into line with the current individual
camera configurations, it allows making decisions about
one of the following actions: (1) keep the current camera
configuration, (2) (try to) relocate services within the clus-
ter, (3) choose another (already pre-computed) configura-
tion among the Pareto-set, or (4) (re-rigger) the optimizer
due to a new search space.
An advantage of this method is a more autonomous sys-

tem behavior instead of using pre-defined modes for re-
configuration [10]. As a consequence, reconfiguration is
utilized on both cluster-and camera-evel.

5.Experimental Results
5.1.Light-Weight PS-MW

Several experiments have been conducted to illustrate
the performance of our framework for power-aware ser-
vice reconfiguration. Experiments have been performed
on our SmartCam prototype platform.
The basis of the platforms is an Intel IXDP425 develop-

ment board comprising an Intel IXP425 XScale network
processor running at 533 MHz. It is equipped with 16 MB
of flash memory and 256 MB of SDRAM. Two to four
ATEME NVDK PCI boards each comprising a Texas In-
struments TMS320C6415 DSP running at 600 MHz are
plugged into the base board. Each NVDK is equipped
with 264 MB of SDRAM.
The XScale is operated by a LINUX kernel version

2.6.10 and the DSPs run the Texas Instruments DSP/BIOS
real-ime operating system kernel as provided with the
Code Composer Studio 3.0 development environment.
Framework components have been used as they are de-
scribed in Section 3.2.
The overall memory footprint is only 15.78 KB. It can

be seen from Table 1 that the runtime memory consump-
tion is also very low. Total memory consumption over-
head, of course, depends on the number of publishings
and subscriptions in the system as each of them requires
a PrO and a PO or SO, respectively. In a typical setting
with two algorithms per DSP and each algorithm provid-
ing one service and subscribes to one service this yields a
total memory overhead of the middleware of 3.71 KB per
DSP.
The PS-MW adds some management overhead to the

0-7803-9521-2/06/$20.00 §2006 IEEE.

I: COStSQuality (') - i (q,, r) (2)
i=O

2988

Configuration that represents
the full performance state

Previous Configuration

Pareto-optimal Camera
Configurations with Different
Power- and QoS Tradeoff

Power Saving

-9

QoS Degradation

New Configuration with
Degraded QoS

Configuration that represents
the off-state

Quality Costs

Figure 3. Changing a camera's configuration among the already pre-computed Pareto-set with different power
and QoS tradeoffs.

system. So the initialization times of the PS-MW at sys-

tem start-up and the PO and SO creation and registration
times were examined. Initialization of the PSM and the
DS is performed once at system startup. Creation and
registration is performed whenever an according object
is instantiated.Experiments showed that all of these times
amount to a couple of microseconds.

To assess the overhead in message transfer time when
employing our light-weight PS-MW we have performed
some simple measurements. Communication time for a

plain mailbox transfer between two tasks was measured to
be 1.04 ,us. The same tasks have been adapted to use the
PSMW which yielded a transfer time of 1.21 ,us. There-
fore, the overhead amounts to about 16.35 percent. In this
experiment the time spent from sending the message at the
publisher until it was received at the subscriber was mea-

sured. Note that in this scenario one publisher with ex-

actly one connected subscriber was examined, i.e., a uni-
cast communication scheme. All these took only tasks on

the same DSP into account.
In another scenario we examined the multicast com-

munication scheme, i.e., one publisher with several sub-
scribers connected to it. The significant time measure in
this case is the overall time needed to transfer the pub-
lished message to all subscribed tasks. Again, only tasks
on the same DSP were considered. Transfer time in this
scenario increases almost linearly by approximately 1 ,us

for each subscriber. It is also interesting to note that trans-
fer time is almost equal in the two cases where publisher
and subscribers have the same priority or the publisher has
the highest priority. If the subscribers have the highest pri-
ority then the transfer time increases by approximately 2
,us per subscriber. This is due to additional task switches
by the DSP/BIOS scheduler when subscribers block on

mailboxes.
The overhead for communication of algorithms resid-

ing on different DSPs stems from the indirection in the in-
volved MAOs and the proxy PO as well as the proxy SOs.
It can be seen from Table 2 that multiple subscribers on

the same remote DSP yield less overhead than if they all
reside on different DSPs. This is due to less management
overhead in the target MAO. Also note that data is trans-
ferred only once to each DSP even if there are multiple

Table 2. Message transfer overhead time for pub-
lisher and subscribers residing on different DSPs.
Overhead is given compared to direct PCI transfers

without the PS-MW.
Number Transfer overhead (,us)
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49
2 4.69 5.24 __

__3_ 5.91 6.44 7.49

subscribers for that data on the DSP.

5.2.Genetic Optimization Algorithm
In order to evaluate the quality of PoSeGA's output, an

exhaustive search algorithm that takes the whole search
space into account has also been implemented. It there-
fore considers all possible camera configurations during
the optimization and delivers all Pareto-optimal configura-
tions. The exhaustive search algorithm has been executed
on a standard x86-based platform but even there resulted
in long execution times anyway.
The performance of the multi-criterion optimization on-

line algorithm has been evaluated for several IVS4ypical
parameter setups as depicted in Table 3.

Table 3. Performance evaluation of PoSeGA for r
2 DSP-units, s = 6 services in up to qU = 5 QoS-

levels.
Optima Found Pareto-elements Time (ms)

10% 19 51.02
25% 23 105.67
50% 29 260.83
70% 32 394.64
80% 33 514.86
90% 34 617.94
95% 35 866.08
100% 37 1849.00

It lists the obtained experimental results for a setup as

given with the SmartCam with r = 2 DSPs and s = 6

0-7803-9521-2/06/$20.00 §2006 IEEE.

Power Costs

2989

IVS-services in up to q, = 5 different QoS4evels per ser-
vice. As also computed by the exhausting search algo-
rithm, a total of 37 Pareto-optimal camera configurations
exist for this setup.
The PoSeGA algorithm already finds all Pareto-optimal

individuals after only testing 3,5% of the given theoretical
search space of 153600 possible camera configurations.
In this case, about 1.8 seconds have been measured for
execution on the SmartCam. However, it can be seen that
finding 90% of all existing optimal values only about 30%
of the total execution time. This is an interesting observa-
tion which can particulary get used for designing different
stop criteria for PoSeGA.
The obtained results demonstrate the feasibility of us-

ing an online optimizer by matching given soft-realtime
constraints in IVS.

6.Conclusion
Smart cameras are an increasing trend in embedded

video surveillance. They provide on-site video analysis
to detect dangerous traffic situations and compute traffic
statistics that can be used for traffic management. High
performance embedded computing platforms are required
to provide enough computing power for the video analysis
algorithms.
As smart cameras are embedded appliances that may

also be deployed in solar- and battery-powered settings
it is important to optimize power consumption. Further-
more, the Quality-of-Service of surveillance services has
to be kept as high as possible to ensure proper detection
rates. Therefore, a specialized power-aware reconfigura-
tion framework for a cluster of distributed smart cameras
is devised based on the SmartCam prototype platform de-
veloped in previous work [5].

Services, i.e., video analysis algorithms, are loaded I
unloaded to cameras and service parameters are adjusted
dynamically to minimize power consumption while re-
taining a maximum level of service quality. These optimal
camera configurations are computed by a multi-criterion
optimizer implemented as a genetic algorithm. A configu-
ration manager decides on the best configuration based on
a special cost function. The required flexibility in combin-
ing and exchanging algorithms at runtime is provided by a
light-weight publisher-subscriber middleware framework.

In further work it is intended to advance the implemen-
tation of the cost model of PoSeGA so that continuously
measured power and performance metrics are used instead
of a priori estimates.

Furthermore, we are currently extending our framework
for providing fault tolerance mechanisms. The dynamic
reconfiguration capabilities are used to gracefully degrade
surveillance services in case of failures.

7.References
[1] COM andDCOM: Microsoft's Visionfor Distributed

Objects. John Wiley & Sons, 1997.
[2] The Corba Reference Guide: Understanding the

Common Oject Request Broker Architecture. Addi-
son Wesley, Jan. 1998.

[3] Java. rmi: The Remote Method Invocation Guide.
Addison Wesley, June 2001.

[4] A. Bogliolo, L. Benini, and G. D. Micheli. A Survey
of Design Techniques for System-Level Dynamic
Power Management. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(3), June
2000.

[5] M. Bramberger, A. Doblander, A. Maier, B. Rinner,
and H. Schwabach. Distributed Embedded Smart
Cameras for Surveillance Applications. IEEE Com-
puter, 39(2):68-75, Feb. 2006.

[6] C. C. Coello. A Short Tutorial on Evolutionary
Multiobjective Optimization. In Proceedings of
the First International Conference on Evolutionary
Multi-Criterion Optimization, Zuerich, Switzerland,
pages 21 - 40, 2001.

[7] A. Doblander, B. Rinner, N. Trenkwalder, and
A. Zoufal. A middleware framework for dynamic
reconfiguration and component composition in em-
bedded smart cameras. WSEAS Transactions on
Computers, 5(3):574-581, Mar. 2006.

[8] C. Fetzer and K. Hogstedt. Self*: A data-flow ori-
ented component framework for pervasive depend-
ability. In Proceedings of the Eighth IEEE Interna-
tional Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS'03), pages 66-73. IEEE,
Jan. 2003.

[9] G. L. Foresti, C. Mahonen, and C. S. Regaz-
zoni. Multimedia video-based surveillance systems.
Kluwer Academic Publishers, 2000.

[10] A. Maier, B. Rinner, H. Schwabach, and
W. Schriebl. Online Multi-Criterion Optimiza-
tion for Power-Aware Camera Configuration in
Distributed Embedded Surveillance Clusters. In
Proceedings of the 20th IEEE International Con-
ference on Advanced Information Networking and
Applications (to appear), Vienna, Austria, 2006.

[11] C. Mascolo, L. Capra, and W. Emmerich. Mobile
computing middleware. In E. Gregori, G. Anastasi,
and S. Basagni, editors, Advanced Lectures on Net-
working: NETWORKING 2002 Tutorials, volume
2497 of Lecture Notes in Computer Science, pages
20-52. Springer, 2002.

[12] K. Miettinen, editor. Evolutionary Algorithms in En-
gineering and Computer Science. John Wiley and
Sons, 1999.

[13] C. Nitsch and U. Kebschull. The use of runtime con-
figuration capabilities for network embedded sys-
tems. In Proceedings of the 2002 Design, Automa-
tion and Test in Europe Conference and Exhibi-
tion (DATE'02), page 1093. IEEE Computer Soci-
ety, Mar. 2002.

[14] R. Rajkumar, M. Gagliardi, and L. Sha. The real-
time publisher/subscriber inter-process communica-
tion model for distributed real-ime systems: De-
sign and implementation. In Proceedings of the
Real-Time Technology andApplications Symposium,
pages 66-75. IEEE, May 1995.

[15] W. Wolf, B. Ozer, and T. Lv. Smart cameras as
embedded systems. Computer, 35(9):48-53, Sept.
2002.

0-7803-9521-2/06/$20.00 §2006 IEEE. 2990

