
Task Allocation in Distributed Embedded Systems by Genetic Programming ∗

Allan Tengg, Andreas Klausner
Institute for Technical Informatics

Graz Univerity of Technology
A-8010 Graz, Austria

{tengg, klausner}@iti.tugraz.at

Bernhard Rinner
Institute of Networked and Embedded Systems

Klagenfurt University
A-9020 Klagenfurt, Austria

bernhard.rinner@uni-klu.ac.at

Abstract

In this paper we describe a task allocation method, that
utilizes genetic programming to find a suitable solution in
an adequate time for this NP-complete combinatorial op-
timization problem. The underlying distributed embedded
system is heterogenous, consisting of different processors
with different properties such as core type, clock frequency,
available memory, and I/O interfaces, interconnected with
different communication media. In our applications, which
are described as data flow graphs, the number of tasks to be
placed is much larger than the number of processors avail-
able. We highlight the difficulties when applying genetic
programming to this problem and present our solutions and
enhancements, accompanied with some simulation results.

1 Introduction

In our I-SENSE research project [10] we develop and
investigate a scalable and embedded architecture for vari-
ous multi-sensor applications based on so called embedded
intelligent sensor nodes with sufficient computing and com-
munication performance. By delegating the CPU-expensive
data fusion tasks into the sensor nodes, the requirements
concerning the communication bandwidth can be reduced
compared to centralized data fusion architectures.

To accomplish high flexibility, we define the functional
description of a data fusion system - the so called fusion
model - almost independently of the present hardware con-
figuration. Together with the hardware model, it is the ob-
jective, to automatically find a valid mapping from the fu-
sion model on this specific hardware.

Solutions for those types of problems have been dis-
cussed very often in literature. Instead of trying to accom-
modate an existing algorithm to our specific task allocation

∗This project has been partially supported by the Austrian Research
Promotion Agency under grant #812033.

problem, we use genetic programming to aid us in find-
ing a feasible solution. Genetic algorithms have two very
promising beneficial features: Firstly, they can be imple-
mented rather quickly and the correctness of the implemen-
tation can be verified easily. Secondly, they can be adapted
quite smoothly to modified objectives by simply changing
the calculation of the fitness score - the core algorithm re-
mains unchanged. Often a straight forward implementation
of a genetic algorithm results in a poor behavior, we propose
some enhancements in this publication.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a review about related work. Section 3 explains
our system in more detail. Section 4 deals with applying
genetic programming to the task allocation problem while
section 5 points out some improvements. In section 6 we
present the simulation results of our algorithm before sec-
tion 7 concludes the paper with a short summary.

2 Related Work

Like many other data fusion systems, we also describe
the functionality in form of dataflow graphs [4]. Conse-
quentially, the implementation of a generic data fusion ar-
chitecture has to involve a dataflow graph synthesis tool.
The automated compilation of dataflow graphs into pro-
grammable hardware is a quite well studied subject in lit-
erature, [5] to mention just one. In [1] the problem of gen-
erating efficient software implementations from dataflow
graphs on a single processor is addressed. Plenty techniques
have been presented for synthesizing dataflow graphs onto
multiprocessor systems, a problem known to be NP com-
plete [7]. In the past, task allocation problems were often
solved by simulated annealing [8]. Currently not many pub-
lications can be found that report the successful utilization
of genetic programming for data flow graph synthesis jobs.
A survey of using genetic algorithms to solve task allocation
problems can be found in [2].

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.41

26

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.41

26

3 The I-SENSE Architecture

For understanding our genetic algorithm for task allo-
cation it is inevitable to give a compact description of the
fusion model as well as the hardware model.

3.1 Fusion Model

The Fusion Model consists basically of a set of commu-
nicating tasks which may be represented as a task graph
G = (N,E). It is assumed to be a weighted directed
acyclic graph, consisting of nodes N = (n1, n2, ..., nm)
which represent the fusion tasks and the edges E =
(e12, e13, ..., enm) the data flow between those tasks.

Each node has some properties, describing the (hardware
and resource-) requirements of a task. Every edge from
node u to node v (euv) indicates the required communica-
tion bandwidth between those two tasks. A quite simple
example of a fusion model is shown in figure 1.

n1n1 n2n2 n3n3 n4n4 n5n5 n6n6 n7n7

n8n8

n10n10
n11n11 n12n12

n9n9

n13n13 n14n14

n15n15 n16n16 n17n17

n18n18

e1,8 e2,8

e3,11 e4,12

e5,9 e6,9

e7,14

e10,15 e11,15

e11,16

e12,16

e12,17

e14,19

e13,17

e15,19 e17,19e16,19

r9 e9,13

Figure 1. Example of a fusion model

Sensor Interfaces, the tasks at the bottom of the fusion
tree, must reside on specific processors for obvious reasons.
All other tasks can run on any processor of the system, as
long as this processor has sufficient resources available.

3.2 Hardware Model

The hardware model describes the distributed embed-
ded system where the fusion application should run on. In
our case it consists of a set of connected hardware nodes
(N1...N3, in figure 2). Each hardware node has at least
one general purpose CPU and optionally some digital sig-
nal processors coupled via PCI and ports to connect sensors.
Every processor allows us to query and use its free resources
(i. e., computing power, on/off chip memory, I/O ports, . . .)
and sensors. So we can build and parameterize the hard-
ware model during the initialization process automatically.

Figure 2. An exemplary hardware topology

4 Genetic Algorithms (GAs)

This section gives a short overview about GAs, always
in reference to our goal of finding a near optimal alloca-
tion of n tasks on a distributed embedded system consisting
of m heterogenous processors with the overall optimization
objective load balancing.

4.1 Encoding of Chromosomes

To solve a problem via GAs, it is necessary to find a map-
ping of a potential candidate for a solution onto a sequence
of binary digits, the so called chromosome. In our case,
however, it is more efficient to represent chromosomes as
strings of integers. The length of the chromosomes is given
by the number of tasks that should be allocated. Every gene
in the chromosome represents the processor where the task
is running on. Figure 3 gives an exemplary mapping of n
tasks on m processors.

......CPU Nr.

Ta
sk

1

Ta
sk

1

Ta
sk

2

Ta
sk

2

Ta
sk

3

Ta
sk

3

Ta
sk

4

Ta
sk

4

Ta
sk

5

Ta
sk

5

Ta
sk

6

Ta
sk

6

Ta
sk

n

Ta
sk

n

c2 c1 c3 c2 c3 c4 cm

Figure 3. Mapping of tasks on processors

4.2 Implementation of Fitness Function

There are two criteria, processor utilization and commu-
nication bandwidth usage, which must be combined into a
single fitness value fitchromosome. A simple and feasible
method is calculating two fitness scores, one for CPU uti-
lization and one for communication bandwidth, and build-
ing a weighted sum of both partial results:

fitchromosome = wp ·fitprocessors +wc ·fitcommunication

The fitness of a single processor u(ci) is calculated from
its workload load(ci) via a polynomial function of second
degree (4a) into the processor fitness score:

u(ci) = k · fitcpu (load(ci))

The entire processor fitness of a chromosome is simply
the sum of all u(ci).

2727

0 0.5 0.9

k

fitcpu

utilization

(a) Conversion fitcpu

0 0.35 0.9

k

fitcomm

utilization

(b) Conversion fitcomm

Figure 4. Fitness conversion functions

In other words, a processor work load of 50% gets the
highest possible fitness value - this has been determined em-
pirically. More or less utilization causes the fitness score to
decrease.

The utilization of the communication facilities is subdi-
vided into intra- (PCI) and inter-node (Ethernet) communi-
cation. The overall communication utilization is calculated
by taking the max. value of both. Since the communication
between two tasks on the same CPU is implemented via
shared memory, the communication cost for local messages
can be neglected. The fitness of the communication is calcu-
lated similarly to the processor fitness, with the main differ-
ence, that a communication utilization of 35% (see fitcomm

in figure 4b) results in the best possible fitness score - again
determined empirically.

The fitness e(ci) of each individual processor, regarding
the utilization of its communication facilities, is calculated
as follows:

e(ci) = k · fitcomm (util(ei))

The communication fitness score of the entire chromo-
some is again the sum of all individual scores.

4.3 Processing a GA

The typical genetic algorithm, like described in [6, 9],
begins with an initial set of chromosomes which are gen-
erated randomly. Then all chromosomes are valuated by a
fitness function; invalid chromosomes (i. e. a task has not
sufficient hardware resources to run or overloads a proces-
sor) are removed from the population. If the optimization
goal has been reached, the algorithm terminates. Other-
wise some of the chromosomes are selected for reproduc-
tion, usually with a probability proportional to their fitness
score. The reproduction itself consists of the crossover op-
eration followed by a random mutation of genes. With the
removal of invalid combinations and re-evaluation of the fit-
ness score the loop is closed (Fig. 5).

Generate random
population

Calculate
Fitness

Halting condition
reached?

Selection
for reproduction

Crossover
Mutation

Done

Figure 5. Principle of genetic algorithms

4.4 Required adaptions of GA

The traditional algorithm suffers from a few drawbacks
and difficulties when applied to our problem.

In the simple GA, an invalid chromosome (where a task
should run on a CPU but no implementation is given for this
CPU type) is simply removed from the population. How-
ever, until this violation is discovered, the invalid chro-
mosome occupies the slot of a potential good combination
within the population and the check for illegal combinations
consumes time. We effectively avoid this problem by ran-
domly selecting a CPU from a list of suitable CPUs for a
specific task when creating the initial population as well as
inside the mutation operator.

The other problem is, that a randomly generated initial
population consists almost entirely of invalid combinations;
either the CPU utilization of a processor in the system is
exceeded or a communication link is overloaded. As pro-
posed by Jens Gottlieb [3], a penalty in the fitness score for
those violations has proven in our work be a good approach.
Good penalty functions unite the following characteristics:

• A penalty must be greater than the best possible fit-
ness value. This guarantees that no invalid chromo-
some dominates a valid one.

• The penalty value must be proportional to the serverity
of the violation.

• Penalty functions should not create local maxima in
the invalid area. This guides the population into valid
areas.

In reference to our problem, task allocations which over-
load a CPU (load(ci) > 90%) get a punishment value, pro-
portional to the severity of the violation:

u(ci) = −p · (wp + wc) · (#cpu) · (1 + load(ci) − 0.9)

The same approach is applied to the communication
usage as well; too high communication requirements
(util(ci > 90%)) are punished:

e(ci) = −p · (wp + wc) · (#cpu) · (1 + util(ei) − 0.9)

In both cases, p has to be choosen so that the punish-
ment value is higher than the highest possible score of a
perfect chromosome. If more violations occur, the punish-
ment value is subtracted repeatedly.

2828

Figure 6. Improvement of the crossover operator when ordering the genes cleverly

5 GA with domain specific heuristics

With the modification just described, it is possible to im-
plement a GA to find a solution for our task allocation prob-
lem. However, with increasing problem size this approach
performs worse. As problem can be identified, that there
is no correspondence of the genes and genetic operations
in the real world problem. Neither the order of the genes,
nor the point of intersection in the crossover operator, has
a meaning in the task allocation problem. This leads to un-
restricted search in the entire solution space with the ad-
vantage that even unfeasible task allocations are taken into
account. On the other hand, many invalid allocations have
to be checked and ruled out which slows down the search.

We propose an improvement that accelerates the search
but does not restrict the search space and which can be
implemented very efficiently. First, tightly coupled tasks
should be mapped on adjacent genes in the chromosome.
By doing so, the genetic crossover operator gets a real
world meaning: Rather than individual tasks without rela-
tion among each other, entire coupled clusters of tasks are
exchanged by the genetic crossover operator.

Figure 6 shows an example for this problem and the pro-
posed improvement. Lets assume that fusion task 1 is cou-
pled with task 3 tightly as is fusion task 2 and task 4. Task 5
is connected loosely to the other tasks. In the left exam-
ple the tasks are mapped to genes in the order they appear.
The top most chromosome has mapped all tasks to proces-
sor #1, and the next chromosome all tasks to processor #2.
Both chromosomes have the good characteristic that should
be retained: Task 1 and task 3 is placed on the same proces-
sor as is task 2 and task 4. Anyhow, both chromosomes are
invalid, because they cause a too large processor utilization.
Now those chromosomes are elected for a crossover opera-
tion at the location indicated by the thick line. The result-
ing two chromosomes utilize the available processors quite
balanced, unfortunately the communication bandwidth be-
tween both CPUs is exceeded. Though, when applying our
idea, the genes are ordered slightly different, like shown in

the right example of figure 6. The initial condition is exactly
the same, but now the crossover operator does not divide
tasks which belong together. This results in two chromo-
somes that are both valid and have a good balance. In the
general case, this approach does not prevent that highly in-
terconnected tasks are separated. But it is much more likely
that good sub-clusters remain together.

An easy and effective way to achieve a proper order of
the genes is described in the following: In the beginning a
set of clusters is created, each node of the task graph ni is
assigned its own cluster. The data rate between the cluster
containing ni and cluster containing nj equals initially the
edge of the task graph eij . Now the two strongest connected
clusters are merged into one cluster. It is important that
the order of the tasks inside the cluster remains unchanged
when merging them. After that, the inter cluster communi-
cation is updated. Again the two most interconnected clus-
ters are merged. This procedure is repeated until we end up
in a single cluster. The order of the tasks in this cluster is
the order of the genes we are aiming for.

A second enhancement is accomplished, if the cluster-
ing idea is introduced to the initial population as well. A
good trade-off between complexity and speed up of the GA
is obtained by creating the chromosomes of the initial pop-
ulation according to the following procedure: The tasks are
grouped into classes, depending on their required connec-
tion bandwidth. For our hardware topology we decided to
use four classes. Class 3 is composed of tasks which must
reside on the same processor because of their extreme high
data exchange rate. Tasks which must be coupled via PCI
are combined in class 2. Tasks which can be connected
via Ethernet are put into class 1. Class 0 summarizes all
very loosely coupled tasks. Instead of placing the tasks in
the order they appear in the fusion tree, tasks in the highest
class 3 are placed first at a random processor together with
their heavily coupled tasks. Next, the tasks in class 2 are
placed randomly on any processor and their strongly con-
nected tasks are fit on the same node and so forth until all
tasks of all classes have been placed on the hardware.

2929

6 Results

We’ve applied the straight-forward implementation of
the GA and the enhanced algorithm for task allocation in
distributed embedded systems to some realistic example
data fusion trees of different sizes. The enhanced algorithm
took less time to find an almost optimal solution on all tested
examples. To obtain the results for the diagrams and tables,
a mutation rate of 0.4 has been used and the chromosomes
to pair have been selected by the roulette wheel method. Be-
cause of scattering, all presented values were averaged over
200 runs of the GA.

0

200

400

600

800

1000

0 50 100 150 200 250

Ca
lcu

lati
on

 St
eps

Simple GA
Enhanced GA

Figure 7. Impact of population size

In figure 7 the behavior of the simple implementation
and the improved version of the algorithm is visualized de-
pending on the population size. An example data fusion
tree, comprised of 15 fusion tasks and a network consisting
of 10 processors on 4 nodes, has been used as input. The
population size is assigned to the x-axis; the required num-
ber of fitness function evaluations is applied to the y-axis.
Except of the undersized population, the proposed enhance-
ments accelerate the search noticeable.

Tasks CPUs Complex. Normal Enhanced
15 10 easy 4.63 3.00
26 10 medium 13.93 6.79
15 14 medium 20.29 12.90
20 14 hard 81.20 24.00
26 14 hard 58.40 38.93
20 12 very hard 203.86 25.79

Table 1. Iterations for a good configuration

Table 1 presents the number of iterations of the GA nec-
essary to find an almost optimal configuration for many dif-
ferent fusion- and hardware models. The population size
was fixed at 80 elements. All examples have been classified
by its complexity. Problems classified as ’easy’ have plenty
valid solutions while in ’hard’ problems the fraction of valid
combinations is very small. For the example classified as

’very hard’, a special hardware model has been constructed
which utilizes all processors close at their limit.

On our development computer (a Pentium 4 running
at 1.9 GHz) the enhanced algorithm takes on the average
115 ms to find a valid configuration for the example clas-
sified as very hard. After approximately 300 ms an almost
optimal configuration is found.

7 Conclusion

We presented an enhanced genetic algorithm for task
allocation in a distributed embedded system which scales
quite well with problem complexity. Another advantageous
property of the presented algorithm is the fact, that a valid
configuration can be found quite fast, while it takes much
longer to find an (almost) optimal solution.

References

[1] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publish-
ers, 1996.

[2] S. Dey and S. Majumder. Task allocation in heterogeneous
computing environment by genetic algorithm. In IWDC ’02:
Proceedings of the 4th International Workshop on Distributed
Computing, Mobile and Wireless Computing, pages 348–352,
London, UK, 2002. Springer-Verlag.

[3] J. Gottlieb. On the feasibility problem of penalty-based evolu-
tionary algorithms for knapsack problems. In E. J. W. Boers,
S. Cagnoni, J. Gottlieb, E. Hart, P. L. Lanzi, G. R. Raidl, R. E.
Smith, and H. Tijink, editors, Applications of evolutionary
Computing: Proc. EvoWorkshops 2001, pages 50–59, Berlin,
2001. Springer.

[4] D. L. Hall and J. Llinas. Handbook of Multisensor Data Fu-
sion. CRC Press, 2001.

[5] H. Jung, K. Lee, and S. Ha. Efficient hardware controller syn-
thesis for synchronous dataflow graph in system level design.
In ISSS, pages 79–84, 2000.

[6] M. Mitchell. An introduction to genetic algorithms. MIT
Press, Cambridge, MA, 1996.

[7] A. T. P. and C. S. R. Murthy. Optimal task allocation in dis-
tributed systems by graph matching and state space search.
46(1):59–75, Apr. 1999.

[8] B. Rinner, B. Ruprechter, and M. Schmid. Rapid Prototyping
of Multi-DSP Systems Based on Accurate Performance Esti-
mation. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing ICASSP 2001,
Salt Lake City, U.S.A., May 2001. IEEE.

[9] S. Russell and P. Norvig. Artificial Intelligence - A Modern
Approach. Prentice Hall International Series in Artificial In-
telligence. Prentice Hall, 2003. RUS st 03:1 1.Ex.

[10] A. Tengg, A. Klausner, and B. Rinner. I-SENSE: A
Light-Weight Middleware for Embedded Multi-Sensor Data-
Fusion. In Proceedings of the 5th IEEE International Work-
shop on Intelligent Solutions in Embedded Systems (WISES),
Madrid, Spain, June 2007.

3030

