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There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This de-
ployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory,
and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras
combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor
computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover
procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each
object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes
the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully
implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known
CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our
approach has been successfully evaluated on tracking persons at our campus.
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1. INTRODUCTION

Computer vision plays an important role in many applica-
tions ranging from industrial automation over robotics to
smart environments. There is further a strong trend towards
the implementation of advanced computer vision methods
on embedded systems. However, deployment of advanced vi-
sion methods on embedded platforms is challenging, since
these platforms often provide only limited resources such as
computing performance, memory, and power.

This paper reports on the development of computer vi-
sion methods on a distributed embedded system, that is,
on tracking objects across multiple cameras. We focus on
autonomous multicamera tracking on distributed, embed-
ded smart cameras [1]. Smart cameras are equipped with a
high-performance onboard computing and communication
infrastructure and combine video sensing, processing, and
communication in a single embedded device [2]. Networks
of such smart cameras [3] can potentially support more com-
plex vision applications than a single camera by providing ac-

cess to many views and by cooperation among the cameras.
For single-camera tracking, a tracker or tracking agent is re-
sponsible for detecting, identifying, and tracking objects over
time from the video stream delivered from a single camera.
The basic idea of multicamera tracking is that the tracking
agent follows the object over the camera network, that is, the
agent has to migrate to the camera that should next observe
the object. In such a scenario, the handover of the tracking
agent from one camera to the next is crucial.

Our multicamera tracking approach is intended as an ad-
ditional service of a surveillance system. Tracking an object is
started on demand for a particular object of interest on the
camera observing the object. This implies that there are only
few objects of interest within the supervised area. Our ap-
proach is appropriate for large-scale camera networks due to
the decentralized handover and it is also applicable for sparse
camera setups where the cameras have no or little overlap-
ping fields of view.

We have developed an autonomous handover process re-
quiring no central coordination. The handover is managed
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only by the adjacent cameras. Thus, our approach is scalable,
which is a very important feature for distributed applica-
tions. Currently, single-camera tracking is based on the well-
known CamShift algorithm [4]. The handover mechanism is
realized using a mobile agent system available at our smart
cameras. Our approach has been completely implemented
on our embedded smart cameras and tested on tracking per-
sons at our campus. This research significantly extends our
previous work on multicamera tracking. In [5] we have basi-
cally evaluated handover strategies on PC-based smart cam-
era prototypes. The behavior of the trackers has only been
simulated on the smart camera prototypes.

The remainder of this paper is organized as follows.
Section 2 discusses some related work. Section 3 introduces
the distributed embedded smart cameras used for this
project. It presents the hardware and software architec-
tures as well as the mobile agent framework. Section 4 de-
scribes our multicamera tracking approach. We first discuss
the tracking requirements and present an overview of vi-
sual tracking methods. We then focus on the implemented
CamShift algorithm and the handover mechanism. Section 5
presents the implementation on our smart cameras and
Section 6 describes the experimental results. Section 7 con-
cludes this paper with a short summary and a discussion
about future work.

2. RELATED WORK

There exist several projects which also focus on the integra-
tion of image acquisition and image processing in a single
embedded device. Heyrman et al. describe in [6] the archi-
tecture of a smart camera which integrates a CMOS sensor,
processor, and reconfigurable unit in a single chip. The pre-
sented camera is designed for high-speed image processing
using dedicated parts such as sensors with massively parallel
outputs and region-of-interest readout circuits. However, a
single-chip solution is not as scalable and flexible as a modu-
lar design.

Rowe et al. [7] promote a low-cost embedded vision sys-
tem. The aim of this project is the development of a small
camera with integrated image processing. Due to the very
limited memory and computing resources, only low-level
image processing such as threshold and filtering is possible.
The image processing algorithm cannot be modified after de-
ployment since it is integrated in the firmware of the proces-
sor.

Tracking objects on a single smart camera or a network
of cameras is also an interesting research topic. Micheloni
et al. [8] depict a network of cooperative cameras for visual
surveillance. A set of static camera systems with overlapping
fields of view is used to monitor the surveilled area and main-
tains the trajectory of all objects simultaneously. Active cam-
era systems use PTZ cameras for close-up recordings of an
object. A static camera can request an active camera to fol-
low an object of interest. In this case, both camera systems
track the position of the object cooperatively.

In [9], Fleck and Straßer demonstrate a particle-based al-
gorithm for tracking objects in the field of view of a single
camera. They used a commercially available camera which is

comprised of a CCD image sensor, a Xilinx FPGA for low-
level image processing, and a Motorola PowerPC CPU. In
[10], Fleck et al. present a multicamera tracking implemen-
tation using the particle-based tracking algorithm. In this
implementation each camera tracks all moving objects and
transmits the obtained position of each object to a central
server node.

In both approaches [8, 10], object tracking is the main
task of the camera network. Each camera executes the track-
ing algorithm even if there is no object within the field of
view. This is significantly different to our multicamera track-
ing approach since we consider tracking as an additional task
of the network. Tracking is only loaded and executed on de-
mand for individual objects. The tracking instance then acts
autonomously and follows the target over the camera net-
work.

The handover of an object between cameras in [10] is
performed by a central server. In [8] no detailed information
about the handover procedure is given. Our solution avoids a
central node for coordinating the handover from one camera
to the next. Instead, neighborhood relations between cam-
eras are exploited resulting in a fully decentralized handover.

Velipasalar et al. describe in [11] a PC-based decentral-
ized multicamera system for multiobject tracking using a
peer-to-peer infrastructure. Each camera identifies moving
objects and follows their track. When a new object is iden-
tified, the camera issues a labeling request containing a de-
scription of the object. If the object is known by another
camera, it replies the label of the object; otherwise a new label
is assigned, which results in a consistent labeling over multi-
ple cameras.

Agent systems have also been used for multicamera video
surveillance applications. Remagnino et al. [12] describe the
usage of agents in visual surveillance systems. An agent-based
framework is used to accomplish scene understanding. Abreu
et al. present Monitorix [13], a video-based multiagent traf-
fic surveillance system. In both approaches, agents are used
as an additional layer of abstraction. We also use agents as an
abstraction of different surveillance tasks but we also exploit
mobility of agents in order to achieve a dynamically reconfig-
urable system. Moreover, we deploy the mobile agent system
on our embedded platform while in [12, 13] a PC-based im-
plementation is used.

3. THE SMART CAMERA PLATFORM

Smart cameras are the core components of future video
surveillance systems. These cameras not only capture images
but also perform high-level video analysis and video com-
pression. Video analysis tasks include motion detection, ob-
ject recognition, and classification. To fulfill these require-
ments, the smart camera has to provide sufficient computing
power for analyzing video data.

The software operating the smart camera has to be flexi-
ble and dynamically reconfigurable. Hence, it has to be pos-
sible to load and unload the image processing algorithms dy-
namically at run time. This allows to build a flexible and fault
tolerant surveillance system.
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Figure 1: The hardware architecture of the smart camera.

3.1. Hardware architecture

The hardware platform has to provide the computing power
required by the image processing tasks and also provide dif-
ferent ways to communicate with the outside world. Further
design issues are to provide scalable computing power while
minimizing the power consumption.

The hardware architecture of our smart camera can be
grouped into three main units: (1) the sensing unit, (2)
the processing unit, and (3) the communication unit [2].
Figure 1 depicts the three main units along with their top-
level modules and communication channels.

The core of the sensing unit is a high-dynamic range
CMOS image sensor. The image sensor delivers images up to
VGA resolution at 25 frames per second via a FIFO memory
to the processing unit.

Real-time video analysis and compression is performed
by the processing unit which utilizes multiple digital signal
processors (DSPs). In the default configuration the smart
camera is equipped with two DSPs offering about 10 to 15
GIPS.1 The number of DSPs in the processing unit is scal-
able and basically limited by the communication unit. Up to
four DSPs can be connected without additional hardware ef-
fort but it is also possible to use up to ten DSPs. The DSPs
are coupled via a PCI bus which also connects them to the
communication unit.

The communication unit has two main tasks. First, it
manages the internal communication between the DSPs as
well as the communication between the DSPs and the com-
munication unit. Second, it provides communication chan-
nels to the outside world. These communication channels are
usually IP-based and include standard Ethernet and wireless
LAN. The main component of the communication unit is an
ARM-based network processor which is operated by a stan-
dard Linux system.

1 Giga instructions per second.

3.2. Software architecture

The software architecture also reflects the partitioning into a
processing unit and a communication unit. The DSP frame-
work running on each DSP provides an environment for the
video processing tasks and introduces a layer of abstraction as
well. The SmartCam framework resides on the network pro-
cessor and manages the communication on the smart camera
[14].

3.2.1. DSP framework

The main tasks of the DSP framework are to (1) support dy-
namic loading and unloading of DSP applications, (2) man-
age the available resources, and (3) provide data services for
the DSP applications. Figure 2(a) sketches the architecture of
the DSP framework.

Exploiting dynamically loadable applications allows to
launch different video processing tasks depending on the cur-
rent requirements and context. This results in more flexi-
ble smart cameras which also makes the whole surveillance
system more flexible. The integration of dynamically load-
able DSP applications introduces the need of an extended re-
source management which is capable of dealing with the dy-
namic use of resources. Data services provide uniform access
for the DSP applications to the data sources and data sinks
available on the smart camera.

3.2.2. SmartCam framework

The SmartCam framework is executed on the network pro-
cessor. On the one hand, this framework manages the low-
level interprocessor communication. On the other hand, it
allows applications running on the network processor to in-
teract with the DSPs. Hence, the SmartCam framework is di-
vided into two layers: (1) the kernel-mode layer, and (2) the
user-mode layer. Figure 2(b) depicts these layers along with
their main components.

The kernel-mode layer is implemented as a kernel
module which builds the base of the SmartCam framework.
This layer has direct access to the PCI bus and thus accom-
plishes the management of interprocessor communication.
Additionally, this layer offers a low-level interface which al-
lows user-space programs to communicate with the DSPs.

The user-mode layer is based on the kernel-mode layer
and provides a DSP access library (DSPLib). This library in-
teracts with the kernel module and provides a simplified in-
terface for sending and receiving messages. Applications ex-
ecuting on the network processor can use this layer to load
and unload dynamic executables to the DSPs.

3.3. Mobile agent framework

The mobile agent framework [15] is the highest level of ab-
straction in our smart cameras. Each video processing task
is represented by an instance of a mobile agent. Each agent
acts autonomously and carries out the required actions in
order to fulfill its mission. Two different types of agents are
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Figure 2: The software architecture of the smart camera.
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available on our smart cameras: (1) DSP agents, and (2)
SmartCam agents. Figure 3 shows an agency hosting both
types of agents.

DSP agents are used to represent video processing tasks.
This type of agent has a tight relation to the DSPs as their

main mission—analyzing the video data—is executed on the
DSP. The agent contains the DSP executable and is respon-
sible for starting, initializing, and stopping the DSP applica-
tion as required. The agent also knows how to interact with
the DSP application in order to obtain the information re-
quired for further actions. Using DSP agents enables to move
video processing tasks dynamically from one smart camera
to another. In contrast to this, SmartCam agents do not in-
teract with the DSPs. Usually they perform control and man-
agement tasks.

The mobile agent framework is executed on the network
processor. Each smart camera hosts an agency which pro-
vides the environment for the mobile agents. The agency fur-
ther contains a set of system agents which provide services for
the DSP agents and SmartCam agents. The DSPLibAgent, for
example, provides an interface to the DSPs of the processing
unit for the DSP agents. Other agents contain information
about the location and configuration of the current smart
camera as well as information about its actual internal state.

Employing mobile agents allows to dynamically reconfig-
ure the entire surveillance system at run time. This reconfigu-
ration is usually performed autonomously by the agents and
helps to better utilize the available resources of the surveil-
lance system [16]. We use mobile agents to realize the han-
dover mechanism in our multicamera tracking approach.

4. MULTICAMERA TRACKING

Our approach for multicamera tracking focuses on au-
tonomous and decentralized object tracking. Since the
tracker is executed on the DSP, it is implemented as a DSP
agent in our framework. The tracking algorithm running on
the DSP reports its agent only abstract information about the
object of interest such as the current position and the trajec-
tory. The agent uses this information to take further actions.
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If, for example, the tracked object is about to leave the cam-
era’s field of view, the agent has to take care to track the object
on the adjacent cameras.

4.1. Tracking requirements

Using this autonomous and decentralized approach for
tracking an object among several cameras introduces some
requirements for the tracking algorithm. Most of these re-
quirements are a consequence of loading the tracking algo-
rithm dynamically as needed. The main issues are the fol-
lowing.

Short initialization time

Because the tracking algorithm is loaded only when needed,
the algorithm must not require a long initialization time
(e.g., for generating a background model).

Internal state of the tracker

When migrating the tracking agent from one camera to the
next, the current internal state of the tracking algorithm must
be stored and transferred, too. The internal state usually con-
tains the description of the tracked object such as templates
or appearance models. During setup on the new camera, the
tracking task must be able to initialize itself from a previously
saved state.

Robustness

The tracking algorithm has to be robust not only with respect
to the position of an object in a continuous video stream but
also to identify the same object on the next camera. The ob-
ject may appear differently due to the position and orienta-
tion of the camera.

4.2. Visual tracking

Visual tracking involves the detection and extraction of ob-
jects from a video stream and their continuous tracking over
time to form persistent object trajectories. Visual tracking is
a well-studied problem in computer vision with a wide vari-
ety of applications, for example, visual surveillance, robotics,
autonomous vehicles, human-machine interfaces, or aug-
mented reality. The main requirement and challenge for a
tracking algorithm is a robust and stable behavior, very of-
ten real-time (20–30 fps) behavior is required. The tracking
task is complicated due to the potential variability of the ob-
ject over time.

There are numerous different approaches that have been
developed for visual tracking. Template tracking methods,
for example, [17, 18] are based on a template of the object
that is redetected by correlation measures. More sophisti-
cated methods take into account the object deformations and
illumination changes. Appearance-based methods are related
to template tracking but they build a parameterized model
of the objects appearance in the scene [19], for example. In a

similar spirit, active shape-based trackers build models of the
object that is to be tracked based on the object’s shape. There
are trackers that use 3D models of the objects to be tracked
[20]. Other tracking methods based on motion blobs do not
need any model of the object. The idea is to detect mov-
ing objects by motion segmentation and then track the ob-
tained blobs; for a typical example, see [21]. Another class of
tracking algorithms is based on features. Probably the best-
known feature tracker is the KLT tracker [22] which is based
on tracking corner features that can be well localized in im-
ages and reliably tracked using a correlation measure. An-
other class of popular tracking methods is based on color.
The well-known mean-shift algorithm [23] uses color dis-
tributions for tracking the object. Related is the CamShift
algorithm (continuously adaptive mean-shift) [4] that up-
dates the color distribution of the object while tracking. Very
recently methods that use classifiers for tracking have been
proposed [24, 25]. The idea is to use a very fast classification
algorithm to detect the previously trained object of interest.

Taking the requirements listed in Section 4.1 into ac-
count, the CamShift algorithm was chosen to demonstrate
the feasibility of the presented tracking approach.

4.3. CamShift algorithm

The continuously adaptive mean-shift algorithm [4], or
CamShift algorithm, is a generalization of the mean-shift al-
gorithm [23]. CamShift operates on a color probability dis-
tribution image produced from histogram back-projection.
It is designed for dynamically changing distributions. These
occur when objects in video sequences are being tracked and
the object moves so that the size and location of the proba-
bility distribution change over time. The CamShift algorithm
adjusts the search window size in the course of its operation.
For each video frame, the color probability distribution im-
age is tracked and the center and size of the color object are
found via the CamShift algorithm. The current size and loca-
tion of the tracked object are reported and used to set the size
and location of the search window in the next video image.
The process is then repeated for continuous tracking. Instead
of a fixed—or externally adapted—window size, CamShift
relies on the zeroth moment information, extracted as part of
the internal workings of the algorithm, to continuously adapt
its windows within or over each video frame. The main steps
of the CamShift algorithm are (for more details see [4]) the
following:

(1) choose an initial 2D location of the 2D search window;
(2) calculate the color probability distribution in a region

slightly larger than the search window;
(3) run the mean-shift algorithm to find the center of the

search window;
(4) for the next frame, center the search window at the lo-

cation found in the mean-shift iteration;
(5) calculate the 2D orientation using second moments.

CamShift has been used successfully for a variety of
tracking tasks. In particular for tracking skin-colored re-
gions, for example, faces and hands.
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4.4. Handover mechanism

In order to extend tracking from single isolated cameras to
multiple cameras, a handover process is necessary. The han-
dover of a tracker from one camera to the next requires the
following steps:

(1) select the “next” camera(s);
(2) migrate the tracking agent to the next camera(s);
(3) initialize the tracking task;
(4) redetect the object of interest;
(5) continue tracking.

In order to identify potential next cameras for the han-
dover, we exploit the a priori known neighborhood relations
of the smart camera network. Tracking agents control the
handover process by using predefined migration regions in
the observed scenes. The migration region is defined by a
polygon in the 2D image space and a motion vector. Each
migration region is assigned to one or more next smart cam-
eras. Motion vectors help to distinguish among several smart
cameras assigned to the same migration region.

The migration regions and their assigned cameras rep-
resent the spatial relationship among the cameras. All in-
formation about the migration region is managed locally by
the SceneInformationAgent, a system agent present on each
smart camera. When the tracked object enters a migration
region and the trajectory matches the motion vector of the
migration region, the tracking agent initializes the handover
to the assigned adjacent camera(s).

The next two steps of the handover process (migration
and initialization) are implicitly managed by our mobile
agent system. The color model of the tracked object is in-
cluded as local data to the tracking agent. The (migrated)
tracking agent uses this local data for the initialization on the
new camera. Object redetection and tracking are then con-
tinued on the new camera.

Master/slave handover

The tracking agent may use different strategies for the han-
dover [5]. The approach presented in this paper follows the
master/slave paradigm. Figure 4 shows the handover proce-
dure along with the instances of tracking agents for a sample
scenario of two consecutive cameras. During the handover,
there exist two instances of a tracking agent dedicated to one
object of interest. As master tracking agent, we denote the
agent which currently tracks the object. When the object en-
ters a migration region, the master agent creates a slave on
the neighboring cameras. The master also queries the cur-
rent description of the object from the tracking algorithm
and transfers it to the slave. The slave in turn starts the DSP
application and initializes the tracking algorithm with the in-
formation received from the master. The slave is now waiting
for the object to appear. When the object enters the field of
view of the slave, the roles of the tracking agents change. The
slave becomes the master as it observes and tracks the target
now. The new master notifies the old master that the target is
now in its field of view, whereupon the old master terminates
itself.

This approach is also feasible, if a camera has more than
one neighbor for the same migration region. In this case, the
master creates a slave on all adjacent cameras. When a slave
notifies the master that it has detected the target object, the
master instructs all other slaves to terminate, too.

The information required for initializing the tracking al-
gorithm on the next camera heavily depends on the tracking
algorithm. In the case of the CamShift algorithm, only the
description of the object to track is used, which is obtained
from the algorithm itself and contains the color histogram of
the object.

The color variations of an object observed by different
cameras is another issue which has to be taken into account
when using a color-based tracking algorithm. The same ob-
ject may appear in a slightly different color when captured by
another camera due to variations in illumination, changes in
the angle of view, and variations of the image sensor. There-
fore, the SceneInformationAgent contains a color-correction
table. The tracking agent passes this information to the track-
ing task during initialization. The color correction is ob-
tained during an initialization of the surveillance system.

5. IMPLEMENTATION

5.1. Hardware setup

In order to evaluate our approach in practice, two simi-
lar prototypes of smart cameras were used. The first proto-
type consists of an Intel IXDP425 development board which
is equipped with an Intel IXP425 network processor running
at 533 MHz. For the processing unit two Network Video De-
velopment Kit (NVDK) from ATEME are used. Each board
is comprised of a TMS320C6416 DSP from Texas Instru-
ments running at 600 MHz with a total of 264 MB of on-
board memory. Images are captured using the Eastman Ko-
dak LM9628 color CMOS image sensor which is connected
to one of the DSP boards. The second prototype uses an Intel
PXA255 Evaluation Board from Kontron. All other compo-
nents are the same as in the first prototype.

5.2. Software implementation

The operating system used for the network processor is based
on a standard GNU/Linux distribution for embedded sys-
tems using kernel version 2.6.17.

For the prototype implementation, we have selected a
Java-based mobile agent system due to its platform indepen-
dence. We use the DIET-Agents platform as mobile agent
framework (see http://diet-agents.sf.net) which provides all
required features to support mobility and autonomy. More-
over, it is reasonably small and thus it is also applicable for
embedded systems.

For the Java virtual machine, version 1.3.0 of JamVM
(see http://jamvm.sourceforge.net/) with GNU classpath ver-
sion 0.14 was used. This virtual machine is also rather small
and thus suitable for use in an embedded system. However,
JamVM does not feature a just-in-time compiler but only in-
terprets the Java bytecode. This results in longer execution

http://diet-agents.sf.net
http://jamvm.sourceforge.net/
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times. Of course, the execution times would be dramatically
reduced when exploiting a just-in-time compiler, but cur-
rently there are no implementations available which can be
used on our ARM-based prototypes.

The CamShift tracking algorithm has been implemented
and optimized for the DSP platform used in our proto-
types. Furthermore, the necessary extensions for multicam-
era tracking have also been implemented.

6. EXPERIMENTAL RESULTS

The experimental setup for evaluating our autonomous mul-
ticamera tracking approach consists of two smart camera
prototypes as described in Section 5. Figure 5 depicts the
prototype of our smart camera.

The first part of the evaluation addresses the implemen-
tation of the CamShift tracking algorithm, while the sec-
ond part focuses on the handover procedure for multicamera

Figure 5: The Intel XScale-based prototype.

tracking as well as the integration of the tracking algorithm
into the agent system.
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Table 1: Characteristics of the CamShift algorithm.

Code size (dynamically executable) 9 kB

Memory 300 kB

Internal state for migration 256 bytes

Initialize color-histogram <10 ms per frame

Identify tracked object <1 ms per frame

Evaluation setup

A

B

Figure 6: Outline of the camera setup for person tracking.

6.1. CamShift implementation

The evaluation of the CamShift tracking algorithm focuses
on the resource requirements and the achieved performance
of our implementation. Table 1 summarizes the results.

The memory requirements of the tracking algorithm de-
pend on the resolution of the acquired images. In our experi-
mental setup, we used images in CIF-resolution which results
in a memory usage of about 300 kB (double buffered image
plus an additional mask). The code size of the dynamic DSP
executable is about 9 kB. The internal state of the tracker con-
sists of the color histogram of the tracked object along with
the position and size of the search window in image space.
When migrating the tracking algorithm from one camera
to another, only the color histogram has to be transmitted,
which requires 256 Bytes.

Initializing the algorithm to track a concrete object re-
quires less than 10 ms per frame for calculating the color his-
togram. In our implementation, the color histogram used for
tracking the object is the average of five consecutive frames.
Tracking the object in a video stream requires less than 1 ms
for obtaining the new position of the object in an image.

6.2. Multicamera setup

To demonstrate the feasibility of our autonomous multicam-
era tracking approach, we used a setup for tracking persons
in our laboratory. Figure 6 sketches our evaluation configu-
ration. The fields of view of both cameras overlap, but this
is due to spatial constraints and not a requirement of the
tracker. The tracking instance is created on camera A. The
tracking algorithm learns the description of the target within
a given initialization region provided by the agent and starts
tracking the position of the person. Before the person walks
out of the field of view, it enters the migration region. This

(a) Tracker on camera A.

(b) Handover to camera B: the person is in the migration
region (red square).

(c) Tracker on camera B.

Figure 7: Visualizer. The left column of the window visualizes cam-
era A while the right part shows camera B. The center of the tracked
person is highlighted by the red square. Note that the acquired im-
age of a camera and the current position of the person are updated
at different rates. Hence, in image (b) the highlighted position is
correct while the background image is inaccurate.

triggers the migration of the tracking agent to camera B
where the agent continues tracking the person.

Figures 7(a)–7(c) show the visualizer running on a PC
during the handover. The left column is dedicated to cam-
era A and the right one to camera B. In the upper part,
the current images acquired by the cameras overlaid with
the defined migration regions are displayed. The center of
the tracked person is illustrated by the red square. Below,
the agents residing on the cameras are outlined whereas the
tracking agents are highlighted in red.
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Table 2: Evaluation of the handover time.

Loading dynamic executable 0.18 s

Initializing tracking algorithm (5 frames at 20 fps) 0.25 s

Creating slave on neighboring camera 2.13 s

Reinitializing tracking algorithm on slave camera 0.04 s

Total 2.60 s

Table 3: Handover with multiple neighboring cameras.

Number of neighbors Time to create slaves

1 2.60 s

2 3.03 s

3 3.51 s

Evaluating the handover procedure, the four major time
intervals have been quantified. Table 2 enlists the obtained
results.

Starting the tracking algorithm from a DSP agent re-
quires 180 milliseconds. This includes loading the dynamic
executable to the DSP, starting the tracking algorithm, and
reporting the agent that the tracking algorithm is ready to
run.

When the tracked object enters the migration region, it
takes about 2.6 seconds to create the slave agent on the next
camera and launch the tracking algorithm on the DSP. A
large portion of this time interval (about 2.1 seconds) is re-
quired for creating the slave agent. This time penalty is a con-
sequence of the Java virtual machine used which only inter-
prets the bytecode instead of using a just-in-time compiler.
Creating a new agent further uses Java reflections, which has
a negative impact on the performance. Initializing the track-
ing algorithm by the slave agent using the information ob-
tained from the master agent takes 40 milliseconds which
is negligible compared to the time required for creating the
slave agent. We have also evaluated the migration times be-
tween two PCs without loading the tracking algorithm using
Sun’s virtual machine. In this scenario, it takes about 75 mil-
liseconds to move an agent from one host to the other.

To show the scalability of our approach, we have also
conducted experiments where a camera has more than one
neighbor. Due to the lack of additional embedded smart
cameras, two additional PCs (PIII, 1 GHz) have been used.
These PCs have no cameras attached but they host an agency
where the tracking agents can migrate to. When the person
enters the migration region, a slave is created on the next
camera and also on each PC. When the slave on the next
camera detects the person, it notifies its master, which in turn
terminates the other slaves and itself. We have evaluated the
time required for creating the slaves depending on the num-
ber of adjacent cameras. Table 3 shows that the time required
to create the slaves is linearly dependent on the number of
slaves. Hence the slaves are created in parallel, the required
time equals the largest time interval for creating a single slave.
The linear factor is introduced by the limited performance of
the agent system on our embedded platform initiating the
creation of the slaves.

7. CONCLUSION

In this paper, we have presented our novel multicamera
tracking approach implemented on embedded smart cam-
eras. The tracker follows the tracked object, migrating to the
smart camera that should next observe the object. The spatial
relationships among cameras are exploited by migration re-
gions augmented in the cameras’ image space. This results in
a decentralized handover process which in turn is important
for high autonomy and scalability.

On the one hand, mobile agents introduce a level of
abstraction which eases the development of distributed ap-
plications. Communication and code migration are im-
plicitly handled by the agent system. On the other hand,
mobile agents require additional resources. Especially, the
Java-based implementation causes a significant performance
penalty on our embedded platform. Note that this penalty
is not inherent of the mobile agent systems. It is primarily
caused by the lack of an efficient virtual machine for our plat-
form.

Future work includes (1) replacing the Java-based agent
system by a more efficient (middleware) system provid-
ing services for data and code migration, (2) implementing
color-adaptation schemes during tracker initialization in or-
der to compensate color variations between different cam-
eras, and (3) deploying our tracking approach on larger net-
works of cameras.
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