Middleware for Dynamic Reconfiguration in
Distributed Camera Systems

Milan Jovanovic! and Bernhard Rinner?

Hnstitute for Technical Informatics,
Graz University of Technology, Austria
jovanovic@iti.tugraz.at

%Institute of Networked and Embedded Systems,
Klagenfurt University, Austria
bernhard.rinner@Quni-klu.ac.at

Abstract — Networks of embedded smart cameras are an emerging technology for
a broad range of pervasive computing applications including smart rooms, intelli-
gent infrastructures and security. Smart cameras combine video sensing, processing
and communication within a single embedded device and provide sufficient onboard
infrastructure to perform high-level video analysis tasks.

This paper deals with middleware services required for the efficient deployment and
operation of distributed smart cameras. We focus here on services for autonomous
and dynamic reconfiguration. Dynamic reconfiguration refers to the exchange of soft-
ware tasks as well as the alteration of QoS-levels these tasks provide during runtime.
Dynamic reconfiguration provides several advantages over statically configured net-
works including (i) modification of functionality after deployment and during run-
time, (ii) adaptation of the network to changes in its internal and external state, and
(iii) better exploitation of the available resources.

We have developed the services for dynamic reconfiguration using policies. Poli-
cies help to specify rules for the reconfiguration process. By evaluation the policy
the new task-level configuration of the network is computed. The reconfiguration is
implemented using mobile agents in order to achieve a flexible and scalable mid-
dleware service. Our policy-based middleware is demonstrated by a surveillance
application.

Keywords: pervasive computing; smart cameras; policy-based middleware; embedded
systems.

1 Introduction

Recently much effort has been put into the development of distributed vision systems with
smart cameras as key components. Smart cameras are equipped with high-performance
onboard computing and communication devices. They combine video sensing, process-
ing and communication within a single embedded device[1]. Networks of distributed

smart cameras [2] are an emerging technology for a broad range of important applications
including smart rooms, surveillance, tracking and motion analysis. By having access
to many views and through cooperation among the individual cameras, these networks
have the potential to realize many more complex and challenging applications than single
camera systems. Distributed smart cameras are therefore perfect platforms for pervasive
computing applications.

The target applications for distributed smart camera systems pose strong requirements
on the camera’s hardware and software. Typically, the cameras have to execute demanding
video processing and compression algorithms. These algorithms executed on the cameras
offer different QoS-levels and may be adapted during runtime.

This paper deals with middleware services required for the efficient deployment and
operation of distributed smart cameras. This middleware has been implemented on top of
our smart cameras [3] and supports the development of distributed camera applications
such as traffic surveillance or object tracking. Our smart camera comes with a scalable
hardware architecture consisting of a sensing unit, a processing unit and a communica-
tion unit. The core components of this embedded platform are a CMOS image sensor, a
variable number of digital signal processors (DSPs) for executing various image analysis
tasks and a network processor for the camera control. Our smart camera software frame-
work coordinates the various (surveillance) tasks running on (different) processors and
supports the data transfer among these tasks using a publisher-subscriber approach [4].

We focus on services for autonomous and dynamic reconfiguration in networks of dis-
tributed smart cameras. Dynamic reconfiguration refers to the modification of the func-
tionality in the camera network during runtime. This reconfiguration includes the ex-
change of software tasks as well as the alteration of QoS-levels these tasks provide. Dy-
namic reconfiguration provides several advantages over statically configured networks.
First, the functionality can be changed during runtime. This allows the introduction of
new software tasks even after deployment of the network. Second, the camera network
can be better adapted to changes in its internal or external state. Third, by modifying
the functionality over time the available resources can be better exploited as well as the
availability can be increased.

Although we have developed the middleware services for our networks of smart cam-
eras we feel strongly confident that this work is relevant for many pervasive computing ap-
plications. Dynamic reconfiguration is an important network service which helps to pro-
mote many advanced applications. Reconfiguration at the task-level is well-established
feature in workstation networks. However, not much such work is known on embedded
platforms with restricted resources. Our middleware is implemented using mobile agents
with focus on flexibility and scalability. Thereby, hardware dependability has been kept
rather low which supports the portability to other platforms.

The remainder of this paper is organized as follows. Section 2 briefly discusses related
work. Section 3 introduces the dynamic reconfiguration framework and Section 4 de-
scribes the implementation. Section 5 explains the taxonomy used to differentiate the dy-
namic modules used for reconfigurations. Section 6 compares the diverse load-scheduling
and shows the results. Section 7 concludes the paper with a brief discussion and a short
outlook for future work.

2 Related Work
2.1 Surveillance systems

A modular structure in surveillance systems is not necessary but desirable due to the
many heterogeneous technologies built into such a system. Openness and extensibility [5]
enable the persistent functionality of the system over a long period of time. In order to
enable dynamic reconfiguration in the surveillance system a component-based software
architecture is needed. [6] represents one type of component-based software architecture
and introduces dynamic reconfiguration based on a multi agent system (MAS). Emphasis
of this work is to enable dynamic reconfiguration of exchangeable components and to
re-establish connections between them. Dynamic reconfiguration is service-oriented and
optional. Due to limited resources in our work, an occasional dynamic reconfiguration is
essential and it takes QoS with emphasis on load balancing into account.

2.2 Policy-based middleware

The policy-based middleware is a result of recent research in the area of network man-
agement automation. A noticeable work in this field has been done by IBM research
center. The IBM team has developed an own policy language and has evaluated it with
new policy-framework on a storage area network (SAN) [7].

IBM Research has also developed the policy toolkit [8], which has the goal to integrate
a policy-based structure in different applications. This toolkit supports different types
of policy languages. In order to enable a policy-based system the user has to select the
syntax of the policy language, modules and pattern.

Several benefits of policy-based middleware have been explained by [9]. First, this ap-
proach is advantageous when the system works in advance in unspecified environment.
Second, a policy-based approach supports different system’s behaviors corresponding to
different situations of the environment. Finally, it supports upgrading. Easy system up-
grade is only possible if it has a modular structure with well defined and open interfaces.
[9] also presents a novel agent framework with integrated policy control which is used for
wireless ad hoc network management.

Policy-Enabled Mobile Application (Poema) [10] is a policy-based middleware which
supports code mobility and supports different strategies including MAS for a reconfigu-
ration tasks. In Poema, mobility strategies can be changed even during application execu-
tion.

Policy middleware as paradigm is supported from the Internet Engineering Task Force
(IETF) and Distributed Management Task Force (DMTF) with many standards from the
information models ([11], [12], [13]), over the policy framework design [14], to the policy
communication protocols ([15], [16]).

[17] introduces policy-based management environment for mobile users. This work
combines the different profiles with policy-enabled agents to tailor the services according
to users preferences and the network capabilities. This approach differs between the user-
policies, network-policies which are utilized for configuration of network devices, and
agent-policies which control the agent behavior.

The policy management architecture introduced in [18] deals with the problem of mul-
tiple policy enforcement points (PEP) [19]. The policy framework in this approach allows

Dynamic reconfiguration

Externaly Computation of : .
defined new configuration -l Reconfiguration
objectives with optimization enforcement

F

L 4
. Smart-camera netwark
Context sensing

and analyses [D | D ‘ D |

Figure 1: Dynamic reconfiguration loop.

that policies can be specified at a higher level and mapped into an appropriate local rule-
set by using an automated tool. This work is based on policy language Houdini which has
been developed at Bell Labs.

A more abstract approach for policy oriented management is shown in [20] and [21]
where a general purpose ontology language (OWL) is used to define the network policy
management information. Advantages of this approach, described in [20], are simpli-
fied information maintenance due to unified definition of elements and their behavior. A
second advantage lies in the semantic expressiveness of ontology languages and already
existing tools for their validation. In [22] policies are used for negotiation in MAS en-
vironment. The MAS uses policies expressed in XML for negotiation in order to enable
service composition and cooperation.

3 Dynamic Reconfiguration of the Network
3.1 Configuration Approach

Dynamic reconfiguration refers to the modification of software tasks executed on nodes
of the camera network as well as the alteration of the QoS-level provided by these tasks.
More formally, a configuration c; of the network is defined as as tuple in the configuration
space

C=(sxqsxr) (1)

where s refers to the available services (or tasks) in the network, ¢, refers to the service
levels of the tasks, and r refers the resources where the tasks can be executed. The avail-
able processors represent the resources in the network. A reconfiguration corresponds to
a transition from one tuple to another (¢; — ¢;) in the configuration space.

The overall objective of dynamic reconfiguration is to transfer the network into a spe-
cific configuration which better captures the current requirements. In order to achieve
such an improvement some form of reasoning about the specific configurations is re-
quired. Thus, we need some information about the state of the current configuration as
well as some objective for the next configuration.

“Figure 17 depicts the reconfiguration loop of the camera network. The main steps of
this loop can be described as follows:

Context sensing and analysis The goal of context sensing and analysis is to gather data
from the network and to deliver contextual information. The context includes in-
formation about the internal and external states of the network. The internal state
can be composed by the actual configuration and the available resources. Events
detected by the tasks, such as a recognized person or a successful object tracking
can be assigned to the external state. Contextual information is strongly dependent
on the application. We, therefore, do not go into more detail here about this step.

Computation of new configuration with optimization This step determines the next con-
figuration of the network. In order to reason about configurations this step requires
some model about the network. The contextual information of the network and some
objective serve as input for this reasoning. As described in the following section we
use a policy-based approach for the optimization.

Reconfiguration enforcement The final step in the reconfiguration loop performs the
actual transfer to the new configuration. This step needs, therefore, mechanisms to
alter the QoS-level as well as to modify the mapping of tasks onto resources. In order
to perform dynamic reconfiguration we have adopted mobile agents and developed
a middleware framework on our network nodes.

3.2 Policy-based Framework

The computation of a new configuration is based on policies. Policies are distributed
within the smart camera network and this policy distribution enables the distributed decision-
making process for the reconfiguration of the smart camera network. Policies represent a
collection of rules which have to be calculated to achieve a potential new configuration.
Thus, our policy-based approach can be separated into a policy-specification and a policy
evaluation phase. As depicted in ”Figure 17 the policies are externally specified and serve
as input to the reconfiguration loop. The evaluation of the policies has to be performed
within the loop. In order to get some directives from the policy-framework, the policies
have to be evaluated. This evaluation is performed in a hierarchical way, from higher
abstract objects (policies) over rules to conditions and actions. This evaluation chain is
triggered whenever one event occurs and changes the corresponding parameters in policy.

3.3 Policy information model

In order to enable the policy based management, the target system has to be modeled like
a state machine, where one state corresponds to one configuration of the camera network.
The policies are used to manage the transformation of the target system from one state
(configuration) to another.

The object-oriented information model for representing policies is in our project con-
structed using Policy Common Information Model (PCIM) [12] as paradigm and the
PCIM extensions [13] as well. According to the specific construction of our platform
and limitations in an embedded environment, only necessary features from those stan-
dards are implemented. The core of the policy-based structure consists of: Policy, Rule,
Condition, Action and Parameter object. This set of objects has a common inherited iden-

Name Definition

Policy P = R|P{,R|P}

Rule R =I[C], A

Condition C =Par|C,op{, Par|C}
Action A = Par|A, ba{, Par|A}

Parameter Par = Integer | Long | Boolean | String | Object
Logical Operator | op = Integer | Char | String
Basic Action ID | ba = Integer

Table 1: Definition of our Policy structure

tification part that uniquely identifies the object. In our policy model as shown in “Table
17, a policy is structured as a tree. The policy consists of sub-policies and rules.

Combining several sub-policies into one builds a logical unit with greater capabilities.
This grouping of policies also safes memory resources and simplifies the construction of
policies.

Policies can be changed in real time and enable different execution flows during the
execution of scenarios. A scenario describes a successive reconfiguration of the smart
camera platform from one state to another. This dynamic structure of a policy is consid-
ered as a possibility that the sub-policies can be enabled or disabled within the scope of a
policy grouping.

A rule is an entity that encapsulates conditions and actions. If a condition is satisfied
the corresponding action or list of actions will be executed. The execution order of the
permitted actions is arbitrary. The condition object is responsible for the decision-making
process and contains parameters and sub-conditions. Number and type of these objects
depend on the nature of the operator, which is defined in that particular object. However,
the return value from the computation of a condition is a boolean value and can be com-
pared only with corresponding boolean values and proper logical operators. Parameter
type checking is done through the processing of conditions. The processing of conditions
is a recursive procedure for all sub-conditions as well.

Actions can be initialized as single (basic) action or as collection of actions (sub-
actions). A basic action is defined with an unique identification and a collection of param-
eters. This identification number has to be defined in the configuration layer (see Section
4.1) and the corresponding action also has to be implemented in the executing layer (see
Section 4.3) in order to enable that this action can be mapped in the policy layer (see
Section 4.2).

A parameter is an object that wraps the primitive data types or another object. Param-
eters are placed as leafs in the condition tree, but they are also contained as parameters
in an action object. Types of parameters are divided into atomic type (boolean, integer,
long, string) and object type. This wrapping is needed in order to identify the parameters
in distributed environment and to facilitate the access to its value.

POLICY 1
RULE 1
CONDITION 1
OPERATOR (=)
PARAMETER 1 (pMDagent)
PARAMETER 2 (NULL)
ACTION 1
BASIC ACTION ID (1)
PARAMETER 3 (ClusterName)
PARAMETER 4 (NodeID)
PARAMETER 5 (MDagent)
PARAMETER 1 (pMDagent)
RULE 2
CONDITION 2
OPERATOR (AND)
CONDITION 1

CONDITION 3
OPERATOR (=)
PARAMETER 6 (AlgorithmLoaded)
PARAMETER 7 (FALSE)
ACTION 2
BASIC ACTION ID (2)
PARAMETER 3 (ClusterName)
PARAMETER 1 (pMDagent)

PARAMETER 6 (AlgorithmLoaded)
RULE 3
CONDITION 4
OPERATOR (!=)
PARAMETER 6 (AlgorithmLoaded)
PARAMETER 7 (FALSE)
ACTION 3
BASIC ACTION ID (3)
PARAMETER 3 (ClusterName)
PARAMETER 1 (pMDagent)

PARAMETER 9 (MotionEvent)

Initialize and start motion detection
If motion detection agent not exist create motion detection agent
If motion detection agent not exist

Pointer to motion detection agent with NULL as default value
Constant with NULL value
Create motion detection agent

Target cluster

Target node

Agent type

Return value: Pointer to new created agent

If motion agent is ready load the algorithm

If motion detection agent exist and algorithm is not loaded

If motion detection agent exist(this condition is the same as in RULE1)
If motion detection algorithm is not loaded

Boolean variable with FALSE as default value

Constant with FALSE as value

Load the algorithm

Target cluster
Pointer on motion detection agent with NULL as default value

Boolean variable with FALSE as default value
If motion detection algorithm is loaded start the algorithm
If motion detection algorithm is loaded

Boolean variable with FALSE as default value
Constant with FALSE as value
Start the algorithm

Target cluster
Pointer to new created agent

Motion event variable with FALSE as default value

Table 2: Simplified example of motion-detection policy

3.4 Reconfiguration enforcement

After the evaluation of policies, the resulting list of actions with corresponding parame-
ters have to be enforced and the system is transferred to a new state. Real task allocation
in the system can be achieved in two ways. The first way is with the direct call of nec-
essary encapsulated basic actions, which means that all decisions for task distribution are
already met. The second way is over the algorithm for CSP (Constrained Satisfaction
Problem) [23], which has already integrated all basic actions necessary for reconfigura-
tion.

3.5 Evaluation of the reconfiguring scenarios

The evaluation of our policy-based framework is done with distinct defined policies that
determine the various flows of reconfigurations. A simplified meta-presentation is de-
picted in ”Table 2”. This example shows a meta-XML presentation of a motion detection
policy. The aim of this policy is to define a usual surveillance task. This policy consists of
three rules. All rules are processed in one pass through the policy. Conditions in this case
are specified so that after the first processing of the policy only Action I can be executed.
After execution of Action I and updating of the corresponding parameters Action 2 will
be in queue for execution. The Action 2 is the loading of dynamic module (see Section
5) and represents the essential functionality (see Section 6) in the reconfiguration pro-
cess. After execution of Action 2 and again updating, the condition for Action 3 will be
satisfied. This type of condition specification enables the sequential execution of actions
with a strict sequence order. In case of an alternate specification of conditions, more that
one action can be send to the enforcement unit for execution. After all three actions are

executed the SmartCam is ready to detect motion-events. The presented policy for motion
detection can be used as template and combined with another policies (object recognition,
tracking ...). Combining more policy-templates user can easy build new behavior of the
surveillance system without knowing the all specific details.

4 Implementation

The overall objective of our project is to enable the autonomous dynamic reconfiguration
in a distributed environment such as a SmartCam network. This reconfiguration refers to
the supplying of the underlying resources, which in the SmartCam case are DSP proces-
sors, with versatile software. The SmartCam consists of one network processor and an
arbitrary number of DSPs which communicate between themselves over the PCI bus. Our
framework consists of the following functional units:

4.1 Configuration layer

This layer represents the graphical user interface that simplifies the process of defining
the policies as templates for executing scenarios. The policies are stored in XML files as
convenient format for tree like data structures. Every policy object can be serialized in
XML format and vice versa. In order to be used by agents, policies are first parsed from
XML into Java objects with the SAX parser.

4.2 Policy layer

The policy layer is the logical part of the application and the most complex module. In
order to enable storing of policies from object representation, XML is chosen as best
suitable for that purpose. The core policy classes are the kernel of this layer. Every object
from this set has a serialization function that transforms an object into XML form. To
speed up work with internal parameters, pointers of the all internal parameters in policy
are stored in a list. Using this parameter list, maintaining the parameter’s consistency is
faster and easier. A policy object has the possibility to be active or inactive. This feature
enables in real time the fast changing of policy behavior.

4.3 Executing layer

To enforce the reconfiguration of a system, our policy middleware has an executing layer
which is aware of all basic actions defined in configuration layer. This unit contains a list
of basic actions that have to be executed without delay. The current policy middleware
implementation is based on [24] [23] as a basic framework. All function calls important
for reconfiguration are extracted in this layer and encapsulated as basic actions. Now
all these basic actions are uniquely identified and offered as available services to the
configuration layer.

S Dynamic Modules

The image processing modules are the typical piece of software which are exchanged at
runtime. These modules represent the diverse algorithms which can be executed on the
DSP processors. “Figure 2” depicts the dynamic module with corresponding connections
and communication path with MAS. All dynamic modules have the common interface

Pub/Sub DSP modul Dynamic DSP

" framework interface modul

Agent Session
| Data Pub/Sub Data |)
) Algarithm

- transfer transfer
Agent Session . interface -
1
1 i: :

Network processor(Xscale) DSP

Figure 2: DSP dynamic module in SmartCam environment.

which enables the connection with the DSP framework. The dynamic modules communi-
cate with each other or with java agents over the publisher/subscriber (PS) framework([4].
The connection between the java agents and the PS framework is enabled through the
java native interface. The java agent has one connection with the PS framework and one
such connection has one or more PS sessions for communication with a certain task on
DSP. One PS session usually contains one publisher and one subscriber on both sides of
the agent-DSP communication. Over the publisher the agent initialize the DSP task and
sends the control messages. The subscriber on the agent side is used to receive the pro-
cessed data from the DSP task. The dynamic modules have also their own publisher and
subscriber for the corresponding session with the agents.

Available modules that we have used for testing are divided into 3 groups and each group
of modules represents one step in the surveillance scenarios.

1. The first group of modules are motion detectors. As usually every surveillance sce-
nario starts with a motion detection. These modules use different algorithms depend-
ing on the background model they use to distinguish between a (moving) object and
the background. Every algorithm has different memory and processing requirements
as depicted in “Table 3.

Algorithm Processing time | Required
[processor cycles] | memory[kB]

Temporal Differencing 5.2x 10° 198

Kalman filter 8 x 10° 297

Single Gaussian 10 x 106 396

Table 3: Resource requirements for motion detectors

2. The second group are object recognizers and classifiers. One such module receives
the information about a motion detection event, as earlier described, and classifies
the object and forwards the information further. This step in a surveillance scenario
represents the branching in case of the recognition of more than one object.

3. The third group are trackers. This module receives the information about the current
position of object which should be followed and continues to follow the object. The
tracker runs first local on the same camera and when object lives the surveilled area

of the first camera continues the following on the next camera which is connected
with previous one with overlap surveilled areas [25].

6 Dynamic Loading

Dynamic loading in the policy middleware considers runtime exchange of the executable
software on the DSP processors. Dynamic loading is initiated for the dynamic modules
which have to be loaded to DSPs according to the new configuration. The dynamic mod-
ules which don’t have to be removed from DSPs as a result of reconfiguration remain
active and enable the SmartCam to be operational during the reconfiguration process. In
the SmartCam project the DSPs are the main focus of resources for dynamic reconfigu-
ration by an autonomous resource management. In our case study for the reconfiguration
methods, we differentiate the following scheduling approaches:

— Case 1: The first case focuses on the time required for initialization of a new module.
The new modules are in standby state and wait to be activated in order to take over
data processing. After the prior module finishes its task corresponding data are sent
to the next module. This case considers the time of reaction and presumes enough
available memory for the standby tasks.

— Case 2: The second case considers the time for loading and for initialization of a
new module. The new module in the surveillance scenario is loaded after an event
from the running module. This case considers the situation when the type of the new
module which has to be loaded is not known in advance or the number of instances
depends on the results from the previous module (Example: after the recognition
and classification of multi objects, as many trackers as objects has been recognized
will be loaded on DSP). This case does not consider the memory limitations, i.e. the
new module fits into the available memory.

— Case 3: The third case considers a memory deficiency. The loading and the initial-
ization of the new module in a surveillance scenario have to wait until the previous
module has been finished and unloaded from the DSP as well. This case considers
the memory availability as bottleneck and presumes a memory deficiency for the
standby tasks.

”Table 4 depicts the measurement for different scheduling cases which represent the time
needed for an activation of the dynamic module. This module activation represents the
time interval from the moment when the previous task finishes his job (7, forcementStart)
till the new task is ready for the execution (7', forcementEnd)- The measurements are based
on modules with 15kB file size.

SCheduling casc TEnforcementEnd - TEnforcementStart [ms}
Case 1 166 201 198 200 199
Case 2 255 246 226 215 192
Case 3 425 412 397 381 360

Table 4: Activation times of dynamic modules for the different scheduling cases.

“Table 5 shows the dependency between the size of the dynamic modules and the
time needed for loading on the DSP. The intercommunication with agent and module
initialization are not encountered.

Module size TLoad'ngnd B TLoadingStart [TTLS]
5.6 kB 48 | 45| 43| 41 42
10 kB 55| 58| 49| 55 58
262 kB 165 | 167 | 177 | 165 170

Table 5: Loading times of dynamic modules dependent on the module size.

7 Conclusion

This paper has described the policy-based middleware for distributed embedded systems.
A policy controlled MAS provides the autonomous behavior and overall control of the
system. This includes the real-time dynamic reconfiguration as main goal in our project.
Limited resources in the SmartCam embedded platform determine the specific construc-
tion of the policy-based middleware with only preferred features. The results depicted in
this paper are intermediate steps in the overall reconfiguration process. Future steps in our
work will focus on the evaluation of this framework on the next generation of embedded
surveillance systems, a further optimization of the reconfiguring methods and including
other policy standards to support heterogeneous platforms.

Acknowledgments

This work has taken place at Graz University of Technology, and has been supported by the Aus-
trian Research Promotion Agency.

References

[1] Wayne Wolf, Burak Ozer, and Tiehan Lv. Smart Cameras as Embedded Systems. Computer,
35(9):48-53, September 2002.

[2] Bernhard Rinner and Wayne Wolf, editors. Proceedings of the Workshop of Distributed Smart Cam-
eras (DSC-06), Boulder, CO, USA, October 2006.

[3] Michael Bramberger, Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach.
Distributed Embedded Smart Cameras for Surveillance Applications. Computer, 39(2):68-75, Febru-
ary 2006.

[4] Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, and Andreas Zoufal. A light-weight
publisher-subscriber middleware for dynamic reconfiguration in networks of embedded smart cam-
eras. In Proceedings of the 5th WSEAS International Conference on Software Engineering, Parallel
and Distributed Systems (SEPADS’06), feb 2006.

[5] Chiao-Fe Shu, Hampapur A., Lu M., Brown L., J. Connell, Senior A., and Yingli Tian. Ibm smart
surveillance system (s3): a open and extensible framework for event based surveillance. In Proceed-
ings of the IEEE Conference on Advanced Video and Signal Based Surveillance, pages 318 — 323,
September 2005.

[6] Karim Djouani Yaicne Narsis, Yacine Amirat. Dynamic reconfiguration service for component based
software architecture. In Proceedings of the 2004 IEEE Conference on Cybernetics and Inteligent
Systems, pages 23 — 28 vol.1, Singapore, December 2004.

(7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]
[25]

D. Agrawal, S. Calo, J. Giles, Kang-Won Lee, and D. Verma. Policy management for networked
systems and applications. In 9th IFIP/IEEE International Symposium on Integrated Network Man-
agement, 2005, pages 455 — 468, 15-19 May 2005.

Dinesh C.Verma and Seraphin B.Calo. A toolkit for policy enablement in autonomic computing. In
Proceedings of the International Conference on Autonomic Computing (ICAC04), pages 270 — 271,
May 2004.

Chiang C.-Y.J., Chadha R., Yuu-Heng Cheng, Levin G., Shihwei Li, and Poylisher A. A novel
software agent framework with embedded policy control. In Military Communications Conference
MILCOM 2005. IEEE, pages 2863 — 2869 Vol. 5, October 2005.

Montanari R., Lupu E., and Stefanelli C. Policy-based dynamic reconfiguration of mobile-code
applications. Computer, 37(7):73 — 80, july 2004.

Distributed Management Task Force (DMTF). Common information model (cim);
http://www.dmtf.org/standards/cim/.

B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Information Model — Version 1
Specification. RFC 3060 (Proposed Standard), February 2001. Updated by RFC 3460.

B. Moore. Policy Core Information Model (PCIM) Extensions. RFC 3460 (Proposed Standard),
January 2003.

R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-based admission control. RFC
2753 (Informational), January 2000.

D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The cops (common open policy
service) protocol. RFC 2748 (Proposed Standard), January 2000. Updated by RFC 4261.

K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Reichmeyer, R. Yavatkar,
and A. Smith. Cops usage for policy provisioning (cops-pr). RFC 3084 (Proposed Standard), March
2001.

M. Ganna and E. Horlait. On using policies for managing service provisioning in agent-based het-
erogenous environments for mobile user. In Proceedings of Sixth IEEE International Workshop on
Policies for Distributed Systems and Networks(POLICY 05), pages 149 — 158, june 2005.

Richard Hull, Bharat Kumar, and Daniel Lieuwen. Towards federated policy management. In Pro-
ceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POL-
ICY03), pages 183 — 194, 2003.

A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M. Carlson,
J. Perry, and S. Waldbusser. Terminology for Policy-Based Management. RFC 3198 (Informational),
November 2001.

Chamoun M., Kilany R., and Serhrouchni A. Proposition of a network policy management ontology.

In Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information
Technology, pages 262 — 266, December 2004.

Maroun CHAMOUN, Rima KILANY, and Ahmed SERHROUCHNI. A semantic active policy-based
management architecture. In Proceedings of IEEE Workshop on IP Operations and Management,
pages 224 — 232, October 2004.

Jing-Fan Tang and Xiao-Liang Xu. An adaptive model of service composition based on policy driven
and multi-agent negotiation. In Proceedings of Fifth International Conference on Machine Learning
and Cybernetics, pages 113 — 118, August 2006.

Thomas Winkler. Load distribution for embedded smart cameras based on mobile agents. Master’s
thesis, TU-Graz, May 2005.

Markus Quaritsch. An agent-based framework for object. Master’s thesis, TU-Graz, May 2005.
Markus Quaritsch, Markus Kreuzthaler, Bernhard Rinner, Horst Bischof, and Bernhard Strobl. Au-

tonomous multi-camera tracking on embedded smart cameras. EURASIP Journal on Embedded
Systems, 2007.

