
Enhanced Least Squares Support Vector Machines for Decision Modeling in a

Multi-Sensor Fusion Framework

Abstract

In this article we introduce a software framework for

embedded online data fusion on different levels of data

abstraction. We present our data oriented fusion model

and introduce the main functional units. The paper is

focused to the decision modeling process. In our

approach we use Support Vector Machines (SVM) as well

as Least Squares SVM (LS-SVM) for decision modeling.

Due to the computation complexity and the necessary

memory requirements we prefer LS-SVM for the

classification tasks. The main disadvantage of LS-SVM is

the loss of sparseness by using equality constraints

instead of inequality constraints in the cost function. We

introduce a novel method for intelligent data preselection

(PTD LS-SVM) to compensate for this short coming.

Experimental results demonstrate the feasibility of this

approach.

1. Introduction

Currently there is a strong trend towards integration of

sensor, computing and communication technology into

everyday life. The ultimate goal is to provide as much

support as possible while concealing the computing

devices from the users. Our I-SENSE project [1]

demonstrates the potential of combining scientific

research areas, multi-sensor data fusion and pervasive

embedded computing. The main idea is to provide a

generic software framework which allows online data

fusion on a distributed embedded system. This software

fusion framework is implemented on an embedded device

and was therefore limited in memory resources. In our

multi-level data fusion framework Support Vector

Machines (SVM), proposed by Vapnik [2,3] are used as

classification method for decision modeling. Necessary

time and memory usage are the main bottlenecks for

training kernel methods, such as SVM. For N>3000,

where N is the number of training data sets, common

SVM learning strategies are not feasible, especially on

embedded platforms because of their memory usage and

the time required. Therefore, a modified version of the

original SVM, the so called Least Squares Support Vector

Machine (LS-SVM) [4,5] is used for decision modeling in

our framework. The main characteristic of LS-SVMs is

the lower computational complexity compared with

original SVMs, without any quality loss in the

classification results. LS-SVM and the original SVM are

based on the same principals. The main difference is, that

LS-SVM formulation uses equality constraints instead of

inequality constraints for the cost function, which have to

be minimized. LS-SVM has the attractive feature, that

training requires solving a set of linear equations, instead

of a quadratic programming (QP) problem, which is

required by standard SVM. Solving these linear equations

is less complex than solving QP problem.

An attractive feature of SVM, namely the sparseness is

lost by the LS-SVM formulation. In standard SVM many

Lagrange multipliers are zero, leading to a smaller subset

of learning data in order to build the decision boundary

between the two classes. In LS-SVM almost all

multipliers are non-zero, indicating that all training data

sets will be used as support vectors. This extraction of

support vectors from a given training dataset is

comparable with the problem formulation of finding the

most significant vectors in a given data set. The optimal

solution for solving this task should combine the

following features. It should (i) be fast, (ii) lead to a

sparse solution (i.e. low number of support vectors) and

(iii) produce good classification results.

We propose a method for an intelligent preselection of

learning data in order to reduce the training set and

therefore reduce the number of support vectors which are

then used by the LS-SVM classifier. Therefore a modified

nearest neighbour rule is used to select an optimized set of

training data which is provided to the LS-SVM. We show,

that using this approach leads to the following advantages:

(i) a reduced number of support vectors, which have to be

stored for the classification task, (ii) the extraction of

support vectors from a given dataset is easier when the

Allan Tengg

Institute for Technical

Informatics
Graz University of Technology

Graz, AUSTRIA

tengg@iti.tugraz.at

Bernhard Rinner

Institute for Technical

Informatics
Graz University of Technology

Graz, AUSTRIA

rinner@iti.tugraz.at

Andreas Klausner

Institute for Technical

Informatics
Graz University of Technology

Graz, AUSTRIA

klausner@iti.tugraz.at

number of possible vectors is reduced, and (iii) the

computation time, necessary to evaluate a new vector, is

reduced.

The remainder of the paper is organized as follows:

Section 2 discusses our I-SENSE project as a framework

for multi-sensor data fusion. Section 2.1 deal with the

software fusion framework and introduce the main

functional units. In section 3 we present the decision

modeling process where section 3.1 gives an overview of

common least squares SVM and section 3.2 presents our

scientific contribution, namely the intelligent preselection

of training data in order to compensate the main

disadvantage of standard LS-SVM - the loss of

sparseness. In section 4 we present some experimental

results of our approach, and section 5 concludes the paper

with a short discussion of our approach.

2. The I-SENSE fusion framework

I-SENSE is used as an acronym for intelligent sensing

and our project is targeted at various classification

applications. Case studies in vehicle classification as well

as in waste separation and food classification are used to

demonstrate the feasibility of the proposed fusion

framework. As the name multi-senor data fusion implies,

it is a technique by which data from several sensors are

combined through a data processor to provide

comprehensive and accurate information. Although the

provision of a single data stream from multiple inputs is

advantageous, the powerful potential of this technology

stems from its ability to track changing conditions and

anticipate impacts more consistently than can traditionally

be done with a single data source. Thus, the aim of our

multi-sensor fusion framework is to create a synergistic

process in which the consolidation of individual data

creates a combined resource with a productive value

greater than the sum of its parts.

To achieve this aim, our approach is to perform multi-

level data fusion by combining data from different sensors

at different levels of abstraction. The I-SENSE fusion-

framework supports three basic levels of data fusion.

These fusion levels are differentiated according to the

amount of information they provide. The most basic level

is called raw-data fusion. At this level, only raw,

uncorrelated data is provided to the user. In comparison,

level two data fusion provides a higher level of inference

and delivers additional interpretive meaning suggested

from the raw data and individual features are extracted

from observed objects based on the information of one

sensor. These features from multiple data sources are

fused on feature level in order to obtain a combined

feature vector of an observed object. Therefore this level

is called feature-level fusion. Level three data fusion is

designed to make assessments and provide

recommendations to the user and is called decision fusion.

Thus, each jump between data fusion levels represents a

corresponding leap in technological complexity to

produce increasingly valuable informational detail. In our

approach data fusion is performed on the individual

sensor nodes using data from the local sensors as well as

abstracted sensor data from the adjacent sensor nodes.

2.1. Fusion Model

Figure 1 presents the detailed, data oriented software

fusion model in our I-SENSE approach. This model

consists of three basic levels and functions. Namely, the

Sensor Control & Management Unit, the Sensing Unit and

the Fusion Layer.

Figure 1: Detailed data oriented Fusion Model characterized

by input- and output data

The figure presents an example of two physical sensors

(i.e., audio sensor and visual sensor). The Sensor Control

& Management Unit is responsible for the sensor

identification as well as to provide the interface to other

sensing nodes, human observers and actuators.

Furthermore, this unit controls the overall fusion

process and provides access to a database where resource

requirements for the different fusion computations are

stored.

Three essential functional blocks are identified on this

layer to allow an online refinement of the overall fusion

process:

(i) DeIDeORef: Decision in decision out refinement;

This functional unit allows to refine the decision

extraction and decision fusion algorithms dynamically

during the fusion process, based on the generated output

decisions of FIDeO and DeIDeO. Based on statistical

output information the process of decision modeling can

be modified and refined during runtime.

(ii) DeIFORef: Decision in feature out refinement;

This functional unit allows refining the data allocation and

raw-data based fusion algorithms dynamically during the

fusion process based on the generated output features of

FIDeO and DeIDeO.

(iii) FIDORef: Feature in data out refinement; This

functional unit deals with refining the feature extraction

and feature fusion algorithms dynamically during the

fusion process based on the generated output features of

FIFO and DIFO.

The Sensing Unit represents the intelligent sensor

which consists of the physical sensor itself and a suitable

data pre-processor (e.g. resolution based down-sampling,

automatic gain control, …). A Local feature extraction

Unit (LFE) is used to extract a single-source feature

vector based on color information, structural information,

spectral information or acoustic information of an

observed object. This means, each sensor provides an

estimate of the position of an object with extracted

features, based only on its own single source data. These

individual feature vectors are input to a data fusion

process, namely the Feature in feature out (FIFO)

process, in order to achieve a joint feature vector estimate

based on multiple sensors. A Local decision extraction

Unit (LDE) is used to extract local decision from

individual objectives features (e.g. classification of

objectives identity).

The heart of the framework is the Fusion Layer

including the following five functional units:

(i) DIDO: Data in data out unit; This functional unit is

also called Raw-Data Fusion unit (RDF), and raw

uncorrelated data will be fused from different and/or

similar numerous sensors there. This raw data streams are

labelled with RDx. At raw-data based fusion each sensor

performs a single-source estimate in the sensor state

space. These estimates are then combined to an aggregate

estimate. In our case study for similar sensor types the

data will be combined to single data stream based on

numerous data streams from different sensors (e.g. visual

sensor & infrared spectral imager, …) by using wavelet

based image fusion techniques.

(ii) DIFO: Data in feature out unit; this is our so

called Feature extraction II unit (FEII), where raw data

from the individual sensors and/or fused raw-data (i.e.

DbD: Raw data based on raw data) is used to extract

suitable features of the individual tracked objects. These

features are found by experimental analyses and/or

physical modeling. The output data are feature vectors for

each detected object in the observed area.

(iii) FIFO: Feature in feature out unit; this is our so

called Feature fusion unit (FF), where features will be

fused to a resulting overall feature vector for each

individual detected object. Therefore it is necessary to

find the corresponding objects in the individual sensor

spaces. In our framework we have implemented methods

for similar sensor types, where simple object overlapping

calculation is performed in order to find the corresponding

elements. Furthermore, a time stamping mechanism was

developed to find corresponding objectives in different

sensor spaces. The output data of this fusion process are

feature vectors based on features (FbF) extracted by the

LFE unit or features extracted by the DIFO unit.

(iv) FIDeO: Feature in decision out unit; this

functional unit is a part of our decision fusion unit (DF),

where, a classifier, based on SVM, is trained with

previously recorded and classified sequences. In the next

step this SVM is used as a classifier to derive

classification decisions based on previously extracted

single source feature vectors ore joint feature vectors

(FbF) from the FIFO unit. Outputs are decisions based on

Features (DbF), and a probability interval of this decision.

(v) DeIDeO: Decision in decision out unit; this

functional unit is the second part of our decision fusion

unit, where extracted decisions (Dx) will be fused from

multiple sensors from the LDE unit with fused data from

FIDeO, based on statistical methods (i.e. Dempster-Shafer

methods [6,7]). Outputs are decisions, based on multiple

decisions.

3. Decision modeling

In our fusion framework decision modeling is driven

by Support Vector Machines (SVM). LS-SVM is a faster

learning strategy than standard SVM.

3.1. Least squares support vector machines

The least squares support vector machine classifier

[4,8] is a modification of standard SVM. A training data

set is given by (){ }N

iii yx
1

,
=

 with the inputs d

ix ℜ∈ and

class labels { }1,1 −∈iy . The idea of SVM classifier is to

find the linear separating hypersurface () 0=+ bxTϕω in

the feature space F that separates the mapped data

()() ()(){ }NN yxyx ,,...,, 11 ϕϕ . According to statistical

learning theory [2,3] a good generalization is given if one

demands that both classes are separated with a certain

margin. The goal is to find the appropriate weight vector

ω and the scalar bias term b, such that the following

relations hold { }Ni ,...,1=∀ :

()

()

−=→−≤+

+=→+≥+

1 if1

1 if1

ii

T

ii

T

ybx

ybx

ϕω

ϕω
 (1)

Instead of building one hyperplane as in standard SVM

(cp. figure 2a), LS-SVM builds two parallel hyperplanes;

one for the positive class and one for the negative class as

is indicated in figure 2b. The distance between these

hyperplanes () 1+=+ bxTϕω and () 1−=+ bxTϕω in the

feature space is called the separating margin. Finding the

separating hyperplane deals with the problem that this

margin has to be maximized.

Figure 2: Classification behavior in Feature Space of (a)

Standard SVM with the margin for the separating hyperplane

and the misclassification measure ζi and (b) LS-SVM with two

parallel hyperplanes and the error ei attached to each point

Using Vapnik’s formalism [2,3] from standard SVM

leads to a constraint quadratic programming (QP)

problem. In order to avoid this optimization problem

which is sometimes difficult to solve, LS-SVM uses

equality constraints instead of inequality constraints to

find the decision hyperplanes. The difference is

compensated by adding an extra term to the cost function

that penalizes the deviations from the two hyperplanes, for

each point of the learning data. The deviations are given

by the scalar error { }Niei ,...,1 ∈∀ . The training problem is

given by:

()() { }

∈∀−=+

+

Niebxy

e

ii

T

i

be

,...,1 1 s.t.

22

1
 min

2

2

2

2,,

ϕω

γ
ωω (2)

where γ plays the role of a regularization parameter

between the two quadratic terms in the primal problem

formulation (2), and characterizes the relative importance

of the terms. The first term aims to maximize the distance

between the two hyperplanes, while the second term aims

to minimize the slack variable ei. This addition of the two

quadratic terms is also responsible for the name least

squares SVM.

Since the dimension of the feature space is high,

possibly infinite, this problem is difficult, if not

impossible, to solve. Furthermore, the mapping of ().ϕ ,

corresponding to a kernel, is not always known. For

solving an optimization problem the Lagrangian is

constructed. The optimality conditions of this constrained

optimization problem are given by the saddle point of this

Lagrangian also known as the Karush-Kuhn-Tucker

conditions [9]. The Lagrangian is given by:

()

()()(),1

22

1
,,,

1

2

2

2

2

∑
=

+−+−

+=

N

i

ii

T

ii ebxy

eebL

ϕωα

γ
ωαω

 (3)

where α is the vector of the Lagrange multipliers. Using

the Karush-Kuhn-Tucker conditions substituting the result

of the linear equations into (3); ω and b can be

eliminated and the Dual optimization problem is given by:

()

≠→

=→
==

+

+−

∑

∑ ∑

=

= =

N

i

jiii

N

ji

N

i

ijijijiji

ji

ji
y

xxkyy

1

,

1, 1

,

0

1
 ,0 s.t.

1
,

2

1
 max

ϑα

αϑ
γ

ααα

 (4)

This formulation has three important advantages. First

we see that the dimensionality of the optimization problem

is equal to the number of data points N, indicating that the

training process is neither dependent on the

dimensionality of the feature space, nor the dimension of

the input space. Second, the kernel is an inner product in

feature space and opens therefore a lot of opportunities.

By applying the kernel trick one can show that for

different kernels the general optimization problem

remains the same. Third, these optimization problems are

convex. The Hessian matrix is a full rank positive definite

matrix, which guarantees a unique solution. The solution

of the dual optimization problem can be given as a linear

system:

=

N

T b

y

y

1

00

αH
 (5)

where the matrix H obeys the Mercer theorem [9], that

deals with the conditions a function must have to be a

kernel function, and y denotes the column vector formed

by the labels of the training points. After the optimal

parameters are found the classifier is given in the form:

()

+= ∑

=

N

i

iii bxxkysignxf
1

,)(α (6)

Notice, in LS-SVM all Lagrangian multipliers are non-

zero, because all training data sets are used as support

vectors for identifying the class separation surface.

3.2 Training data preselection for LS-SVM

In this section we describe a method for selecting

vectors out of the training dataset which are likely to be

support vectors in a LS-SVM and therefore describe the

individual classes best. This is done by an intelligent data

preselection algorithm based on a modified nearest

neighbor technique, leading to a smaller set of samples

which have to be stored for the classification task -

resulting in quite similar classification accuracies.

After this preselection, the remaining datasets are used

as support vectors for a LS-SVM classifier to find the

decision boundary between two classes in the learning

process. Using our approach leads to a sparse LS-SVM

classifier with good classification results and lower

computational and memory costs than standard SVM. In

embedded systems the memory resources are quite

restricted and therefore the proposed approach is

advantageous in comparison to standard SVM. The

training data preselection algorithm consists of three main

stages as described in the following:

A given training dataset T is given by the training

samples s. The training samples can be divided into two

subsets A∈{a0,…,an} and B∈{b0,…,bn} characterizing the

two involved classes.

Stage 1:

1. For each sample ai out of A find the nearest

neighbor sample bj from B and vice versa by

computing the Euclidean distance d(ai,bj) ∀ai,bj

until the distance is a minimum.

2. Using the result from the first step, sort the

distance d(ai,bj) in ascending order.

3. The first distance sample is stored in an initially

empty set Ωnn.

4. The next distance samples are iteratively added

to Ωnn and classified with a simple nearest

neighbor rule in the way:

If min(d(s,ai))<min(d(s,bj)) ∀ai,bj ∈ Ωnn and ∀s∈T

s∈A

else

s∈B

If the classification is wrong add the distance

sample to Ωnn else quit.

Stage 2: The reduced nearest neighbor rule [10] is used to

obtain the reduced subset Ωrnn from Ωnn:

1. Initially copy Ωnn to Ωrnn

2. Remove the first/next pattern (ai,bj) of Ωrnn

3. Use nearest neighbor rule to check if Ωrnn

classify all pattern correct in Ωnn

a. If all patterns classified correct go to 4)

b. Else return the removed pattern to Ωrnn

and go to 4)

4. If every pattern has removed once go to 5) else

go to 2) and remove the next pattern

5. The remaining subset is given by: Π=T-Ωrnn

Stage 3: At the last stage the final preselection subset Tps

is computed to obtain the samples Π which are closest to

Ωrnn.

1. Take the first/next pattern (ai,bj)∈ Ωrnn select k-

nearest samples (am,bn)∈ Π in a way that

a. min (d(ai,am))

b. min (d(bj,bn))

c. min (d(ai,bn))

d. min (d(bj,am))

are given.

2. copy k samples to Tps and go to 1) until all

samples from Ωrnn were considered.

The value k can be set by the user, but our experiments

have shown that 3% from the number of samples in T is a

good initial value. The resulting subset of the training

data, namely Tps, is provided to the LS-SVM classifier.

Figure 3 shows an example random Gaussian

distribution and the reduced subset Ωrnn after Stage 2 of

the proposed algorithm. Figure 4 shows the overall results

of the training data preselection algorithm with different

values of k.

Figure 3: (a) Random Gaussian distribution, (b) reduced

remaining subset Ωrnn

Figure 4: Results of the training data preselection algorithm

for the distribution shown in figure 3a with variable k. (a) k=1,

(b) k=2 and (c) k=3

4. Experimental results

In this section we present the results of three different

experiments. Firstly we generate two random Gaussian

distributions, each for an individual class. The

distributions show a tendency to a high level of overlap as

indicated in figure 5. Secondly we use a “real-world

experiment” from our waste separation case study. We

have implemented a simple multiclass classifier by using

One-against-All technique.

Figure 5: Random Gaussian distribution as experimental setup

The database consists of 6 different classes: (i) blue

glass, (ii) green glass, (iii) brown glass, (iv) white glass,

(v) ceramics, stones, porcelains (CSP) and (vi) plastics. In

cooperation with our industrial partner we generate a

database with about 200 samples for each class. Each

sample is characterized by 5 histogram based color

features, 3 structural features and 5 IR-histogram based

features. For the feature extraction 2 different types of

sensors were used: (i) CMOS visual sensors and (ii) IR-

spectral imaging sensors.

Thirdly, we use again two random Gaussian

distribution with increasing amount of data points for each

class. We evaluate three different implementations in

order to obtain a training time result.

For the first and the second experiment we use

Matlab
TM

 implementations of 4 different algorithms: (i)

standard SVM, (ii) Least squares SVM, (iii) LS-SVM

with training data preselection (PTD-SVM) and (iv) a

sparse LS-SVM, called LS
2
-SVM [11].

The third experiment was performed using C++

implementations and 3 algorithms were compared in the

required time for training by an increasing large number

of data points: (i) standard SVM, (ii) LS-SVM and (iii)

LS-SVM with support vector preselection.

For all experiments we used radial basis function

(RBF) as the kernel function. The results presented in the

following tables (cp. Table 1 and Table 2) are average

values from 20 runs with random selection of training

datasets.

Table 1: Experiment 1 results; random Gaussian distribution

Algorithm Training

time (s)

Wrong

classified

(%)

Nb of

SV

SV (%)

SVM 17.81±1.25 12.4±0.5 50.3±3.6 62.9±4.5

PTD LS-SVM 10.04±1.11 15.3±0.8 36.6±4.4 45.8±5.5

LS-SVM 3.85±0.47 14.2±0.5 80.0±0.0 100±0.0

LS²-SVM 4.13±0.64 12.8±0.6 52.8±4.2 66.0±5.3

Table 1 indicates that the standard SVM has the best

training accuracy. Our proposed approach differs only

about 3.1% from the standard SVM, while being 45%

faster in training than the standard approach. The results

presented in this table also show that the training accuracy

is quite similar for all training approaches. The fastest

training strategy is the LS-SVM approach, followed by the

LS²-SVM approach. Our proposed training data

preselection LS-SVM approach is about 3 times slower

than the fastest approach. The last column of the previous

table shows us that our algorithm has detected a smaller

amount of Support Vectors (SV) even in comparison to the

standard SVM approach. In comparison to the LS-SVM

approach our algorithm needed 45% of Support Vectors

for a quite similar classification result.

Table 2: Experiment 2 results; waste separation

Algorithm Training

time (s)

Wrong

classified

(%)

SV (%)

SVM 328.3±4.4 2.8±0.2 40.8±4.5

PTD LS-SVM 158.4±3.2 3.1±0.3 42.3±3.2

LS-SVM 37.8±2.5 2.2±0.2 100±0.0

LS²-SVM 76.1±2.9 2.5±0.4 66.8±3.3

Table 2 confirms the tendencies from table 1. Our

approach is about 50% faster than the Standard SVM

approach with quite similar classification results. All

presented approaches for training a Support Vector

Machines seem to be high quality solutions for

classification problems. The fastest training strategy is

LS-SVM, followed by LS²-SVM as the table indicates.

Our proposed approach is about 4 times slower than the

fastest but a lower amount of Support Vectors have to be

considered. Both tables show that the LS-SVM approach

consider all training datasets as support vectors, which is

the main disadvantage of this strategy.

Figure 6: Comparison of three different learning strategies in

required training time vs. number of training samples; SVM-QP

approach (standard SVM), LS-SVM approach (least squares

SVM) and PTD-SVM approach (preselection of training data

LS-SVM)

Figure 6 shows a comparison of three training

strategies for an increasing number of training samples.

The required training time is an averaged value of (i) 10

experiments for less than 5000 training samples and (ii) 3

experiments for more than 5000 training samples. The

standard SVM approach is the slowest and is therefore not

advisable for large training sets. The fastest approach is

the LS-SVM approach, followed by our proposed

approach. Both algorithms might be used for large

training data sets.

5. Discussion

In embedded systems, learning of large training

datasets with SVM is difficulty, because of their restricted

memory resources. Our experiments show that training for

over 3000 training samples with a standard SVM is not

feasible because of the memory requirements.

LS-SVM helps to reduce the memory requirements and

is much faster than standard SVM, due to the usage of

equality constraints instead of inequality constraints.

Therefore, training requires the solving of a set linear

equations, instead of solving the quadratic programming

(QP) problem. The main disadvantage of LS-SVM is the

loss of sparseness, indicating that all training samples

have to be stored for the classification task - leading to

high memory requirements and slower classification.

Therefore, we described an algorithm for an intelligent

training data preselection in order to identify a subset of

training data which describes the whole dataset best. This

approach reduces the number of vectors which have to be

stored for later classification. The experimental results

show that our approach leads to a sparse SVM with

accurate classification results and faster training time

than the standard SVM.

Future work will include the implementation of the

proposed approach to a commercial product.

6. Acknowledgements

We thank the Austrian Research Promotion Agency for

partially supporting this project.

7. References

[1] A. Klausner, B. Rinner, A. Tengg. “I-SENSE: Intelligent

Embedded Multi-Sensor Fusion” In Proceedings of the 4th

IEEE International on Intelligent Solutions in Embedded

Systems (WISES 2006). Vienna, Austria. June 2006.

[2] V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, New York, 1995.

[3] V. Vapnik. Statistical Learning Theory. Wiley, New York,

1998.

[4] J.A.K Suykens and J. Vandewalle. “Least squares support

vector machine classifier.” Neural Processing Letters, 9(3):293–

300, Jun 1999.

[5] J.A.K Suykens, P. Van Dooren, B. De Moor, and J.

Vandewalle. “Least squares support vector machine classifiers: a

large scale algorithm”. European Conference on Circuit Theory

and Design, ECCTD’99, pages 839–842, 1999.

[6] J.D. Lawrence, and T.D. Garvey “Evidential Reasoning: A

Developing Concept” In Proceedings of the International

Conference on Cybernetics and Society, IEEE, 1982.

[7] A.P. Dempster. “A Generalization of Bayesian Inference”

Journal of the Royal Statistical Society, vol. 30, pages 205-247,

1968.

[8] J.A.K Suykens and J. Vandewalle. “Multiclass least squares

support vector machines”. In IJCNN’99 International Joint

Conference on Neural Networks, Washington, DC, 1999.

[9] J. Nocedal and S. J.Wright. Numerical Optimization.

Springer-Verlag, New York, 1999.

[10] G.W. Gates. “The reduced nearest neighbour rule“. In IEEE

Transactions on Information Theory, 18(3), pages 431-433,

May 1972.

[11] J. Valyon and G. Horvath. “A Sparse Least Squares

Support Vector Machine Classifier“. In IJCNN’04 International

Joint Conference on Neural Networks, 2004.

