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ABSTRACT

Vehicles may be recognized from the sound they emit
when driving along a road. Characteristic acoustic finger
prints and audio features can be used to increase the ro-
bustness of existing video based vehicle tracking and clas-
sification algorithms. Using this information in a multi-
sensor surveillance system helps to improve various param-
eters such as recognition rates, detection times and robust-
ness. We propose a two-fold approach, where vehicle detec-
tion and classification are handled separately. We demon-
strate the feasibility of the proposed method using outdoor
audio sequences of traffic situations.

1. INTRODUCTION

In the I-SENSE project [1, 2] we develop an intelligent multi-
sensor fusion framework for embedded online data fusion.
Fusing data from various sensors helps to improve the ro-
bustness and confidence, to extend the spatial and temporal
coverage as well as to reduce ambiguity and uncertainty of
the processed sensor data. In the I-SENSE project we exploit
these characteristics to improve the quality of traffic surveil-
lance.

Since current traffic surveillance systems (e.g.,Smart-
Cam [3]) are primarily based on video, integration of data
from audio, infrared, supersonic and inductive loop sen-
sors helps to improve various parameters such as recogni-
tion rates, detection times, robustness and quality of service.
While acoustic surveillance systems have been well studied
(e.g., recognition of vehicles [4, 5], machines and dropping
objects [6]), multi-sensor data fusion approaches are cur-
rently driven by automatic speech and gesture recognition
systems [7].

Almost all vehicles emit characteristic sounds when
moving on a road. The sound is mainly composed of (i) ro-
tational parts and vibrations in the engine (ii), noise caused
by the exhaust tube (iii), friction between the tires and the
pavement and (iv) broad band noise caused by the air stream
of moving vehicles. In this article we describe our ongo-
ing research on robust acoustic feature extraction methods
to support real-time traffic surveillance. Currently, recorded
traffic sounds are analyzed with respect to four criterions:
(i) the presence of a vehicle (ii), the characteristic acoustic
fingerprint of a vehicle used to track an object (iii), the av-
erage velocity together with the driving direction, and (iv)
the vehicle category a detected object belongs to. Our acous-
tic classification system is designed for distinction between
three different vehicle categories car, van and truck. In our
recording data only these classes appear without presence of

other vehicle categories such as motorcycles, but the system
can easily be adapted for distinction of further categories.

The reminder of the paper is organized as follows: Sec-
tion 2 presents the utilized experimental setup and micro-
phone configuration for our research. Section 3 discusses
our approach for vehicle detection while section 4 focuses
on acoustic vehicle tracking. In section 5 different feature
generation algorithms are presented, to extract a set of audio
features from the input data. In section 6 it is utilized for dis-
tinction between the three vehicle categories together with a
Support Vector Machine (SVM) classifier. Section 7 presents
the experimental results and shows the feasibility of our ap-
proach. Section 8 concludes the paper with a summary and
an outlook on future work.

2. ACOUSTIC TRAFFIC SURVEILLANCE SETUP

The setup for our acoustic traffic surveillance consists of two
microphones next to the road. The distance between the sen-
sors (microphone base) is set to 1m in order to permit a
cross correlation analysis (see section 5, and the height above
ground is 1m. Traffic sounds have been recorded at a sample
frequencyfS= 8 kHzin 16bit resolution together with video
data in order to ease the evaluation.

These recorded traffic sounds have then been utilized for
the development of the vehicle detection and classification
methods in MATLAB. For real-time detection and classifica-
tion these algorithms have been ported to and optimized for
a TMS320DM642 signal processor from Texas Instruments.

3. EVENT AND VEHICLE DETECTION

Our approach for vehicle detection is two-fold. To keep
the required computation resources low, we have decided
to separate the detection of vehicles from their classifica-
tion. For the vehicle detection we use a simple and fast al-
gorithm as presented in the following. If this simple algo-
rithm determines an interesting acoustic event, the complex
and time consuming classification algorithm is triggered for
an in depth analysis of the observed object.

In order to find out, if a vehicle is in range of the mi-
crophone pair, an index is needed that describes the energy
density of the input signal as function of time. A pure en-
ergy analysis in time domain is not suitable for that, since the
index must be particularly robust against background noise
from the (e.g., noise caused by the wind) environment. In
addition the method should offer a quantity for the probabil-
ity of a valid vehicle passing. In our approach we group the
input samples into hamming windowed blocks, apply a short-
time FFT analysis and sum up the logarithm of the spectral



line amplitudes:

E[i] = ∑
k

log(Xi [k]) (1)

whereXi [k] is the Fourier transform of theith input block
xi [n] andEi denotes the corresponding energy index. A good
tradeoff between required processing power and accuracy of
the energy index is given by a blocksizeN = 256 samples.
The hopsize between adjacent blocks depends on the actual
setup and expected disturbances. The index is shown during
a vehicle passing in figure 1. In order to detect a vehicle, it
is necessary to find significant maxima in this energy func-
tion. Applying a smoothing filter eases the implementation
of an algorithm which is capable of finding local maxima. A
butterworth structure best smoothes the energy course.

(a) according to equation 1 (b) filtered with Butterworth

Figure 1: Energy index,Ei during same vehicle passing by:
(a) unfiltered and (b) filtered

On the first view (cp. figure 1) the group delaytd (in our
case of 8kHz, td = 0.29s) of the butterworth filter may look
problematic. But this delay is relatively small compared to
the peak detectors retention, described in the following.

There are many events that result in a peak in the energy
index. So it is necessary to extract discriminating features to
decide whether a peak is caused by an object of interest (e.g.,
car, truck). We have identified the following five conditions
for a robust vehicle detection. The most important parameter
of a peak is the amplitude. Peaks with an amplitude lower
than a specified threshold,Thres(cp. fig. 2, (1)) are ignored.
They must have a duration in a certain time rangeWdMx(cp.
fig. 2, (4)). Furthermore, the raise-time (cp. fig. 2, from (2)
to (1)) and the fall-time (cp. fig. 2, from (1) to (3)) must
be lower than a predefined valueDi f f . Vehicles typically
cause a symmetric peak, which distinguishes them from dis-
turbances. ParameterDi f f MM is defined as the difference
between the left and the right minimum in the time window.
The last criterion that must be fulfilled is the area below the
energy graph in the specified time window. It must exceed
the parameterMinArea. Trucks with trailers typically create
peaks with more than one local maximum. Therefore, a time
span parameterLocMxWdis introduced to prevent multiple
detections caused by a single vehicle.

4. VEHICLE TRACKING

In contrast to vehicle detection, vehicle tracking based on
acoustic fingerprinting requires substantial computation. In
our approach a fingerprint is generated if a vehicle passing
the microphones has been detected. Problems, which have
to be considered, especially when dealing with vehicles at
higher speed are (i) the increased noise caused by the tires

Figure 2: Energy indexE[i] with conditions for vehicle de-
tection

Symbols Description
Thres Threshold for peak
WdMx Window size
Di f f Difference of min. and max.

MinArea Minimal area of valid peaks
Di f f MM Measure for symmetry
LocMxWd Suppressor of peak ripple

Table 1: Parameters for our experimental setup

and air disturbances, (ii) the reduced time slot for vehicle
recording and thus, less accurate fingerprint information and
(iii) the Doppler effect. All three influences always occur
together and significantly complicate extraction of reliable
fingerprints. Distinct harmonic peaks from the motor sound
can be recognized from individual FFT spectra only in rare
cases.

Our so called audio fingerprints are calculated from char-
acteristic FFT spectra of vehicles. In order to obtain more
precise information about spectral composition of engine
noise and broad band characteristics, an averaging of many
FFT spectra is obvious. Figure 3 visualizes an example of
an averaged spectrum as mentioned above. The time span,
which is taken into consideration for a precise identification
of a vehicle, should be as large as possible. For building the
average spectra, the time window is centered around the de-
tected energy peak. For the implemented algorithm, a time
period of approximately 1.5s around the maximum has been
chosen. To avoid a loss of information the input signal is win-
dowed by 50% overlapping Hann windows. A longer time
period has to be avoided for the audio fingerprint, since in
case of a high traffic density there might be a temporal over-
lap with adjacent vehicles.

The Doppler effect smears the spectrum of passing ve-
hicles proportional with increasing velocity, which theoreti-
cally means, that a correct evaluation of FFT spectra can only
be carried out during their approach.

In order to track a vehicle over multiple sensors, it is re-
quired to recognize it on other audio channels. Within small
spatial ranges an acoustic fingerprint can be used for this
recognition and is an easy objective for an algorithm by us-
ing the average spectra to compute a numeric value which
describes the similarity of two spectra. This similarity mea-
sure is calculated by cumulative summation of the weighted
difference between each frequency bin when comparing two
acoustic fingerprints. The weighting coefficientswk decrease
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(a) Vehicle passing station A
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(b) Vehicle at station B

Figure 3: Averaged spectrum of vehicle (50kph) recorded with 50mspatial difference

proportional to the frequency bin index k withwk = 1
k . In

this way, lower frequencies from the motor noise of vehicles
are more weighted.

5. VEHICLE FEATURE EXTRACTION

Various signal processing algorithms were implemented with
MATLAB in order to collect a pool of candidate features able
to distinguish between our three vehicle categories. Each of
the algorithms extracts several features from the raw input
data and returns so called candidate features. They are used
as input to an optimization stage of the system design, where
the subset with best class discrimination ability is selected
out of the candidates. This optimization procedure is per-
formed with a genetic algorithm (GA) [8] that utilizes the
classification performance (percentage of correctly classified
vehicles) of the classifier from section 6 as quality measure
for class discrimination properties of a selected feature sub-
set. The goal of the optimization is to find the feature sub-
set with best classification properties. Extracted candidate
features are calculated with the algorithms described in the
following.

5.1 Time Domain Features

Features in time domain are generated from short time ener-
gies, zero crossing rates and correlation analysis algorithms.
Due to block processing of the audio signals, spectral fea-
tures are always given as feature vectors which reflect sig-
nal behavior over time. Thus, statistical moments such as
mean, variance and median values must always be utilized
to reduce feature data and to include information about non-
stationary feature behavior. In speech recognition short time
energy is used to discriminate between voiced and unvoiced
speech signals. For acoustic vehicle classification the mean
energy within the analysis window is an important feature,
as large trucks usually produce much more noise than other
vehicles. The crucial step is to find a suitable length for the
analyzed signal. If the analysis window is chosen too long, in
dense traffic situations adjacent vehicles appear in the energy
course. Conversely if it is too short, non-stationary signal be-
havior and noise effects may scatter feature data. Thus, the
analysis time interval is selected depending on on the present
traffic scenario with expected disturbances and vehicle ve-
locities. The zero crossing rate counts the number of zero
crossings of a signal within the specified time interval. It is a

measure for the noisiness of a signal. As cars produce more
tire noise than trucks at higher frequencies (typical frequency
range 500Hz-2kHz), this measure provides useful class dis-
crimination properties, especially with higher vehicle veloc-
ity. Cross-correlation analysis can be performed with our two
microphones placed along the road side. Point like sound
sources produce interference patterns in a two dimensional
diagram, where the cross-correlation function is plotted over
time. By applying image processing algorithms, vehicle
characteristic information can be extracted from these traces:
The speed can be estimated, the number of axles and their
spacing.

5.2 Spectral Features

Spectral features include signal attributes that describe av-
erage energies, positions and spreads in frequency domain,
such as the spectral centroid, signal bandwidth, spectral flux,
or band energy ratios. Mathematical definitions can be found
in [9]. They are commonly used in speech recognition, envi-
ronmental sound recognition and audio genre classification,
and provide feature candidates with useful information about
spectral signal properties. Because single spectral bins do not
contain relevant information for classification purposes, and
are also mutually correlated (i.e. they are linearly dependent
on each other), spectral bins that provide good classification
performance achieve only little performance improve when
combined together in a feature vector. As single feature val-
ues provide only local information for distinct blocks, again
statistical moments must be calculated to capture long term
signal characteristics from the analysis window of a passing
vehicle.

5.3 Cepstral Features

The Cepstrumc(τ) of a signalx(t) is defined as the inverse
Fourier transform of the logarithm of its spectrum:

c(τ) = F−1{log|F {x(t)}|} , (2)

where F denotes the Fourier transform. Cepstral coeffi-
cients (CCs) are popular feature candidates in speech recog-
nition systems, as they provide very good information pack-
ing properties: Low order CCs capture information about the
slowly varying properties of the spectrum, also referred to as
spectral envelope. Multiplication of the signal by a constant



gain for example, only affects the first cepstral coefficient (c0
term), feature vectors can thus be made invariant to changes
of gain by exclusion of this term. Higher order cepstral coef-
ficients can also be used to detect the fundamental frequency
of a periodic signal, because harmonic line sets in the log-
arithmic spectrum coincide as single peaks in the cepstral
domain.

CCs are computed either directly using equation 2, or es-
timated via linear predictive analysis by converting LPC co-
efficients into LP based cepstral coefficients. The LPC pa-
rametersai in an autoregressive (AR) model are directly ob-
tained as system of equations from the autocorrelation func-
tion r(k), by solving the so called Yule-Walker equations:

p

∑
i=1

air (|k− i|) = r(k), (3)

wherep denotes the selected model order, which must be set
high enough to provide a detailed signal information. The set
of linear prediction coefficients (LPCs)ai is converted into
LP based cepstral coefficients by the following recursion:

cm =
{

ln(r(0)) for m= 0
am+∑m−1

k=1

(
k
m

)
ckam−k for m≥ 1

(4)

wherea0 = 1 andak = 0 for k > p.
This method avoids any signal transformation and thus,

offers highly reduced computational effort, provided that
only a few cepstral coefficients are needed – which is the
case. LP based CCs as features afford efficient use in real
time environments. In our traffic scenario case study both
FFT and LP based CCs proved good classification results and
outperformed other spectral envelope estimates, such as filter
bank analysis (Haar transform, channel vocoder) and direct
utilization of LP parametersai . Figure 4 shows the class sep-
aration based only onc0.

Figure 4:Histograms for feature values ofc0. Car (left) and truck
(right) classes are almost completely separated.

6. VEHICLE CLASSIFICATION

The vehicle classification is performed with a modified
support vector machine (SVM) [10, 11] classifier which
is trained with a given amount of vehicle samples before
switched to decision mode. In order to evaluate classifica-
tion performance, a vehicle database provides 200 vehicle

Scenario Vehicles dLC dRC FP-ok FP-nok Rate
1 33 32 31 31 0 93.9%
2 36 28 32 27 5 75.0%
3 38 36 37 23 14 60.5%
4 56 49 46 31 18 55.4%

Table 2: Experimental results object detection

samples per class. An important goal for our acoustic classi-
fication system is to find features able to keep class discrimi-
native capabilities when utilized in different traffic scenarios.
Therefore the present database combines vehicles recorded
on both urban roads and suburban highways, and thus, vehi-
cles moving with low and high speed in a range from 30kph
to 100kph. During the optimized feature subset search this
let to features which achieve reliable classification perfor-
mance for both traffic situations. Hence, they are generally
able to discriminate between the vehicle classes without in-
fluence of different velocities. This technique is also referred
to as generalization of a feature subset.

7. EXPERIMENTAL EVALUATION

Different algorithms have been developed for the real-time
analysis of traffic sounds at the DSP. The vehicle detection is
a C-implementation of the algorithm described in section 3.
The highly optimized code for data acquisition and the event
detection causes a utilization of approximately 10% of the
DSP. The identification assigns a characteristic fingerprint
which is compared with all stored fingerprints of a certain
time span on the other channel. In case of matching finger
prints the event is counted and the average velocity is esti-
mated. Furthermore, the driving direction of vehicles can be
determined.

In the following we demonstrate the feasibility of our ap-
proach based on four different test scenarios:
Scenario 1: urban one-way street (max. 50 kph)
Scenario 2: urban street, two driving directions
Scenario 3: suburban two lane street (max. 70kph)
Scenario 4: highway (max. 100kph)

The second column of table 2 contains the quantity of
vehicles during the scenario.dLC and dRC comprise the
detected events at the left and the right channel. The fol-
lowing two columns (FP-ok, FP-nok) present the correct as
well as the incorrect matches of the implemented fingerprint
algorithm.

A major problem when evaluating our classification sys-
tem is the scattering of the results, when using randomly se-
lected training data sets. Since vehicle features may contain
strong outliers, the classifier can easily be confused when
trained with noised learning samples. Hence, classification
error rate highly depends on the utilized learning data. A so-
lution to this problem is to train and test the SVM several
times, each with different learning samples chosen randomly
from the database and to present the resulting data scattering
as shown in figures 5. This procedure leads to more accurate
evaluation results, as the spread of classification performance
is estimated. In figure 5a performance evaluation of the opti-
mized feature subset is carried out by exploring the error rate
when trained with different percentages of the database size,
here referred to as learning fraction. If the database contains
200 vehicles from each class, and the SVM for example is
trained at 40% learning fraction, this corresponds to 80 vehi-
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Figure 5: Error rate evaluation for (a) different learning data size, and (b) classifier performance at 50% learning fraction.

cles from each of the categories used for learning and the rest
for evaluation. In order to show the scattering of error rate,
evaluation is performed 100 times with randomly selected
learning data. Figure 5b contains the percentage of correct
decisions in each of the classes achieved at 50% learning
fraction. As we can see, the truck class is well distinguish-
able, while car and van classes can’t be fully separated from
each other.

8. CONCLUSION

As shown in the table 2 the implemented algorithm for event
detection (vehicle detection) is suitable in test cases with an
average velocity below 70kph. Increased background noise
(e.g., caused by wind) makes proper vehicle detection more
complicated. The fingerprint algorithm works best for slow
moving vehicles and one-way driving direction. If the char-
acteristic sounds of vehicles overlap, as it is the case on two-
lane streets, the number of identified vehicles drops. Accord-
ing to the results shown in figure 5b, acoustic vehicle classi-
fication based on acoustic-features only is not that reliable,
but it is a well suited extension to other sensory data (e.g.,
video, inductive loops).
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