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Abstract

In this article we present our software framework for em-

bedded online data fusion, called I-SENSE. We discuss the

fusion model and the decision modeling approach using

Support Vector Machines. Due to the system complexity and

the genetic approach a data oriented model is introduced.

The main focus of the article is targeted at our techniques

for extracting features of acoustic- and visual-data. Ex-

perimental results of our “traffic surveillance” case study

demonstrate the feasibility of our multi-level data fusion ap-

proach.

1 Introduction

Currently there is a strong trend towards integration of sen-

sor, computing and communication technology into every-

days life. The ultimate goal here is to provide as much

support as possible while concealing the computing devices

from the users. Our I-SENSE project [6] demonstrates the

potential of combining the scientific research areas multi-

sensor data fusion and pervasive embedded computing. I-

SENSE is used as an acronym for intelligent sensing and

our project is targeted at various applications. Classifica-

tion of vehicles is one of the most important tasks in traffic

surveillance systems and therefore, we demonstrate the fea-

sibility of our fusion approach in a classification case study.

The aim of our multi-sensor fusion framework is to create a

synergistic process in which the consolidation of individual

data creates a combined resource with a productive value

greater than the sum of its parts.

To achieve this aim, our approach is to perform multi-

level data fusion by combining data from different sensors

at different levels of abstraction. The I-SENSE fusion-

framework supports three basic levels of data fusion. These

fusion levels are differentiated according to the amount of

information they provide. The most basic level is called

∗This project has been partially supported by the Austrian Research

Promotion Agency.

raw-data fusion. At this level, only raw, uncorrelated data

is provided to the user. In comparison, level two data fusion

provides a higher level of inference and delivers additional

interpretive meaning suggested from the raw data and data

will be fused based on extracted features. Therefore this

level is called feature-level fusion. Level three data fusion

is designed to make assessments and provide recommenda-

tions to the user and is called decision fusion.

The remainder of the paper is organized as follows: Sec-

tion 2 gives a short review about related activities. Section

3 discusses our I-SENSE project as a framework for multi-

sensor data fusion. Section 4 deals with the visual feature

extraction tasks while section 5 treats the acoustic feature

extraction tasks. In section 6 we discuss the decision mod-

eling process. In section 7 we present some experimental

results of our approach, and section 8 concludes the paper

with a short discussion of our approach.

2 Related work

Our idea of developing a high-performance data fusion ar-

chitecture originates from the SmartCam project [1]. In the

I-SENSE research project we extend the SmartCam to dis-

tributed embedded sensor nodes (consisting of a network

processor and various digital signal processors) capable of

fusing data from various heterogeneous sensors, ranging

from simple sensors such as light barriers and induction

loops over audio sensors to different video sensors. There

exists a large variety of multi sensor fusion applications, but

our proposed approach is different in several ways to these

applications.

“Project Correlation”, funded by the U.S. Air Force, was

the first approach to step back from the many application-

specific and system-specific solutions and developed a set

of generic/reusable engineering guidelines for an effective

data fusion-problem solution. A methodology for fusion

software development, based on the C4ISR architecture [4]

is given. However, this architecture has too much overhead

and is, therefore, not suitable for embedded systems.
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Figure 1: Detailed data oriented Fusion Model characterized by

input- and output data

3 Fusion Model

Figure 1 presents the detailed, data oriented software fusion

model in our I-SENSE approach [7]. This model consists

basically of three levels and functions. Namely, the Sen-

sor Control & Management Unit, the Sensing Unit and the

Fusion Layer. The figure presents an example of two phys-

ical sensors, labelled with S1 and S2 (i.e. audio sensor and

visual sensor).

The Sensor Control & Management Unit is responsible

for the sensor identification as well as providing the inter-

face to other sensing nodes, human observers and actuators.

Furthermore, this unit controls the overall fusion process

and provides access to a database where resource require-

ments for the different fusion tasks are stored. Three es-

sential functional blocks are identified in this layer to allow

an online refinement of the overall fusion process based on

(i) the generated output decisions of FIDeO and DeIDeO

(DeIDeORef, Decision in decision out refinement and De-

IFORef, Decision in feature out refinement) and (ii) gener-

ated output features of FIFO and DIFO (FIDORef, Feature

in data out refinement).

The Sensing Unit represents the intelligent sensor which

consists of the physical sensor itself and a suitable data pre-

processor (e.g. resolution based down-sampling, automatic

gain control, . . . ). A Local feature extraction Unit (LFE) is

used to extract a single-source feature vector based on color

information, structural information, spectral information or

acoustic information of an observed object. This means,

that each sensor provides an estimate of the position of an

object with extracted features, based only on its own sin-

gle source data. These individual feature vectors are input

to a data fusion process, namely the Feature in feature out

(FIFO) process, in order to achieve a joint feature vector

estimate based on multiple sensors. A Local decision ex-

traction Unit (LDE) is used to extract local decision from

individual objectives features (e.g. classification of objec-

tives identity).

The heart of the framework is the Fusion Layer including

the following five functional units:

DIDO: Data in data out unit; This functional unit is also

called Raw-Data Fusion unit (RDF), and raw uncorre-

lated data will be fused from different and/or similar

numerous sensors there. This raw data streams are la-

belled with RDx. In our framework this method is pro-

vided for similar sensor types by using wavelet based

image fusion techniques of images from visual sensor

& infrared spectral camera.

DIFO: Data in feature out unit; this is our so called Fea-

ture extraction II unit (FEII), where raw data from the

individual sensors and/or fused raw-data (i.e. DbD:

Raw data based on raw data) is used to extract suitable

features of the individual tracked objects. These fea-

tures are found by experimental analyses and/or phys-

ical modeling and described in more detail in sections

4 and 5. The output data are feature vectors for each

detected object in the observed area.

FIFO: Feature in feature out unit; this is our so called Fea-

ture fusion unit (FF), where features will be fused to

a resulting overall feature vector based on individual

objects. Corresponding objects are found by simple

object overlapping calculation for similar sensor types

and time stamping for different sensor spaces. The out-

put data of this fusion process are fused feature vectors

based on features (FbF) extracted by the LFE unit or

features extracted by the DIFO unit.

FIDeO: Feature in decision out unit; this functional unit

is a part of our decision fusion unit (DF), where, a

classifier, based on Support Vector Machines (SVM,

cp. section 6), is trained with previously recorded and

classified sequences. In the next step this SVM is used

as a classifier to derive classification decisions based

on previously extracted single source feature vectors

ore joint feature vectors (FbF) from the FIFO unit.

Outputs are decisions based on Features (DbF), and

a probability interval of this decision.

DeIDeO: Decision in decision out unit; this functional unit

is the second part of our decision fusion unit, where ex-

tracted decisions (Dx) will be fused from multiple sen-

sors from the LDE unit with fused data from FIDeO,

based on statistical methods (i.e. Dempster-Shafer

methods [2]). Outputs are decisions, based on multiple

decisions.
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4 Visual Features Extraction

In this section the feature extraction task based on visual

features is explained. For our feature extractor we adopted

the ideas of Viola and Jones [15] to build a multi-class clas-

sificator and improved it using RealBoost [11]. The feature

set depicted in figure 2 and additional gradient-based in-

formation is used in order to generate robust features and

calculate them in real-time on an embedded platform. The

boosting approach mainly is used to extract the most power-

ful features while during feature regression phase the over-

all interpretation of their values could be left to the fusion

system (cp. section 6).

Figure 2: Simple Haar-features (a-g) and center-surround (h)

used in the implementation. Each feature is composed by two or

more ”subrectangles” within light rectangles having positive and

dark rectangles negative weight.

4.1 Histogram Features

Although simple Haar-features perform well in describ-

ing global illumination changes and symmetries, they have

problems in describing oval shapes and do not use edge in-

formation. Yet, these drawbacks can be improved by ex-

panding the feature set with local edge orientation features

(EOHs) [8] which store the gradient information in an im-

age in a histogram (cp. figure 3a) depending on the orienta-

tion of each edge (cp. figure 3b).

Shortly, in order to use EOHs in an image it has to be

preprocessed by an edge detector, e.g. Sobel. The strength

of the edge in (x, y) is denoted by G(x, y). Furthermore, a

threshold has to be calculated to ignore noise

G′(x, y) =

{

G(x, y) if G(x, y) ≥ T

0 otherwise.
(1)

Once we have received an edge its orientation can be calcu-

lated as

Φ(x, y) = arctan
(Gy(x, y)

Gx(x, y)

)

(2)

and the edges are added to the correct K bins1 in the his-

togram. The value of the k-th bin is denoted as

ψ(x, y) = G′(x, y) · (1 − d) (3)

Each entry into a bin is multiplied by a weight of (1 − d),
where d ∈ [0, 1] is the distance of the sample from the cen-

tral value of the bin as measured in units of the histogram

bin size. This interpolation has to be done due to bound-

ary effects which may happen if a descriptor or edge shifts

smoothly from being in one histogram bin to another or

from one orientation to another.

(a) (b)

Figure 3: Edge orientation features: (a) First all gradient mag-

nitudes and orientations in a sub-window are calculated and then

accumulated into orientation histograms into K orientation groups

between 0 and 2π. (b) The typical histogram representation of

summed gradient magnitudes classified into eight different orien-

tation groups between 0 and 2π.

4.1.1 Orientation Histogram Features

Once the image has been preprocessed and all edges are

added to certain bins depending on their orientation, fea-

tures can be created which either describe the ratio between

two different orientations or the dominant orientation of

edges describing an object. The first histogram feature type

simply compares two certain bins in the histogram. Equa-

tion 4 shows the summation of edges in a sub-window R in

the image to their corresponding bin.

Ek(R) =
∑

(x,y)∈R

ψk(x, y) (4)

Note, that this calculation can be performed very fast with

four table lookups by using again integral images as de-

scribed [3]. The first set of features is then defined as:

Ak1,k2
(R) =

Ek1
(R)

Ek2
(R)

, (5)

which represents the relation between two orientations in

the sub-window.

1In practice it has been shown that 4, 8 and 16 bins are sufficient in

most cases.
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The second type of orientation features compares one

histogram bin to the summed value of all remaining bins,

hence finding the dominant orientation. Equation 6 defines

the calculation of the second feature set.

Bk(R) =
Ek(R)

∑

iEi(R)
(6)

Unlike simple edge orientation features which only de-

scribe single dominant orientations or the relation between

two edges, it is possible to define full histogram features,

where the whole edge information stored in an orientation

histogram can be analyzed. These features, though, need

some kind of reference histogram in order to make the com-

parison of one and the same sub-window calculation in two

different images possible. This histogram, for example, can

contain the average histogram values of the positive training

set or can be a unit vector, if the histograms are considered

as vectors, respectively. If one feature has to be evaluated

on different samples, all values are calculated with respect

to the reference histogram. Due to this, the values in the

histogram have to be mapped to a single scalar. This can be

done by calculating the Euclidean distance, again consider-

ing the histograms to be vectors, of the current histogram in

a sub-window and the reference histogram as seen in equa-

tion 7.

F (R) = |A−B| =

√

∑

k

(Ak −Bk)2, (7)

where F (R) is the scalar gained from the comparison of the

current histogram A with the reference histogram B at bin

k.

Finally, we use orientation histograms to describe sym-

metries in a sub-window of an image and also to describe

areas where symmetry is missing [12]. The calculation of

this symmetry-feature is given in equation 8.

Symm(R1, R2) =

∑

k∈K |Ek(R1) − E#bins−1−k(R2)|

sizeof(R1)
(8)

4.2 Multi-class Feature extraction

Our multi-class feature extractor is build on a tree structure

consisting of several binary extractors. While one-vs-all

multi-class classifiers sometimes might yield slightly better

results we chose the tree scheme to improve computational

efficiency.

The single feature extractor of the tree are each trained

with positive and negative training examples, where, e.g, in

the first stage motor bikes and cars as positive examples are

trained against small and large trucks as negative examples.

A detailed structure is given in figure 4.

Figure 4: Visual feature extraction tree.

5 Acoustic Feature Extraction

The acoustic feature extractor uses cepstral analysis [10]

for feature generation. In the acoustic part of the database

noise-induced error handling and modelling of non station-

ary signal behavior were major issues. Acoustic signatures

of moving vehicles mostly behaved non stationary due to

variations in engine behaviour, gear changes or Doppler ef-

fects. Additional wind or environmental noise degraded sig-

nificantly signal quality. Hence, features from spectral anal-

ysis techniques as power spectral estimates [9] or harmonic

line association [5], which achieved good classification per-

formance in military approaches, performed poorly in our

recognition scenario as they assume stationary signal be-

havior within the analyzed time interval. Cepstral analysis

offers some advantages in comparison to these techniques,

and it also outperformed other spectral envelope estimation

methods like filter bank analysis (Haar transform, channel

vocoder) and linear predictive coding (LPC).

5.1 Cepstral Features

In the acoustic feature extractor, cepstral analysis is used for

extraction of vehicle characteristic features. Cepstral coeffi-

cients (CC) have been popular feature candidates in speech

recognition and audio genre classification systems, as they

provide very good information packing properties. The cep-

strum c(τ) of a signal x(t) is defined as the inverse Fourier

transform of the logarithm of its spectrum:

c(τ) = F−1 {log |F {x(t)} |} , (9)

where F denotes the Fourier transform. We use low order

CCs to capture the slowly varying properties of the spec-

trum, i.e. the spectral envelope. The whole signal energy,

for example, is contained only in the first coefficient (c0
term), which yields good class discrimination, as trucks

usually produce more noise than cars.
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CCs are computed either directly using equation 9, or

estimated efficiently via linear predictive analysis by con-

verting LPC coefficients into LP based cepstral coefficients.

The LPC parameters ai in an autoregressive (AR) model are

directly obtained as system of equations from the autocor-

relation function r(k), by solving the so called Yule-Walker

equations:
p

∑

i=1

air (|k − i|) = r(k), (10)

where p denotes the selected model order. A recursive

method for solving these equations is the Levinson-Durbin

algorithm [10]. The CCs are then calculated by the follow-

ing recursion:

cm =

{

ln (r(0)) for m = 0

am +
∑m−1

k=1

(

k
m

)

ckam−k for m ≥ 1
(11)

where a0 = 1 and ak = 0 for k > p and p denotes the se-

lected model order. This method avoids any signal transfor-

mation and thus, the computational effort is highly reduced

without significant loss in classification performance. LP

based CCs as feature vector for the classifier afford efficient

use in real time applications.

5.2 Acoustic Processing

The motor noise of vehicles is mainly limited to the fre-

quency range below 500Hz. In order to suppress tire noise,

audio data is lowpass filtered and downsampled to 1 kHz.

As the vehicles travel quite slowly in our scenario, analysis

frames of 2 seconds are used. The input signals are blocked

into smaller frames of N = 256 samples with 50% overlap.

A hamming window is used to reduce leakage effect and

the AR modelling order is set to p = 20 coefficients. For

each block, only the first p + 1 = 21 autocorrelation coef-

ficients are calculated and the AR parameter set is achieved

by the Levinson-Durbin recursion. The first 16 cepstral co-

efficients proved best classification results and hence they

are converted from the LP parameter set with the above de-

scribed equations. The mean values over all frames yield

the final feature vector for SVM based classification.

6 Decision Modeling

The decision modeling process is provided as a generic soft-

ware framework which allows online data fusion on a dis-

tributed embedded system with limited memory resources.

In our multi-level data fusion framework Support Vector

Machines (SVM), proposed by Vapnik [14] are used as clas-

sification method for decision modeling. For large sets of

training data, common SVM learning strategies are not fea-

sible, especially on embedded platforms because of their re-

stricted time and memory resources. Therefore, a modified

version of the original SVM, the so called Least Squares

Support Vector Machine (LS-SVM) [13] is used for deci-

sion modeling in our framework. The main characteristic

of LS-SVMs is the lower computational complexity com-

pared with original SVMs, without any quality loss in the

classification results.

The extraction of support vectors from a given training

dataset is comparable with the problem formulation of find-

ing the most significant vectors in a given data set. The

optimal solution for solving this task should combine the

following features. It should (i) be fast, (ii) lead to a sparse

solution (i.e. low number of support vectors) and (iii) pro-

duce good classification results.

In [7] we propose a modified nearest neighbor technique

for an intelligent preselection of learning data in order to

reduce the training set and therefore reduce the number of

support vectors which are then used by the LS-SVM clas-

sifier. The remaining datasets are used as support vectors

for a LS-SVM classifier to find the decision boundary be-

tween two classes in the learning process. Using our ap-

proach leads to a sparse LS-SVM classifier with good clas-

sification results (about 2% higher error rate compared to

standard SVM) and lower computational costs(about 70%

faster than Standard SVM) and lower memory costs(about

55% less data for storage compared to LS-SVM).

7 Experimental Results

In this section we present the results of our vehicle classi-

fication case study. We have implemented a simple multi-

class classifier by using the One-against-All technique. The

database consists of 3 different classes: (i) large trucks, (ii)

small trucks and (iii) cars. We generate a database with

about 250 samples for each class – about 200 are used as

training samples and about 50 are used as evaluation sam-

ples. The samples for training and evaluation are chosen

randomly from the database. Each sample is characterized

by 4 visual based features (histogram and orientation fea-

tures) and 16 acoustic based features. For the feature extrac-

tion 2 different types of sensors were used: (i) CMOS visual

sensors and (ii) acoustic sensors. For classification we use

our LS-SVM with support vector preselection for these ex-

periment. For all experiments we used radial basis function

(RBF) as the kernel function. The results presented in figure

5 are average values from 100 runs with random selection

of training datasets and random selection of the evaluation

set (Note: Both sets are disjunctive).

The box plots (lines at the lower, median and upper quar-

tile values; whiskers show the extent of the rest of the data)

shown in figure 5 indicate that fusing data from various sen-

sors help to improve the robustness and confidence as well

as to reduce ambiguity and uncertainty of the processed ve-

hicle classification. In case we perform our vehicle clas-

115



100% 90% 80% 70% 60% 50% 30%

0%

5%

10%

15%

20%

25%

30%

35%

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

ra
te

learned from Database

(a) visual features

100% 90% 80% 70% 60% 50% 30%

0%

5%

10%

15%

20%

25%

30%

35%

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

ra
te

learned from Database
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Figure 5: Experimental results: vehicle classification with SVM

based on (a), (b) and (c)

sification based on visual features only (with 100% of the

learning database) the mean error rate is about 12.9%. In

comparison the same classification based on only acoustic

features lead to 6.8% error rate. Fusing data from both in-

formation sources decrease the error rate to 6.6%, what is

better than the best single source result. The figure also in-

dicates that using smaller sets of training data increases the

mean error rate. Using 30% of training samples lead to (i)

26.4% error rate in case based on visual features only, (ii)

22.9% error rate in case based on acoustic features only and

(iii) 17.4% error rate in case based on fused features. This

fact indicates that fusing data on feature level allows to de-

crease the number of learning samples in order to gain same

classification results than with single source data.

8 Discussion

Vehicle identification is one of the most important tasks in

traffic surveillance systems. Our approach is to use differ-

ent type of sensors in order to fuse the extracted features

from the individual sensors. We show that our approach is

advantageous in comparison to single source vehicle classi-

fication. The results of our experiment demonstrate that the

advantage is twofold. Firstly, the classification error rate

decreases by using our modified LS-SVM approach. Sec-

ondly, the necessary number of training samples can be re-

duced to obtain quite similar classification results. We use

an algorithm for intelligent training data preselection in or-

der to identify a subset of training data which describes the

whole dataset best, leading to a reduced number of vectors

which have to be stored. These approach makes learning

of large training datasets possible even in embedded system

with restricted memory and time resources.

We plan to extend our database by a bus class. The de-

cision fusion process based on Demster-Shafer theory and

further acoustic feature extraction algorithm will be imple-

mented.
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