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Abstract 
 

In this article we introduce a software framework for 

embedded online data fusion on different levels of data 

abstraction. We present our data oriented fusion model 

and introduce the main functional units. The paper is 

focused to the decision modeling process. In our 

approach we use Support Vector Machines (SVM) as well 

as Least Squares SVM (LS-SVM) for decision modeling. 

Due to the computation complexity and the necessary 

memory requirements we prefer LS-SVM for the 

classification tasks. The main disadvantage of LS-SVM is 

the loss of sparseness by using equality constraints 

instead of inequality constraints in the cost function. We 

introduce a novel method for intelligent data preselection 

(PTD LS-SVM) to compensate for this short coming. 

Experimental results demonstrate the feasibility of this 

approach. 

 

1. Introduction 
 

Currently there is a strong trend towards integration of 

sensor, computing and communication technology into 

everyday life. The ultimate goal is to provide as much 

support as possible while concealing the computing 

devices from the users. Our I-SENSE project [1] 

demonstrates the potential of combining scientific 

research areas, multi-sensor data fusion and pervasive 

embedded computing. The main idea is to provide a 

generic software framework which allows online data 

fusion on a distributed embedded system. This software 

fusion framework is implemented on an embedded device 

and was therefore limited in memory resources. In our 

multi-level data fusion framework Support Vector 

Machines (SVM), proposed by Vapnik [2,3] are used as 

classification method for decision modeling. Necessary 

time and memory usage are the main bottlenecks for 

training kernel methods, such as SVM. For N>3000, 

where N is the number of training data sets, common 

SVM learning strategies are not feasible, especially on 

embedded platforms because of their memory usage and 

the time required. Therefore, a modified version of the 

original SVM, the so called Least Squares Support Vector 

Machine (LS-SVM) [4,5] is used for decision modeling in 

our framework. The main characteristic of LS-SVMs is 

the lower computational complexity compared with 

original SVMs, without any quality loss in the 

classification results. LS-SVM and the original SVM are 

based on the same principals. The main difference is, that 

LS-SVM formulation uses equality constraints instead of 

inequality constraints for the cost function, which have to 

be minimized. LS-SVM has the attractive feature, that 

training requires solving a set of linear equations, instead 

of a quadratic programming (QP) problem, which is 

required by standard SVM. Solving these linear equations 

is less complex than solving QP problem. 

An attractive feature of SVM, namely the sparseness is 

lost by the LS-SVM formulation. In standard SVM many 

Lagrange multipliers are zero, leading to a smaller subset 

of learning data in order to build the decision boundary 

between the two classes. In LS-SVM almost all 

multipliers are non-zero, indicating that all training data 

sets will be used as support vectors. This extraction of 

support vectors from a given training dataset is 

comparable with the problem formulation of finding the 

most significant vectors in a given data set. The optimal 

solution for solving this task should combine the 

following features. It should (i) be fast, (ii) lead to a 

sparse solution (i.e. low number of support vectors) and 

(iii) produce good classification results. 

We propose a method for an intelligent preselection of 

learning data in order to reduce the training set and 

therefore reduce the number of support vectors which are 

then used by the LS-SVM classifier. Therefore a modified 

nearest neighbour rule is used to select an optimized set of 

training data which is provided to the LS-SVM. We show, 

that using this approach leads to the following advantages: 

(i) a reduced number of support vectors, which have to be 

stored for the classification task, (ii) the extraction of 

support vectors from a given dataset is easier when the 
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number of possible vectors is reduced, and (iii) the 

computation time, necessary to evaluate a new vector, is 

reduced. 

The remainder of the paper is organized as follows: 

Section 2 discusses our I-SENSE project as a framework 

for multi-sensor data fusion. Section 2.1 deal with the 

software fusion framework and introduce the main 

functional units. In section 3 we present the decision 

modeling process where section 3.1 gives an overview of 

common least squares SVM and section 3.2 presents our 

scientific contribution, namely the intelligent preselection 

of training data in order to compensate the main 

disadvantage of standard LS-SVM - the loss of 

sparseness. In section 4 we present some experimental 

results of our approach, and section 5 concludes the paper 

with a short discussion of our approach. 

 

2. The I-SENSE fusion framework 
 

I-SENSE is used as an acronym for intelligent sensing 

and our project is targeted at various classification 

applications. Case studies in vehicle classification as well 

as in waste separation and food classification are used to 

demonstrate the feasibility of the proposed fusion 

framework. As the name multi-senor data fusion implies, 

it is a technique by which data from several sensors are 

combined through a data processor to provide 

comprehensive and accurate information. Although the 

provision of a single data stream from multiple inputs is 

advantageous, the powerful potential of this technology 

stems from its ability to track changing conditions and 

anticipate impacts more consistently than can traditionally 

be done with a single data source. Thus, the aim of our 

multi-sensor fusion framework is to create a synergistic 

process in which the consolidation of individual data 

creates a combined resource with a productive value 

greater than the sum of its parts. 

To achieve this aim, our approach is to perform multi-

level data fusion by combining data from different sensors 

at different levels of abstraction. The I-SENSE fusion-

framework supports three basic levels of data fusion. 

These fusion levels are differentiated according to the 

amount of information they provide. The most basic level 

is called raw-data fusion. At this level, only raw, 

uncorrelated data is provided to the user. In comparison, 

level two data fusion provides a higher level of inference 

and delivers additional interpretive meaning suggested 

from the raw data and individual features are extracted 

from observed objects based on the information of one 

sensor. These features from multiple data sources are 

fused on feature level in order to obtain a combined 

feature vector of an observed object. Therefore this level 

is called feature-level fusion. Level three data fusion is 

designed to make assessments and provide 

recommendations to the user and is called decision fusion. 

Thus, each jump between data fusion levels represents a 

corresponding leap in technological complexity to 

produce increasingly valuable informational detail. In our 

approach data fusion is performed on the individual 

sensor nodes using data from the local sensors as well as 

abstracted sensor data from the adjacent sensor nodes. 

 

2.1. Fusion Model 
 

Figure 1 presents the detailed, data oriented software 

fusion model in our I-SENSE approach. This model 

consists of three basic levels and functions. Namely, the 

Sensor Control & Management Unit, the Sensing Unit and 

the Fusion Layer.  

 
Figure 1: Detailed data oriented Fusion Model characterized 

by input- and output data  

 

The figure presents an example of two physical sensors 

(i.e., audio sensor and visual sensor). The Sensor Control 

& Management Unit is responsible for the sensor 

identification as well as to provide the interface to other 

sensing nodes, human observers and actuators.  

Furthermore, this unit controls the overall fusion 

process and provides access to a database where resource 

requirements for the different fusion computations are 

stored. 

Three essential functional blocks are identified on this 

layer to allow an online refinement of the overall fusion 

process:  

(i) DeIDeORef: Decision in decision out refinement; 

This functional unit allows to refine the decision 

extraction and decision fusion algorithms dynamically 

during the fusion process, based on the generated output 

decisions of FIDeO and DeIDeO. Based on statistical 

output information the process of decision modeling can 

be modified and refined during runtime. 



(ii) DeIFORef: Decision in feature out refinement; 

This functional unit allows refining the data allocation and 

raw-data based fusion algorithms dynamically during the 

fusion process based on the generated output features of 

FIDeO and DeIDeO.  

(iii) FIDORef: Feature in data out refinement; This 

functional unit deals with refining the feature extraction 

and feature fusion algorithms dynamically during the 

fusion process based on the generated output features of 

FIFO and DIFO.  

The Sensing Unit represents the intelligent sensor 

which consists of the physical sensor itself and a suitable 

data pre-processor (e.g. resolution based down-sampling, 

automatic gain control, …). A Local feature extraction 

Unit (LFE) is used to extract a single-source feature 

vector based on color information, structural information, 

spectral information or acoustic information of an 

observed object. This means, each sensor provides an 

estimate of the position of an object with extracted 

features, based only on its own single source data. These 

individual feature vectors are input to a data fusion 

process, namely the Feature in feature out (FIFO) 

process, in order to achieve a joint feature vector estimate 

based on multiple sensors. A Local decision extraction 

Unit (LDE) is used to extract local decision from 

individual objectives features (e.g. classification of 

objectives identity). 

The heart of the framework is the Fusion Layer 

including the following five functional units: 

(i) DIDO: Data in data out unit; This functional unit is 

also called Raw-Data Fusion unit (RDF), and raw 

uncorrelated data will be fused from different and/or 

similar numerous sensors there. This raw data streams are 

labelled with RDx. At raw-data based fusion each sensor 

performs a single-source estimate in the sensor state 

space. These estimates are then combined to an aggregate 

estimate. In our case study for similar sensor types the 

data will be combined to single data stream based on 

numerous data streams from different sensors (e.g. visual 

sensor & infrared spectral imager, …) by using wavelet 

based image fusion techniques.  

(ii) DIFO:  Data in feature out unit; this is our so 

called Feature extraction II unit (FEII), where raw data 

from the individual sensors and/or fused raw-data (i.e. 

DbD: Raw data based on raw data) is used to extract 

suitable features of the individual tracked objects. These 

features are found by experimental analyses and/or 

physical modeling. The output data are feature vectors for 

each detected object in the observed area. 

(iii) FIFO: Feature in feature out unit; this is our so 

called Feature fusion unit (FF), where features will be 

fused to a resulting overall feature vector for each 

individual detected object. Therefore it is necessary to 

find the corresponding objects in the individual sensor 

spaces. In our framework we have implemented methods 

for similar sensor types, where simple object overlapping 

calculation is performed in order to find the corresponding 

elements. Furthermore, a time stamping mechanism was 

developed to find corresponding objectives in different 

sensor spaces. The output data of this fusion process are 

feature vectors based on features (FbF) extracted by the 

LFE unit or features extracted by the DIFO unit. 

(iv) FIDeO: Feature in decision out unit; this 

functional unit is a part of our decision fusion unit (DF), 

where, a classifier, based on SVM, is trained with 

previously recorded and classified sequences. In the next 

step this SVM is used as a classifier to derive 

classification decisions based on previously extracted 

single source feature vectors ore joint feature vectors 

(FbF) from the FIFO unit. Outputs are decisions based on 

Features (DbF), and a probability interval of this decision.  

(v) DeIDeO: Decision in decision out unit; this 

functional unit is the second part of our decision fusion 

unit, where extracted decisions (Dx) will be fused from 

multiple sensors from the LDE unit with fused data from 

FIDeO, based on statistical methods (i.e. Dempster-Shafer 

methods [6,7]). Outputs are decisions, based on multiple 

decisions.  

 

3. Decision modeling 
 

In our fusion framework decision modeling is driven 

by Support Vector Machines (SVM). LS-SVM is a faster 

learning strategy than standard SVM. 
 

3.1. Least squares support vector machines 
 

The least squares support vector machine classifier 

[4,8] is a modification of standard SVM. A training data 

set is given by ( ){ }N
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Instead of building one hyperplane as in standard SVM 

(cp. figure 2a), LS-SVM builds two parallel hyperplanes; 

one for the positive class and one for the negative class as 

is indicated in figure 2b. The distance between these 

hyperplanes ( ) 1+=+ bxTϕω  and ( ) 1−=+ bxTϕω  in the 



feature space is called the separating margin. Finding the 

separating hyperplane deals with the problem that this 

margin has to be maximized. 

 
Figure 2: Classification behavior in Feature Space of (a) 

Standard SVM with the margin for the separating hyperplane 

and the misclassification measure ζi and (b) LS-SVM with two 

parallel hyperplanes and the error ei attached to each point 

 

Using Vapnik’s formalism [2,3] from standard SVM 

leads to a constraint quadratic programming (QP) 

problem. In order to avoid this optimization problem 

which is sometimes difficult to solve, LS-SVM uses 

equality constraints instead of inequality constraints to 

find the decision hyperplanes. The difference is 

compensated by adding an extra term to the cost function 

that penalizes the deviations from the two hyperplanes, for 

each point of the learning data. The deviations are given 

by the scalar error { }Niei ,...,1 ∈∀ . The training problem is 

given by: 

( )( ) { }
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where γ plays the role of a regularization parameter 

between the two quadratic terms in the primal problem 

formulation (2), and characterizes the relative importance 

of the terms. The first term aims to maximize the distance 

between the two hyperplanes, while the second term aims 

to minimize the slack variable ei. This addition of the two 

quadratic terms is also responsible for the name least 

squares SVM. 

Since the dimension of the feature space is high, 

possibly infinite, this problem is difficult, if not 

impossible, to solve. Furthermore, the mapping of ( ).ϕ , 

corresponding to a kernel, is not always known. For 

solving an optimization problem the Lagrangian is 

constructed. The optimality conditions of this constrained 

optimization problem are given by the saddle point of this 

Lagrangian also known as the Karush-Kuhn-Tucker 

conditions [9]. The Lagrangian is given by: 
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where α  is the vector of the Lagrange multipliers. Using 

the Karush-Kuhn-Tucker conditions substituting the result 

of the linear equations into (3); ω  and b can be 

eliminated and the Dual optimization problem is given by: 
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This formulation has three important advantages. First 

we see that the dimensionality of the optimization problem 

is equal to the number of data points N, indicating that the 

training process is neither dependent on the 

dimensionality of the feature space, nor the dimension of 

the input space. Second, the kernel is an inner product in 

feature space and opens therefore a lot of opportunities. 

By applying the kernel trick one can show that for 

different kernels the general optimization problem 

remains the same. Third, these optimization problems are 

convex. The Hessian matrix is a full rank positive definite 

matrix, which guarantees a unique solution. The solution 

of the dual optimization problem can be given as a linear 

system: 
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where the matrix H obeys the Mercer theorem [9], that 

deals with the conditions a function must have to be a 

kernel function, and y denotes the column vector formed 

by the labels of the training points. After the optimal 

parameters are found the classifier is given in the form: 
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Notice, in LS-SVM all Lagrangian multipliers are non-

zero, because all training data sets are used as support 

vectors for identifying the class separation surface. 

 

3.2 Training data preselection for LS-SVM 
 

In this section we describe a method for selecting 

vectors out of the training dataset which are likely to be 

support vectors in a LS-SVM and therefore describe the 

individual classes best. This is done by an intelligent data 

preselection algorithm based on a modified nearest 

neighbor technique, leading to a smaller set of samples 

which have to be stored for the classification task - 

resulting in quite similar classification accuracies. 



After this preselection, the remaining datasets are used 

as support vectors for a LS-SVM classifier to find the 

decision boundary between two classes in the learning 

process. Using our approach leads to a sparse LS-SVM 

classifier with good classification results and lower 

computational and memory costs than standard SVM. In 

embedded systems the memory resources are quite 

restricted and therefore the proposed approach is 

advantageous in comparison to standard SVM. The 

training data preselection algorithm consists of three main 

stages as described in the following: 

A given training dataset T is given by the training 

samples s. The training samples can be divided into two 

subsets A∈{a0,…,an} and B∈{b0,…,bn} characterizing the 

two involved classes. 

Stage 1: 

1. For each sample ai out of A find the nearest 

neighbor sample bj from B and vice versa by 

computing the Euclidean distance d(ai,bj) ∀ai,bj 

until the distance is a minimum. 

2. Using the result from the first step, sort the 

distance d(ai,bj) in ascending order. 

3. The first distance sample is stored in an initially 

empty set Ωnn. 

4. The next distance samples are iteratively added 

to Ωnn and classified with a simple nearest 

neighbor rule in the way: 

If min(d(s,ai))<min(d(s,bj)) ∀ai,bj ∈ Ωnn and ∀s∈T 

s∈A 

else  

s∈B 

If the classification is wrong add the distance 

sample to Ωnn else quit. 

Stage 2: The reduced nearest neighbor rule [10] is used to 

obtain the reduced subset Ωrnn from Ωnn: 

1. Initially copy Ωnn to Ωrnn 

2. Remove the first/next pattern (ai,bj) of Ωrnn 

3. Use nearest neighbor rule to check if Ωrnn 

classify all pattern correct in Ωnn 

a. If all patterns classified correct go to 4) 

b. Else return the removed pattern to Ωrnn 

and go to 4) 

4. If every pattern has removed once go to 5) else 

go to 2) and remove the next pattern 

5. The remaining subset is given by: Π=T-Ωrnn 

Stage 3: At the last stage the final preselection subset Tps 

is computed to obtain the samples Π which are closest to 

Ωrnn. 

1. Take the first/next pattern (ai,bj)∈ Ωrnn select k-

nearest samples (am,bn)∈ Π in a way that 

a. min (d(ai,am)) 

b. min (d(bj,bn)) 

c. min (d(ai,bn)) 

d. min (d(bj,am)) 

are given. 

2. copy k samples to Tps and go to 1) until all 

samples from Ωrnn were considered. 

The value k can be set by the user, but our experiments 

have shown that 3% from the number of samples in T is a 

good initial value. The resulting subset of the training 

data, namely Tps, is provided to the LS-SVM classifier.  

Figure 3 shows an example random Gaussian 

distribution and the reduced subset Ωrnn after Stage 2 of 

the proposed algorithm. Figure 4 shows the overall results 

of the training data preselection algorithm with different 

values of k.  

 
Figure 3: (a) Random Gaussian distribution, (b) reduced 

remaining subset Ωrnn 

 

 
Figure 4: Results of the training data preselection algorithm 

for the distribution shown in figure 3a with variable k. (a) k=1, 

(b) k=2 and (c) k=3 

 

4. Experimental results 
 

In this section we present the results of three different 

experiments. Firstly we generate two random Gaussian 

distributions, each for an individual class. The 

distributions show a tendency to a high level of overlap as 

indicated in figure 5. Secondly we use a “real-world 

experiment” from our waste separation case study. We 

have implemented a simple multiclass classifier by using 

One-against-All technique. 



 
Figure 5: Random Gaussian distribution as experimental setup 

 

The database consists of 6 different classes: (i) blue 

glass, (ii) green glass, (iii) brown glass, (iv) white glass, 

(v) ceramics, stones, porcelains (CSP) and (vi) plastics. In 

cooperation with our industrial partner we generate a 

database with about 200 samples for each class. Each 

sample is characterized by 5 histogram based color 

features, 3 structural features and 5 IR-histogram based 

features. For the feature extraction 2 different types of 

sensors were used: (i) CMOS visual sensors and (ii) IR-

spectral imaging sensors. 

Thirdly, we use again two random Gaussian 

distribution with increasing amount of data points for each 

class. We evaluate three different implementations in 

order to obtain a training time result. 

For the first and the second experiment we use 

Matlab
TM

 implementations of 4 different algorithms: (i) 

standard SVM, (ii) Least squares SVM, (iii) LS-SVM 

with training data preselection (PTD-SVM) and (iv) a 

sparse LS-SVM, called LS
2
-SVM [11]. 

The third experiment was performed using C++ 

implementations and 3 algorithms were compared in the 

required time for training by an increasing large number 

of data points: (i) standard SVM, (ii) LS-SVM and (iii) 

LS-SVM with support vector preselection. 

For all experiments we used radial basis function 

(RBF) as the kernel function. The results presented in the 

following tables (cp. Table 1 and Table 2) are average 

values from 20 runs with random selection of training 

datasets. 

 
Table 1: Experiment 1 results; random Gaussian distribution 

Algorithm Training 

time (s) 

Wrong 

classified 

(%) 

Nb of 

SV 

SV (%) 

SVM 17.81±1.25 12.4±0.5 50.3±3.6 62.9±4.5 

PTD LS-SVM 10.04±1.11 15.3±0.8 36.6±4.4 45.8±5.5 

LS-SVM 3.85±0.47 14.2±0.5 80.0±0.0 100±0.0 

LS²-SVM 4.13±0.64 12.8±0.6 52.8±4.2 66.0±5.3 

 

Table 1 indicates that the standard SVM has the best 

training accuracy. Our proposed approach differs only 

about 3.1% from the standard SVM, while being 45% 

faster in training than the standard approach. The results 

presented in this table also show that the training accuracy 

is quite similar for all training approaches. The fastest 

training strategy is the LS-SVM approach, followed by the 

LS²-SVM approach. Our proposed training data 

preselection LS-SVM approach is about 3 times slower 

than the fastest approach. The last column of the previous 

table shows us that our algorithm has detected a smaller 

amount of Support Vectors (SV) even in comparison to the 

standard SVM approach. In comparison to the LS-SVM 

approach our algorithm needed 45% of Support Vectors 

for a quite similar classification result. 

 
Table 2: Experiment 2 results; waste separation 

Algorithm Training 

time (s) 

Wrong 

classified 

(%) 

SV (%) 

SVM 328.3±4.4 2.8±0.2 40.8±4.5 

PTD LS-SVM 158.4±3.2 3.1±0.3 42.3±3.2 

LS-SVM 37.8±2.5 2.2±0.2 100±0.0 

LS²-SVM 76.1±2.9 2.5±0.4 66.8±3.3 

 

Table 2 confirms the tendencies from table 1. Our 

approach is about 50% faster than the Standard SVM 

approach with quite similar classification results. All 

presented approaches for training a Support Vector 

Machines seem to be high quality solutions for 

classification problems. The fastest training strategy is 

LS-SVM, followed by LS²-SVM as the table indicates. 

Our proposed approach is about 4 times slower than the 

fastest but a lower amount of Support Vectors have to be 

considered. Both tables show that the LS-SVM approach 

consider all training datasets as support vectors, which is 

the main disadvantage of this strategy. 

Figure 6: Comparison of three different learning strategies in 

required training time vs. number of training samples; SVM-QP 

approach (standard SVM), LS-SVM approach (least squares 

SVM) and PTD-SVM approach (preselection of training data 

LS-SVM) 

 

Figure 6 shows a comparison of three training 

strategies for an increasing number of training samples. 

The required training time is an averaged value of (i) 10 



experiments for less than 5000 training samples and (ii) 3 

experiments for more than 5000 training samples. The 

standard SVM approach is the slowest and is therefore not 

advisable for large training sets. The fastest approach is 

the LS-SVM approach, followed by our proposed 

approach. Both algorithms might be used for large 

training data sets. 

 

5. Discussion 

 

In embedded systems, learning of large training 

datasets with SVM is difficulty, because of their restricted 

memory resources. Our experiments show that training for 

over 3000 training samples with a standard SVM is not 

feasible because of the memory requirements.  

LS-SVM helps to reduce the memory requirements and 

is much faster than standard SVM, due to the usage of 

equality constraints instead of inequality constraints. 

Therefore, training requires the solving of a set linear 

equations, instead of solving the quadratic programming 

(QP) problem. The main disadvantage of LS-SVM is the 

loss of sparseness, indicating that all training samples 

have to be stored for the classification task - leading to 

high memory requirements and slower classification.  

Therefore, we described an algorithm for an intelligent 

training data preselection in order to identify a subset of 

training data which describes the whole dataset best. This 

approach reduces the number of vectors which have to be 

stored for later classification. The experimental results 

show that our approach leads to a sparse SVM with 

accurate classification results and faster training time 

than the standard SVM.  

Future work will include the implementation of the 

proposed approach to a commercial product. 
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