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Abstract — In the present paper we introduce a novel three-
layered multi-sensor data fusion framework. The design and
implementation task is going to be performed for enhancing
vision-based traffic monitoring. The aim of our fusion process
is to achieve higher vehicle detection and classification rates,
hence less false positives, more precise occupancy calculations
and gain support for robust tracking. Finally, we want to show
the feasibility of our approach in a real traffic monitoring en-
vironment using heterogeneous sensors (cameras, microphones
and (IR) lasers). For reasons of network security we will ap-
propriately set up a wired decentralized heterogeneous sensor
network.

I. INTRODUCTION

Multi-Sensor Data Fusion is a widely used method to in-
crease the robustness of sensor applications [1, 2, 3]. Es-
pecially in (time-)critical applications, e.g., traffic mon-
itoring environments, where data has to be reliable, it
is useful to combine data from different sensors to de-
duce more robust estimates. Most traffic monitoring ap-
plications are based on vision alone. This single sensor
approach shows some limits concerning robustness and
detection rates. Therefore we investigate an embedded
decentralized multi-sensor approach. In a centralized fu-
sion system all data to be combined is sent to a central
fusion node that performs the complete fusion task. In
the case of a decentralized fusion architecture, each node
in the network is able to perform (partial) fusion locally.
Local results are then sent to a distinguished fusion node
that finally combines partial fused data to form a com-
plete and consistent view of the universe of discourse.
We choose the decentralized approach to allow involved
sensor nodes acting more autonomously especially re-
garding the fusion processing task. Furthermore, we de-
crease the risk of a total system breakdown by avoiding
a single point of failure.

II. SENSOR NETWORK

Our sensor network consists of several sensor nodes
(SNs), a single center node (CE) and a virtual SN (Fu-
sion Backbone to Center, FBC) sending fused data to CE
(“Figure 1”). FBC is called virtual because it is not an
additional sensor node in the network. A FBC node is an

ordinary SN that has to be determined dynamically for
final fusion processing (”decision making”). Each SN
(CE and FBC, respectively) has a couple of attributes and
methods defining state and functionality.

Figure 1: Overview - sensor network structure

It is important to note that the sensor network is hierar-
chically structured. Each cluster performs fusion on spe-
cific parts of the universe of discourse (1st level cluster
fusion) and is identified by the same cluster identification
number (clusterID) of each SN within the cluster. The
2nd level fusion combines fusion results from all clusters
forming a decision.

III. FUSION ARCHITECTURE

Our proposed fusion architecture will consist of three
layers as shown in “Figure 2”. We choose a layered ar-
chitecture to abstract and encapsulate the different pro-
cessing steps within the whole fusion framework. Each
layer has a specific structure and processing task con-
tributing to the whole fusion process. In brief, layer
1 collects raw sensor data and performs normalization,
layer 2 performs intra-cluster fusion and the final fusion
is done within layer 3.

A. LAYER 1

The first layer is responsible for two things. Firstly, it ac-
quires raw data from the involved sensors. Secondly, we
have to normalize incoming heterogeneous data to have
comparable measurements. Hence, the first layer has to
deal with the underlying hardware (hardware layer).
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Figure 2: Three-layered fusion architecture

B. LAYER 2

Layer 2 reflects the 1st fusion layer of the architecture
performing competetive and complementary integration
within the so-called Partial Fusion Cluster (PFC). Com-
petetive integration only combines sensor data represent-
ing the same measurements reducing uncertainty and re-
solves possible conflicts. However, the complementary
approach fuses incomplete sensor data to create a more
complete model, i.e., enriching knowledge about envi-
ronment [4]. All measurements that are to be combined
in a PFC originate from sensors with the same clusterID.
Since there is no partial fusion center within PFCs, a pro-
tocol has to be defined specifying where the distributed
measurements are fused. Moreover, an appropriate al-
gorithm has to be developed for intra-cluster fusion as
well. If every involved sensor in the network has a differ-
ent clusterID, each PFC consists only of a single sensor.
Hence, layer 2 will simply be omitted, i.e., each sensor
represents a PFC. The fused partial results are then for-
warded to layer 3 to perform high-level fusion.

C. LAYER 3

Layer 3 (2nd fusion layer) performs cooperative integra-
tion (e.g., using fuzzy inference system). Cooperative
integration means combining independent measurements
to gain additional information about the whole environ-
ment of interest, i.e., information that would not be avail-
able with a single sensor (e.g., using stereo vision to cal-
culate disparity maps [3]). The number of inputs is di-
rectly dependent on the number of PFCs formed up in
the previous layer. The outcome of the fusion process of

layer 3 is a decision with high probability of being true
(e.g., vehicle running the red light).

IV. PROSPECTIVE CONTRIBUTION

We present a novel three-layered multi-sensor data fusion
framework, where an architectural and algorithmic solu-
tion is introduced to perform multi-sensor data fusion in
traffic monitoring environments. We choose a decentral-
ized fusion processing approach on embedded platforms.
Besides developing an appropriate architecture for net-
working and sensor connection to the platform, we want
to find a new way of combining data from heterogeneous
sensors considering spatio-temporal issues.

Presently, our scientific contribution will be in design-
ing a novel fusion algorithm exploiting spatio-temporal
relations in traffic monitoring environments. Besides, we
want to develop a protocol for the flow of partially fused
data through the network in an efficient way. Some ques-
tions herein are to be answered, e.g., Which SN is re-
sponsible for playing the FBC’s part (and when)? Which
data is sent when and where? How are the SNs organized
throughout the whole sensor network? How many actual
sensor instances are mounted on a SN?

To keep communication bandwidth as well as compu-
tation power requirements less demanding we decide -
from an information process model point of view - to
perform fusion at the feature and decision level, respec-
tively (higher level fusion). This allows for more sys-
tem configuration flexibility in implementation. Further-
more, higher-level fusion is perfectly suitable for sys-
tems that should have physically distributed more inde-
pendently working components [4]. This aspect harmo-
nizes fine with our decentralized system approach.
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