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Introduction
Image processing has been a very active research
area over the last decades, and results of this
research can now be found almost everywhere.
The market for image processing technology is
rapidly increasing; its applications range from
machine inspection over security to consumer
products.
Two trends emerge in recent image processing
research: distributed computing and embedded
processing. These trends are very well exemplified
in smart cameras [1, 2] which combine image
sensing, image processing and communication on
a single embedded device. Smart cameras not only
capture and compress the grabbed video stream,
but also perform sophisticated, real-time, on-
board video analysis of the captured scene. In
this article we present a smart camera prototype
and discuss its potential for (distributed)
embedded vision applications. These cameras
help to migrate the video processing from central
base stations to the image sensors.
Performing vision applications on embedded
computing platforms poses several challenges.
First, there are stronger resource limitations on
embedded platforms than on general-purpose
computers. This is especially true for computing
and memory capacities. Second, the software
development process is more tedious due to
limited availability of dedicated image processing
libraries and software frameworks. Finally,
software coding requires more experienced
programmers due to the stronger dependencies
on the underlying hardware. However, we
strongly believe that embedded computing
platforms are crucial for many future vision
applications. They help to increase the reliability,
to reduce the power consumption significantly
and to simplify the deployment and maintenance
of such systems.
In distributed video applications such as
surveillance, smart cameras introduce several

possible. Kleihorst et al. describe in [7] a wireless
smart camera mote comprised of a single-
instruction-multiple-data (SIMD) video-analysis
processor and an 8051 microcontroller. Wireless
communication is based on the IEEE802.15.4
protocol. Another wireless smart camera has
been developed by Kim et al [8].

SmartCam Architecture

Hardware Architecture
Our smart camera (SmartCam) [1] has been
designed as a low-power, high-performance
embedded system. Figure 1 depicts the camera’s
architecture which is comprised of a sensing unit,
a processing unit and a communication unit. A
CMOS sensor is the heart of the sensing unit. It
delivers color images up to VGA resolution at
25 frames per second to the processing unit via a
FIFO memory. The processing unit is composed
of a variable number of digital signal processors
(DSPs) which are connected via a local PCI bus.
This unit is intended to execute image processing
on the acquired images in real-time. An ARM-
based network processor controls the

benefits. Communication bandwidth between
camera and base station can be reduced because
images are processed directly on the sensor. Sys-
tems comprised of smart cameras are more fle-
xible and more scalable compared to centralized
systems. This allows to deploy more surveillance
tasks than with traditional cameras. Decentral-
izing the overall surveillance system hence
improves the availability as well [2].

Related Work
There exist various implementations of embedded
smart cameras ranging from high-performance
cameras to tiny single chip solutions. Heyrman
et al. describe in [3] the architecture of a smart
camera which integrates a CMOS sensor,
processor and a reconfigurable unit on a single
chip. This camera is designed for high-speed image
processing using dedicated parts such as sensors
with massively parallel outputs and region-of-
interest readout circuits.
Integrating video processing into embedded
systems is also an active research topic. Fleck
and Straßer present in [5] a particle based filter
algorithm for tracking objects. They use a
commercially available
camera which is
comprised of a CCD
image sensor, a Xilinx
FPGA for image proces-
sing and a Motorola
PowerPC CPU. Rowe
et al.[6] promote a low-
cost embedded vision
system where image
processing is integrated
into a small camera. Due
to the very limited
memory and computing
resources, only low-level
image processing such as
threshold filtering is Fig.1: SmartCam architecture
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communication unit which has two main tasks.
First, it coordinates the internal communication
among the DSPs as well as the DSPs and the
network processor. Second, it provides
communication channels to the outside world.

Software Architecture
The software architecture is based on the
abstraction, that the application logic runs on
the network processor and loads and unloads
the required image analysis tasks to the
processing unit.
On the processing unit, the DSP framework
provides an environment for the video processing
tasks and introduces a layer of abstraction for
the DSP applications. The DSP framework
supports dynamic loading and unloading of DSP
applications and manages the available resources
on each processor.
The SmartCam framework is executed on the
network processor. It provides an abstracted view
of the processing unit for applications on the
network processor and allows applications to
communicate with the algorithms on the DSPs.

Mobile Agent Framework
Agents are the highest level of abstraction in our
smart cameras. Each video processing task is
represented by an instance of a mobile agent. A
mobile agent framework [9] is executed on the
network processor whereas each camera hosts
an agency, the environment for mobile agents.
The agents act autonomously and carry out the
required actions in order to fulfill their mission.
There are two different types of agents, namely
DSP agents and SmartCam agents. DSP agents
are used to represent video processing tasks and
thus have a tight relation to the processing unit.
The agent contains the DSP executable and is
responsible for starting, initializing and stopping
the DSP algorithm as required. The agent also
knows how to interact with the DSP algorithm
in order to obtain the information required for
further actions. In contrast, SmartCam agents do
not interact with the DSPs. Usually they per-
form control and management tasks. Exploiting
mobility of agents allows to easily migrate video
processing tasks from one smart camera to
another and also encourages dynamic
reconfiguration of the whole surveillance system.

Smart Camera Networks
In our research on distributed smart cameras
(DSC), we have implemented two case studies.
The first study is on multi-camera object tracking
focusing on the implementation of an
autonomous tracker which follows an object of
interest. The second study is on dynamic

reconfiguration. We present our policy-based
middleware used to reconfigure a network of
smart cameras according to the current context
as well as given objectives.

Multi-Camera Tracking
One application of our smart cameras is tracking
the position of an object within a monitored area
by exploiting collaboration of multiple cameras.
The basic idea of our multi-camera tracking
approach is to have a single tracking instance
associated to an object of interest. This tracking
instance follows the object from one camera to
the next as the object moves within the monitored
area. Hence, only the camera which currently
observes the object of interest has to execute the
tracking task while all other cameras can use their
resources otherwise. Our multi-camera tracking
solution is not intended as an exclusive task which
is executed on each camera all the time but a
tracking instance is started for a certain object of
interest as an additional task.
A tracking instance is comprised of a mobile agent
and a tracking algorithm. The tracking algorithm
is responsible for extracting the position of an
object from the video stream acquired by the
camera. Because this is a computing intensive
task, the tracking algorithm is executed on the
processing unit. Only abstract information about
the tracked object such as the current position
and the trajectory is reported to the agent.
The mobile agent on the other hand contains the
application logic and is
responsible to follow
the target from one
camera to the next. The
agent, therefore, uses
the information provid-
ed by the tracking
algorithm in order to
take further actions. If
for example the tracked
object is about to leave
the camera’s field of
view, the agent has to
take care to continue
tracking the object on
the neighboring cam-
eras.

Tracking Algorithm
The tracking algorithm
is the foundation of our
approach as it is re-
sponsible for detecting
and extracting the
position of the tracked
object from the video

stream. Our approach is basically independent
of the concrete tracking algorithm used. The
tracking algorithm, therefore, can be chosen to
fit the individual needs, e.g., the type of object
to track or the environmental conditions.
However, the tracking algorithm has to cope with
our highly dynamic tracking approach.
Particularly, the algorithm must not suffer from
long initialization times because it has to continue
tracking as fast as possible after migrating to the
next camera. The tracking algorithm must also be
able to identify the same object on the next camera
whereas the object may appear differently due
to the position and orientation of the camera.
Taking these requirements into account, the co-
lor-based Continuously Adaptive Mean-shift
algorithm (CamShift) [10] was chosen to
demonstrate the feasibility of our approach. The
CamShift algorithm is a color-based tracking
algorithm which requires almost no initialization
time after migration from one camera to another.
When starting tracking an object, the algorithm
extracts the color-distribution of the object of
interest. Tracking the object in the video stream
is done by finding an object with the same color-
distribution within the search window. Output
of the algorithm is the size and position of the
object. CamShift is designed for dynamically
changing distributions which occur when objects
being tracked move so that the size and location
of the probability color-distribution changes over
time.

Fig.2: Master/slave handover strategy
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Handover Mechanism
The tracking agent is responsible for following
the target from one camera to the next. Thus, the
handover mechanism is crucial for the presented
autonomous, decentralized tracking method.
Using our agent-based tracking approach, an
algorithm designed for tracking an object in a
single video stream can be extended for multi-
camera tracking. The handover procedure of a
tracked object from one camera to the next one
requires the following basic steps:

1. Select the „next“ camera(s)
2. Migrate the tracking instance to the next

camera
3. Initialize the tracking algorithm
4. Discover the object of interest
5. Continue tracking

Identifying the potential next cameras for the
handover is done without a central point of
coordination. Instead, we exploit neighborhood
relations within the smart camera network. Each
camera has defined a set of migration regions
which are described by a polygon in the 2D image
space and a motion vector. Each migration region
is assigned to one or more neighboring cameras.
The motion vector helps to distinguish among
several smart cameras assigned to the same
migration region.
The migration region and their assigned cameras
represent the spatial relationship among the
cameras. All information about the migration
regions is managed locally on each camera by a
dedicated agent. When the tracked object enters
a migration region and the trajectory matches the
motion vector of the migration region, the tracking
agent initiates the handover to the corresponding
adjacent camera(s).
The next two steps of the handover process
(migration and initialization) are implicitly
managed by our mobile agent system. Object
discovery and continuing tracking is then
executed by the migrated tracking algorithm.
The tracking agent may use different strategies

for the handover [11]. For
demonstrating our
approach, we decided to
implement the master/
slave strategy. Figure 2
illustrates the handover
procedure along with the
instances of tracking
agents for a sample
scenario of two con-
secutive cameras. During
the handover, there exist
two tracking instances
dedicated to one object of
interest. As master
tracking agent we denote
the agent which currently
tracks the object. When the
object enters a migration
region, the master agent
creates a slave on the
neighboring cameras. The
master agent also queries
the description of the
object from the tracking
algorithm and transfers it
to the slave. The slave in
turn starts the DSP
application and initializes
the tracking algorithm with
the information obtained
from the master. The slave
is now waiting for the
object to appear. When the
object enters the field of
view of the slave, the roles
of the tracking instances
change. The slave now
becomes the master as it
observes and tracks the
object now. The new
master also notifies the old
master that the target is
now in its field of view,
whereupon the old master
terminates itself.

This approach is also
feasible, if a camera has
more than one neighbor for
the same migration region. In this case, the master
creates a slave on all adjacent cameras. When a
slave notifies the master that it has discovered
the target object, the master instructs all other
slaves to terminate as well. This decentralized
handover mechanism is also applicable for large
scale surveillance systems because only
neighboring cameras in a certain direction are

involved.

Multi-Camera Tracking Demonstration
To demonstrate the feasibility of our multi-camera
tracking, we have implemented the presented
approach and tested on tracking persons in our
laboratory. Therefore, we used two prototypes
(cf. Figure 3) of our smart camera and tracked aFig.3: SmartCam prototype

(a )

(c )

Fig.4: Visualizer. The upper part of each screenshots shows the view of
both cameras while the lower part illustrates the agency on each camera
along with the current agents. The center of the tracked person is
highlighted by the red square.

(b)
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person walking from the viewshed of one camera
to the viewshed of the neighboring one. Figure 4
illustrates the handover procedure by screenshots
of the visualizer. Tracking a person is started on
the left camera by creating a tracking instance.
The tracking algorithm first learns the description
of the target and then tracks the position of the
person (cf. Figure 4(a) – the tracking agent resides
on the left camera, indicated by the highlighted
rectangle in the lower part of the image). When
the person walks out of the current field of view,
i.e., it enters the migration region, the tracking
agent creates a slave on the right camera, and the
slave is waiting for the person to appear (cf.
Figure 4(b) – the tracking agent is present on
both cameras). When the person is discovered
by the tracking instance on the right camera,
the agent on left camera terminates itself (cf.
Figure 4(c)).

Dynamic Reconfiguration
Dynamic reconfiguration refers to the
modification of software tasks executed on nodes
of the camera network. In order to support
dynamic reconfiguration in our DSC system, we
have extended the SmartCam-framework by an
adaptive and reflective middleware system
(ARMS) on top of the mobile agent system.
Our ARMS provides the domain-specific
services (1) task allocation, (2) dynamic
reconfiguration, and (3) quality of service (QoS).
Task allocation is performed before runtime. Its
main objective is to compute an optimal mapping
of tasks to the available resources. We have
modeled the task allocation as a constraint
satisfaction problem (CSP) [12]. A solution of
the CSP corresponds then to an allocation of
tasks to cameras. Dynamic reconfig-uration is
performed online during the operation of the
distributed system. The overall objective is to

adapt the whole
system to the chan-
ging needs, i.e., transfer
the system into an-
other configuration
which better captures
the current require-
ments. This typically
involves starting and
stopping specific
services as well as
moving tasks from one
camera to another.

Dynamic reconfigu-
ration requires some
form of reasoning
about the specific

configuration. Thus, we need some information
about the state of the current configuration as
well as some objective for the next configuration.
We have implemented dynamic reconfiguration
in three steps. First, context sensing and analysis
gathers information about the current state of
the DSC network. The current state is retrieved
using the monitoring service. Second, the
computation of new configurations is done by
an optimizer which uses the contextual
information of the DSC network and the
reconfiguration objective as input. In our
implementation, the reconfiguration objective is
specified by policies. Third, the reconfiguration
enforcement performs the actual transfer from
the current to the next configuration. This
enforcement is implemented by our mobile agent
system. All three steps are executed periodically
in a so-called reconfiguration loop (cf. Figure 5).

Policy-based Middleware
The computation of new configurations is based
on policies. Policies represent a collection of rules
which have to be calculated to determine a po-
tential new configuration. Thus, our policy-based
approach can be separated into a policy-
specification and a policy evaluation phase. As
depicted in Figure 5, the policies are externally
specified and serve as input to the reconfiguration
loop. The evaluation of the policies has to be
performed within the loop.
In order to get some output from the framework,
the policies have to be evaluated. This evaluation
is performed in a hierarchical way, from abstract
objects (policies) over rules to conditions and
actions. This evaluation chain is triggered
whenever an event occurs and changes the
corresponding parameters in the policy.
Policies can be changed online and enable diffe-
rent branching during the execution of scenarios.

Scenarios represent successive reconfigurations
of the DSC from one state to another. This enables
the specification of more complex tasks in our
DSC network. We have specified and tested
several scenarios for various motion detection
and tracking tasks.

Towards an Intelligent Multi-
Sensor System
Fusing data from various sensors helps to
improve the robustness and confidence, to extend
the spatial and temporal coverage as well as to
reduce ambiguity and uncertainty of the
processed sensor data. In the I-SENSE project
[13] we extend our SmartCam platform to
embedded sensor fusion and demonstrate it on
two case studies: In waste separation, sensor
fusion helps to reduce the amount of non-
reusable, disposable waste. In traffic surveillance,
fusing sensor data from different sensors leads
to increased detection rates which in turn can
help to increase safety on the roads.
The goal of this project is to extend our SmartCam
platform to a distributed high-performance mul-
ti-sensor architecture. Our multi-sensor
architecture combines data from different sensors
at two stages. First, intra-node fusion takes place
at a single sensor node where raw sensor data or
abstracted features are combined. Second, inter-
node fusion combines abstracted data from
various geographically distinct sensor nodes.
In our I-SENSE project not only methods for
abstracting and fusing data but also architectural
issues must be solved. These important
architectural issues include both hardware and
software features such as (i) computing and
communication performance, (ii) scalability,
autonomous operation and configuration,
(iii) fault tolerance and graceful degradation as
well as (iv) data abstraction and communica-
tion.

Multi-Sensor Data Fusion
In our I-SENSE project three basic categories (or
levels) of data fusion are exploited. These fusion
levels are differentiated according to the amount
of information they provide. The most basic level
is called raw-data fusion. At this level, only raw,
uncorrelated data is provided to the user. In
comparison, level two data fusion provides a
higher level of inference and delivers additional
interpretive meaning suggested from the raw data
and data will be fused on feature level. Therefore,
this level is called feature-level fusion. Level three
data fusion is designed to make assessments and
provide recommendations to the user and is called
decision fusion. Thus, each jump between data
fusion levels represents a corresponding leap in

Fig.5: Dynamic reconfiguration loop
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technological complexity to produce increasingly
valuable informational detail.
Data fusion is performed on the individual sensor
nodes using data from the local sensors as well
as abstracted sensor data from the adjacent sensor
nodes. In order to realize a flexible and scalable
solution our multi-level fusion is based on the
following constraints: (i) Sensor fusion is
performed distributed in our I-SENSE platform,
i.e., there is no (single) central fusion node.
(ii) Communication of the abstracted sensor data
is managed by the I-SENSE runtime environment
over the entire network, transparent for the indi-
vidual sensor node. (iii) The sensor nodes have
no global knowledge about the network topology;
they require only knowledge about their neighbor-
hood.

Multi-Level Fusion Architecture
The I-SENSE platform consists of a two-level
architecture which is an extension of our
SmartCam architecture (cf. section „SmartCam
Architecture“). The top-level is composed of
geographically distributed sensor nodes which
are connected via a common communication
medium (cf. Figure 6). The sensor nodes re-
present the bottom-level of our I-SENSE
platform. They are equipped with high-
performance processing and communication
elements and several heterogeneous and
homogeneous sensors can be attached to them.
Thus, the sensor nodes are the main processing
components of our I-SENSE platform.

Scalability is supported
in several ways in our
I- SENSE project. First,
the number and type of
sensors can be adapted
at the individual sensor
nodes. Second, the
processing and commu-
nication performance of
each sensor node can be
easily modified. Third,
communication can be
performed via wired and
wireless connections and
finally, the number of
sensor nodes can be
easily adapted.
The fusion nodes are
logical entities on the
sensor node that perform the sensor fusion
algorithms at the individual fusion levels. These
nodes receive (raw) data from the sensors and
abstracted data from other fusion nodes, and
provide data for other sensor nodes and data
consumers. Data consumers are remote fusion
nodes as well as visualization nodes where the
combined sensor data can be monitored. The
presence of multiple data sources and fusion
nodes provides many choices for the architecture,
i.e., how the sensors or data sources report to
each fusion node and the connectivity among the
nodes (cf. Figure 8).
In order to develop a generic HW/SW architecture
for embedded data fusion the following challenges

can be identified: (i) simple and expressive
specification of the configuration problem like,
(ii) effective online optimization, (iii) lightweight
runtime environment on the distributed
embedded platform supporting efficient
synthesis and communication, and (iv) synchro-
nization of intra- and inter-node sensor data. The
first three challenges are general for distributed
embedded systems whereas the last one is
specific for distributed data fusion.

The multi-level data fusion architecture for the
I-SENSE project is presented in Figure 7. The
three fusion methods (i) raw-data fusion,
(ii) feature-level fusion and (iii) decision fusion
are the heart of this architecture. The output of
these fusion strategies is then combined to derive
the current state of the fusion process.
The two bottom level methods combine data
from sensor directly attached to the fusion node;
the top level method uses state information from
remote fusion nodes. In order to realize a flexible
solution our multi-level fusion is based on the
following functionalities:

Raw-Data Level Fusion: Each sensor
performs a single-source positional estimate
in the sensor state space. These estimates
are then combined to an aggregate estimate.
Since raw-data fusion is performed in the
raw-data space of the sensor, it can only be
applied for similar sensor types (e.g., visual
sensor and infrared visual sensor).
Feature Level Fusion: Each sensor extracts
a single-source state vector. This means, each
sensor provides an estimate of the position
and velocity of an object (cars, cargo,
persons, etc.) or an observed situation, based
only on its own single source data. These

Fig.6: The I-SENSE platform as a scalable, distributed embedded system.
(N1 . . . N3: Sensor nodes, V1 . . . V4: Video interfaces, A1 . . . A2: Audio
ports, R1: Radar interface and S1: Spectral imaging)

Fig.7: Multi-level Data fusion architecture
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state vectors are input to a data fusion
process to achieve a joint state vector
estimate based on multiple sensors. A
classifier, based on support vector machines,
is trained with previously recorded and
classified traffic sequences and furthermore
used to derive a decision from previously
fused feature vectors.
Decision Fusion: At this level the derived
states of different sensor nodes are
combined. A state of a sensor node
corresponds to a high-level assessment of
the sensor’s observed area. Examples for
such an assessment in traffic surveillance
include the detection of a traffic jam, the
identification of a specific vehicle, or the
detection of lost cargo. Both, the assessment
of states as well as their combination requires
an interpretation of the lower level fusion
outputs and a lot of domain knowledge. In
our research project we investigate two
methods for combining the states. In the first
method, the procedure for combining states
is specified by domain-dependent rules. In
the second method, we apply Dempster-
Shafer based statistical decision fusion.

Conclusion
Our SmartCam prototype is a major step in the
development of a distributed embedded vision
system. By migrating most of the computation
from a central server or workstation to the smart
embedded cameras, the system architecture
becomes more flexible and scalable, the overall
communication bandwidth is reduced and the
vision system is able to autonomously and
dynamically react to detected events in the
supervised scenes. This novel vision architecture
poses, however, strong requirements on the
camera’s hard- and software. Recent technological

Fig.8: Example of a simple fusion configuration

advances support this trend towards smart
cameras. In a subsequent step we currently
augment the smart cameras with additional
sensors transforming them into a high-
performance multi-sensor system. By combining
visual, acoustic, tactile or location-based
information, the smart cameras become more
„sensitive“ and are able to deliver more accurate
results which make them even wider applicable.
Embedded smart cameras have the potential for
the successful deployment in many different
applications such as smart environments, intel-
ligent infrastructures and pervasive computing.
We continue our work in this exiting field and are
therefore looking for students interested in
pursuing a project or thesis work on embedded
vision.
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