
A light-weight Publisher-Subscriber Middleware for Dynamic
Reconfiguration in Networks of Embedded Smart Cameras

ANDREAS DOBLANDER, BERNHARD RINNER,
NORBERT TRENKWALDER
Graz University of Technology

Institute for Technical Informatics
Inffeldgasse 16/1, 8010 Graz

AUSTRIA
{doblander, rinner, trenkwalder}@iti.tugraz.at

http://www.iti.tugraz.at/smartcam

ANDREAS ZOUFAL
Austrian Research Centers Seibersdorf

Video and Safety Technology
Forschungszentrum, 2444 Seibersdorf

AUSTRIA
andreas.zoufal@arcs.ac.at

Abstract: Traffic video surveillance applications are increasingly implemented by networks of embedded smart
cameras. These smart cameras provide on-board real-time video analysis and streaming. This work presents a light-
weight middleware for a heterogeneous multi-processor smart camera platform comprising a network processor
and several DSPs. It supports dynamic reconfiguration by changing and rearranging algorithms at runtime. The
middleware employs a publisher-subscriber-based architecture for task communication. It’s the aim of this work to
provide efficient communication by imposing minimum overhead on the DSPs. Experimental analysis shows the
efficiency of the approach.

Key–Words: distributed multi-DSP system, publisher-subscriber, dynamic reconfiguration, video surveillance

1 Introduction
Networks of distributed smart cameras are an emerg-
ing technology for a broad range of important appli-
cations, including smart rooms, surveillance, tracking
and motion analysis. Smart cameras [1] are equipped
with high-performance on-board computing and com-
munication devices. They combine video sensing,
processing and communication within a single em-
bedded device.

We have designed a smart camera—we call it
the SmartCam—as a fully embedded system. The
SmartCam is realized as a scalable, embedded high-
performance multi-processor platform consisting of a
network processor and a variable number of digital
signal processors (DSP) [2].

Several requirements have to be met by the sys-
tem software to employ this flexible high-performance
platform in real distributed (surveillance) applica-
tions: (i) Flexibility in algorithm configurations, i.e.,
how tasks are composed to build the application, (ii)
scalability concerning the number and the different
types of employed surveillance tasks, (iii) low re-
source consumption so that resources are spared for
surveillance tasks and image buffers, (iv) low per-
formance overhead to allow real-time operation of
surveillance tasks, and (v) real-time operation to meet
requirements of surveillance tasks.

To meet the above requirements we have imple-

mented a multi-layer heterogeneous software frame-
work for our smart cameras. Since our smart cam-
eras comprise a network processor and several DSPs
the framework is divided into two parts. First, the
SmartCam-Framework (SC-FW) running on the net-
work processor. Second, the DSP-Framework (DSP-
FW) is based on a publisher-subscriber middleware
approach and is running on the DSPs.

This middleware allows to dynamically change
the camera’s functionality, i.e., various tasks can be
loaded and unloaded at runtime or their QoS-level can
be adapted dynamically. Based on this reconfiguration
capabilities our smart cameras can be combined to a
distributed embedded (surveillance) system and sup-
port cooperation and communication among the indi-
vidual cameras.

2 Related work
Middleware for distributed and embedded systems is
a very active research field. A lot of work has been
done to support transparent communication and to
ease distributed application development. Middle-
ware technologies from general purpose computing,
such as, Microsoft DCOM [3], Java RMI [4] and
OMG CORBA [5] are not suitable for very resource
limited devices [6]. To adapt the CORBA technology
to resource constrained real-time systems the Real-

Time CORBA (RT-CORBA) and Minimum CORBA
specifications [7, 8] have been introduced. Schmidt et
al. [9] invented “TAO” as an implementation of the
RT-CORBA specification. It is an object request bro-
ker especially developed for distributed real-time and
embedded systems. Their CIAO framework [10] ex-
tends TAO to also include a component model for dis-
tributed real-time and embedded systems that enables
easy component composition. All these approaches
are quite large and, therefore, not suitable for our
multi-DSP platform.

In [11] the authors present their BASE middle-
ware for pervasive computing. This work aims at a
scalable and efficient middleware that serves all pos-
sible computing architectures for pervasive comput-
ing. BASE is based on a micro-broker that only imple-
ments very basic functionality. All other features can
be added as plug-ins as needed. The “BASE” middle-
ware was implemented in Java which is not appropri-
ate for our DSPs.

A popular inter process communication
model for embedded systems is the real-time
publisher/subscriber model (RT-PS) [12]. It supports
loose coupling of tasks by message-oriented com-
munication. As the registration of data sources and
sinks can be done at runtime the RT-PS approach was
chosen as the basis for our software framework.

3 SmartCam Platform Overview
Our smart camera has been designed as a low-power,
high-performance embedded system.

It comprises of a CMOS image sensor that de-
livers images with VGA resolution, a processing unit
that can be equipped with up to ten TMS320C64x
DSPs from Texas Instruments, and an Intel IXP425
network processor. The computing performance of
this scalable architecture can be adapted to the re-
quirements of the real-time video analysis and com-
pression tasks intended for the application.

The DSPs are coupled via a local PCI bus which
also serves as the connection to the network processor.
The network processor also provides IP-based exter-
nal communication via Ethernet and GSM/GPRS. A
block diagram of our smart camera is shown in Fig. 1.

To ease application development for this platform
of heterogeneous processors an abstract programming
model is used. The DSPs are viewed as computing
power providers and the network processor hosts the
actual application logic where each algorithm is rep-
resented as an object. These algorithm objects carry a
DSP binary that can be downloaded (on demand) to a
DSP and performs the actual video processing.

Ethernet
 WLAN

Serial
 GPRS

Communication

Cam Control

µC

Interfaces

I
n

t

e

r

f
a

c

e

Sensing

(Infrared
 -
)

Flash

PTZ / Dome

Interface

PCI

RAM (EMIF
-
A)

Processing

.

.

.

RAM (EMIF
-
B)

CMOS
-

Sensor

RAM (EMIF
-
A)

RAM (EMIF
-
B)

C6415

I
R

I

S

C6415

Figure 1: The scalable hardware architecture of the
smart camera.

4 Real-Time Publisher-Subscriber
Architecture for DSP Algorithms

Applications for the SmartCam are organized as dif-
ferent algorithms. These algorithms are intercon-
nected depending on the data flow required by the
surveillance application. Each algorithm is running in
its own task. For communication between algorithms
buffered messaging via mailboxes is employed.

In video applications a large amount of data has
to be handled. To use the limited memory of the DSPs
efficiently image data is not copied when sent between
algorithms on the same DSP. Only references to ac-
tual data are exchanged. Small messages like system
commands or monitored performance information are
directly posted to mailboxes.

4.1 Algorithms on a single DSP
Fig. 2 depicts the situation for two algorithms residing
on the same DSP. The first algorithm provides a data
service X that the second uses for further processing.

The publisher-subscriber manager (PSM) is the
authority where algorithms can register as data
providers or data consumers. That is, they register a
publication or a subscription, respectively. A PSM is
running on each DSP and on the XScale. Registra-
tion is available through a simple interface. When an
algorithm wants to register a service it first instanti-
ates a publisher or subscriber depending on whether
a publication or subscription is needed. This object
then registers itself with the PSM. The newly regis-
tered service is added to the directory service where
it can be looked up based on its unique identification

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration Registration

Look-up /
Add Item

Data

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Figure 2: Principle relations between objects of the publisher-subscriber architecture.

number or its properties. As algorithms can reside on
different DSPs within a SmartCam it is also neces-
sary that each PSM can discover services that have
registered with a different PSM. Therefore, the net-
work processor also hosts a PSM that relays service
requests between PSMs on different DSPs.

Properties (PrO) are used to describe published
data and subscriptions as well. Each publisher and
subscriber owns a PrO that identifies the details of
provided and subscribed data services, respectively.
Therefore, a PrO represents the Quality-of-Service
(QoS) configuration of a data service. Examples for
typical properties include image resolution and frame
rate. In the service discovery process the PrOs are
used to match subscribers to appropriate publishers
by comparing their properties. By using a descrip-
tion in terms of properties it is possible to let an al-
gorithm decide whether an available service meets its
requirements or not. If there are several similar ser-
vices available algorithms make their decision based
on the information offered through PrOs. It is the re-
sponsibility of every algorithm to provide the neces-
sary information for offered (data) services when the
service is registered with the PSM.

Every task that provides data services instantiates
a publisher (PO) for each message type it wants to
publish to other tasks. On instantiation the PO then
handles the registration with the PSM. Every pub-
lisher keeps a PrO that contains a description of the
provided service. When data is ready for transmission
from the algorithm the PO posts a reference to this
data as a message to the mailboxes of all subscribers
registered for this service. If there are subscribers re-
siding on different DSPs an intermediate subscriber is
used.

A task that requires a data service of another al-
gorithm instantiates a subscriber (SO). The SO in turn
registers with the PSM. In order to receive data a mail-
box is created. To define the required data quality each

SO owns a PrO. In the registration process the PSM
looks up the appropriate service using the directory
service DS. If a fitting service, i.e., a PO with a match-
ing PrO, is discovered then the discovered publisher
stores a reference to the mailbox of the requesting SO.
Messages are then transferred through this mailbox.

4.2 Algorithms residing on different DSPs

In case of algorithms residing on different DSPs, i.e.,
a so-called remote subscription, an extension to the
plain architecture described above is needed. A spe-
cial object for abstracting from the communication
medium is used to establish the connection. This
medium abstraction object (MAO) is part of the mid-
dleware layer and is present on every processor of the
platform. That is, a MAO is available on each DSP
and the network processor (XScale). In general it is
possible to use it for different communication me-
dia. But currently it is only used for providing ab-
stract communication over the local PCI bus of the
SmartCam. Fig. 3 illustrates the case of two algo-
rithms residing on two different DSPs in more detail.
A remote subscription scenario is very similar to the
single DSP case. It can be seen from Fig. 3 that the sit-
uation on the involved DSPs is the same as it is in the
single DSP case (cf. Fig. 2). But now the MAO takes
the role of the local SO and PO on the involved DSPs,
respectively. That is, on the DSP with the data source
(task A on DSP 1) the MAO instantiates a proxy SO
and on the DSP with the data sink (task B on DSP 2)
a proxy PO is created. These proxy objects behave
like normal publishers and subscribers, respectively.
They exchange data by means of posting messages to
the SO mailboxes. As previously described, in case of
large data, i.e., video frames, only references to local
buffers are transferred. In contrast to that the MAO
objects transfer the actual data through the medium
they are bound to. Currently, that is the local PCI bus.

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Publisher-
Subscriber
Manager
(PSM)

Directory
Service

(DS)

Medium
Abstraction

Object
(MAO)

Publisher
Object
(PO)

Service X

Properties
Object
(PrO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Mailbox

Medium
Abstraction

Object
(MAO)

Publisher-
Subscriber
Manager
(PSM)

on the XScale

D
at

a

D
at

a

Look-up /
Add Item

Look-up /
Add Item

Registration

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 S

ub
sc

rib
er

 O
bj

ec
t

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 P

ub
lis

he
r O

bj
ec

t

Creates
Creates

R
egistration

Get remote
registration
information

Get remote
registration
information

R
eg

is
tra

tio
n

DSP 1 DSP 2

XScale

Processor boundaries

Figure 3: Extended publisher-subscriber architecture to connect algorithms running on different DSPs.

4.3 Directory Service and Service Discovery

For a convenient service discovery the DSP middle-
ware, i.e., the DSP-FW, provides a directory service
(DS) where all published services are listed together
with their properties. Currently, the search algorithm
of the DS uses only a simple description to find ap-
propriate publishers for registering subscribers. That
is, only a message type and important QoS parameters
are used to choose the best matching data service. To
support applications that need more control over the
selection of publishers and subscribers, respectively,
it is also possible that a list of similar services is re-
turned. It is then the application’s responsibility to
choose one. The DS is organized as a collection of
simple lists because of the relatively small number of
entries. Each entry has an identification number that is
a system-wide unique key identifying publishers and
subscribers. These keys are created on instantiation of
a publisher or subscriber. If there is no matching PO
or SO for a registering SO or PO, respectively, then a
remote service discovery process is initiated by the lo-
cal PSM. In a remote lookup the local PSM queries the
PSM residing on the XScale that in turn keeps records
of PSMs of all other DSPs. The PSMs use their asso-
ciated directory services to look up the requested ser-
vice. Therefore, all available services in the system
are taken into account in this search.

5 Performance Analysis

The SmartCam prototype has been used as the eval-
uation platform. It is based on an Intel IXDP425
development board comprising an Intel IXP425 XS-
cale network processor running at 533 MHz. It is
equipped with 16 MB of flash memory and 256 MB
of SDRAM. Two to four ATEME NVDK PCI boards
each comprising a Texas Instruments TMS320C6415
DSP running at 600 MHz are plugged into the base
board. Each NVDK is equipped with 264 MB of
SDRAM. The XScale is operated by a LINUX kernel
version 2.6.x and the DSPs run the Texas Instruments
DSP/BIOS real-time operating system kernel as pro-
vided with the Code Composer Studio 3.0 develop-
ment environment.

An important requirement for the task communi-
cation framework on the DSPs of the SmartCam is to
use only little memory to save it for the analysis algo-
rithms. Although our middleware was implemented
in C++ the memory footprint is only 15.78 KB. It can
be seen from Table 1 that the runtime memory con-
sumption is also low.

As the PS-MW adds some management overhead
to the system we measured the times spent in the ini-
tialization phase of the PS-MW at system start-up, i.e.,
initialization of the PSM and the DS. Additionally,
PO and SO creation and registration times were ex-
amined. The results for the different PS-MW objects

Middleware Value
Component (in bytes)
Publisher-Subscriber
Manager (PSM) 472
Directory Service (DS) 256
Publisher Object (PO) 192
Subscriber Object (SO) 96
Properties Object (PrO) 34-72

Table 1: Memory requirements of middleware ob-
jects.

Initialization
Component time (µs)
Publisher-Subscriber
Manager (PSM) 4.68
Directory Service (DS) 9.90
Creation/Registration
Publisher Object (PO) 10.17
Creation/Registration
Subscriber Object (SO) 11.01

Table 2: Initialization times of PS-MW components.

are collected in Table 2. Initialization of the PSM and
the DS is performed once at system startup. Creation
and registration is performed whenever an according
object is instantiated.

Message transfer overhead of the PS-MW com-
pared to direct mailbox communication was measured
to be 16.35%. In this experiment the time spent from
sending the message at the publisher until it was re-
ceived at the subscriber was measured and compared
to simple mailbox transfers. Note that in this scenario
one publisher with exactly one connected subscriber
on the same DSP was examined.

In another scenario we examined the multicast
communication scheme, i.e., one publisher with sev-
eral subscribers connected to it. The significant time
measure in this case is the overall time needed to
transfer the published message to all subscribed tasks.
Again, only tasks on the same DSP were considered.
It can be seen from Fig. 4 that transfer time increases
almost linearly with the number of subscribers.

Note also that due to the scheduler of the
DSP/BIOS real-time operating system message trans-
fer times depend on the task priorities of publisher and
subscriber tasks. Fig. 4 illustrates that transfer time is
almost equal when the publisher and the subscriber
have the same priority or the publisher has the highest
priority. When the subscribers have the highest prior-
ity the transfer time increases significantly.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
[u

s]

Number of subscribers

Pri(Pub)>Pri(Subs)
Pri(Pub)=Pri(Subs)
Pri(Pub)<Pri(Subs)

Figure 4: Transfer time increases depending on the
number of subscribers and the priorities of PO and SO
tasks (denoted “Pri(Pub)” and “Pri(Subs)”).

Number Transfer overhead (µs)
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 - - - -
2 4.69 5.24 - -
3 5.91 6.44 7.49

Table 3: Message transfer overhead time compared to
direct PCI transfers.

In another experiment the transfer times between
tasks on different DSPs have been analyzed (cf. Ta-
ble 3). Overhead in this case stems from the indirec-
tion in the involved MAOs and the proxy PO as well
as the proxy SOs. It can be seen from the table that
multiple subscribers on the same remote DSP yield
less overhead than if they all reside on different DSPs.
This is due to less management overhead in the target
MAO.

6 Conclusion
There is a strong trend towards intelligent infrastruc-
tures to ease everyday live. In traffic surveillance, e.g.,
networks of embedded smart cameras are introduced
that provide on-site video analysis. In previous work
[13, 2] we developed the SmartCam that is a hetero-
geneous multi-processor prototype of an embedded
smart camera. It comprises a network processor and
several DSPs.

In this work a real-time publisher-subscriber mid-
dleware (PS-MW) for the SmartCam platform is pre-
sented. It is a very light-weight architecture that sup-
ports loose coupling of tasks in the given dynamic ap-
plication environment. By introducing minimal indi-
rection it also provides little transfer time overhead.

Transparent communication within a single DSP and
between different DSPs via the local PCI bus is sup-
ported. To abstract from the PCI bus a special proxy
mechanism is used.

An experimental evaluation on the SmartCam
prototype shows that our PS-MW has a memory foot-
print of as little as 15.78 KB. Transfer time overhead
in case of communication between tasks on the same
DSP is only 16.35%. In a multicast scenario the PS-
MW scales well in that the transfer time per subscriber
is almost constant with respect to the number of sub-
scribers. Due to the efficient abstraction mechanism
the message transfer time overhead compared to a di-
rect PCI transfer is in the order of several microsec-
onds.

References:

[1] Wolf W., Ozer B., and Lv T. Smart Cameras as
Embedded Systems. Computer, vol. 35(9), Sep.
2002, pp. 48–53.

[2] Bramberger M., Doblander A., Maier A., Rinner
B., and Schwabach H. Distributed Embedded
Smart Cameras for Surveillance Applications.
IEEE Computer, 2006. (to appear).

[3] COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[4] Java.rmi: The Remote Method Invocation
Guide. Addison Wesley, Jun. 2001.

[5] The Corba Reference Guide: Understanding
the Common Oject Request Broker Architecture.
Addison Wesley, Jan. 1998.

[6] Mascolo C., Capra L., and Emmerich W. Mobile
Computing Middleware. In Gregori E., Anastasi
G., and Basagni S. (eds.), Advanced Lectures
on Networking: NETWORKING 2002 Tutorials,
vol. 2497 of Lecture Notes in Computer Science.
Springer, 2002.

[7] Object Management Group. Real-Time CORBA
2.0. http://www.omg.org, Sep. 2001.

[8] Object Management Group. Minimum CORBA
1.0. http://www.omg.org, 2002.

[9] Schmidt D.C. Middleware for Real-Time and
Embedded Systems. Communications of the
ACM, vol. 45(6), Jun. 2002, pp. 43–48.

[10] Balasubramanian K., Wang N., Gill C., and
Schmidt D.C. Towards Composable Distributed

Real-Time and Embedded Software. In Pro-
ceedings of the 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable
Systems (WORDS 2003). Guadalajara, Mexico,
Jan. 2003.

[11] Becker C., Schiele G., Gubbles H., and Rother-
mel K. BASE—A Micro-broker-based Middle-
ware For Pervaisve Computing. In Proceed-
ings of the First IEEE International Conference
on Pervasive Computing and Communications
(PerCom’03). IEEE, Mar. 2003.

[12] Rajkumar R., Gagliardi M., and Sha L. The
Real-Time Publisher/Subscriber Inter-Process
Communication Model for Distributed Real-
Time Systems: Design and Implementation. In
Proceedings of the Real-Time Technology and
Applications Symposium. IEEE, May 1995.

[13] Bramberger M., Brunner J., Rinner B., and
Schwabach H. Real-Time Video Analysis on
an Embedded Smart Camera for Traffic Surveil-
lance. In Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applica-
tions Symposium, 2004.

