
I-SENSE: A Light-Weight Middleware for
Embedded Multi-Sensor Data-Fusion

Allan Tengg1, Andreas Klausner1, and Bernhard Rinner2

1Institute for Technical Informatics,
Graz Univerity of Technology, A-8010 Graz, Austria

{tengg,klausner}@iti.tugraz.at
2Institute of Networked and Embedded Systems,

Klagenfurt University, A-9020 Klagenfurt, Austria
bernhard.rinner@uni-klu.ac.at

Abstract — In our I-SENSE project we demonstrate the combination the scientific
research areas multi-sensor data fusion and pervasive embedded computing. The
main idea is to provide a generic architecture which supports a distributed data fu-
sion on an embedded system. Due to the high onboard processing and communica-
tion power of the used hardware, our proposed architecture is designed to perform
sophisticated data fusion tasks. Another goal of I-SENSE research project addresses
the reconfiguration of a distributed system at runtime, thus, to be able to react to
changes in the system’s environment dynamically.
This paper though gives an overlook of our developed middleware which eases the
development of distributed fusion applications on embedded systems and which in-
cludes reconfiguration facilities. We further present some experimental results ob-
tained using our middleware and give an outlook of our ongoing research.

1 Introduction

Multi-senor data fusion is a technique by which data from several sensors are combined
through a data processor to provide comprehensive and accurate information. The pow-
erful potential of this technology stems from its ability to track changing conditions and
anticipate impacts more consistently than could traditionally be done with a single data
source.

The major goal of our I-SENSE research project [1] is to investigate and develop a
scalable and embedded architecture for various multi-sensor applications. The I-SENSE
framework is based on embedded intelligent sensor nodes with sufficient computing and
communication performance, which allows us to distribute software tasks among geo-
graphically distributed sensor nodes. By delegating the CPU-expensive data fusion tasks
into the sensor nodes, the requirements concerning the communication bandwidth can be
reduced compared to centralized data fusion architectures. This makes widespread data-
fusion applications more feasible. To accomplish a high flexibility, we decided that the

A. TENGG, A. KLAUSNER, B. RINNER

functional description of a data fusion system - the so called Fusion Model - should be
defined (almost) independently of the present hardware configuration. Together with the
hardware model, which is derived from the actual hardware, the I-SENSE framework tries
to find a valid mapping from the fusion model on this specific hardware automatically.

The focus in this article is set on the fusion middleware which eases the development
of a distributed fusion application. The user of this system has to define basically some
software components the so-called fusion tasks and specify their interconnection among
each other. All other steps necessary, like finding an optimal mapping of the components
on the hardware platform, exchanging data between the components, detecting and han-
dling errors in the running system as well as reconfiguring the system during runtime is
handled by the I-SENSE runtime environment.

The remainder of the paper is organized as follows: Section 2 gives a review about
related activities. Section 3 describes our current I-SENSE hardware in more detail and
explains the so called hardware model well as the fusion model – the software description
of a fusion system. Section 4 presents the I-SENSE middleware and the services it pro-
vides for fusion tasks. The configuration method for the I-SENSE network is the focus
of section 5. A short overview of our case study traffic surveillance is given in section
6. In section 7 we present some results obtained from our system so far before section 8
concludes the paper with a short summary and gives an outlook of our further work.

2 Related work

Our idea of developing a high-performance data fusion architecture originates from the
SmartCam research project which is conducted at the Institute for Technical Informatics
at the Graz University of Technology [2, 3]. Our smart cameras combine video sensing,
video processing and communication on a single embedded device, consisting of a net-
work processor and various digital signal processors (DSPs). In the I-SENSE research
project this SmartCam is extended to distributed embedded sensor nodes capable of fus-
ing data from various heterogeneous sensors, ranging from simple sensors such as light
barriers and induction loops over audio sensors to several different image sensors.

A project that seems to have quite many similarities with our project is called DFuse
[4]. This research focuses on challenges of data fusion applications in wireless ad hoc
sensor networks. However, their system is designed to be used on ’motes’. Since motes
are usually battery powered, the main concern in DFuse is power consumption. Besides
that, both the communication range and the communication bandwidth, is very limited
between fusion-nodes in DFuse.

Like many other data fusion systems, we also describe the functionality in form of
dataflow graphs [5]. Consequentially, the implementation of a generic data fusion ar-
chitecture has to involve a dataflow graph synthesis tool. There have been presented
plenty techniques for synthesizing dataflow graphs onto multiprocessor systems, a prob-
lem known to be NP complete [6, 7]. However, it is difficult to find reports of using
genetic programming for solving task allocation problems, like we do in the I-SENSE
project.

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

3 The I-SENSE architecture

With regard to the objectives of the I-SENSE project, a configuration strategy has been
elaborated, which is described briefly in the upcoming section. This includes a detailed
description of the hardware model as well as the fusion model.

3.1 Hardware model

The hardware model describes the distributed embedded system where the fusion ap-
plication should run on. In our case it consists of a set of connected hardware nodes
(N1 . . . N4, cp. figure 1). Each hardware node has at least one general purpose CPU
(parent) and optionally some digital signal processors (children) coupled via PCI, and
various ports to interface sensors.

PCI

D
S

P
1

GP-CPU

D
S

P
2

D
S

P
n

PCI

D
S

P
1

GP-CPU

D
S

P
2

D
S

P
n

...

GP-CPU

D
S

P
1

D
S

P
2

D
S

P
n

PCI

Display

... ...

GP-CPU

N1 N2

N3 N4

Ethernet

Figure 1: The hardware topology of an I-SENSE network

Our I-SENSE prototypes of sensor nodes are implemented with standard high-performance
components:

Intel Pentium M board ’ePCI101’ Embedded computer system from Kontron, 1.6 GHz
(passive cooling), 512 MB memory, two 100 MBit/sec Ethernet ports, two serial
ports, several USB ports VGA, 256 MB flash card on-board and 4 free PCI slots

Network Video Development Kits from ATEME, equipped with a Texas Instruments
TMS320C6416 fixed point DSP running at 600 MHz and with a total of 264 MB of
memory.

PCI Multifunction Encoder cards equipped with two Texas Instruments TMS320DM642
fixed point DSPs running at 600 MHz and 128 MB memory for each core. Each DSP
has 12 multiplexed video ports that may be used to capture PAL or NTSC signals.

SI-C67DSP cards from Sheldon Instruments, based on a Texas Instruments TMS320C6713
floating point DSP running at 250 MHz and a total memory of 256 MB.

Currently the sensor boards are equipped with the following sensors.

– PAL color camera from Ganz

A. TENGG, A. KLAUSNER, B. RINNER

– PAL Infrared camera with night vision

– Professional Audiocard Audiophile 2496

– Light barrier

Every processing node allows to query and use its free resources (i. e. computing
power, on/off chip memory, different sensors, . . .) for fusion tasks. We provide a module
which explores the embedded system automatically. This has two advantages: (i) faulty
or missing hardware nodes can be found during start up and (ii) the hardware model can
be built and parameterized during the initialization process.

A single sensor node in our I-SENSE framework has substantial processing power.
However sophisticated video- and audio-based data fusion algorithms have high memory-
and processing requirements.

3.2 Fusion model

The Fusion Model describes the functionality of the distributed fusion application and
consists basically of a set of communicating tasks which may be represented as a task
graph G = (N,E). It is assumed to be a weighted directed acyclic graph, consist-
ing of nodes N = (n1, n2, ..., nm) which represent the fusion tasks and the edges E =
(e12, e13, ..., enm) which represent the data flow between those tasks.

n1n1 n2n2 n3n3 n4n4 n5n5 n6n6 n7n7

n8n8

n10n10
n11n11 n12n12

n9n9

n13n13 n14n14

n15n15 n16n16 n17n17

n18n18

e1,8 e2,8

e3,11 e4,12

e5,9 e6,9

e7,14

e10,15 e11,15

e11,16

e12,16

e12,17

e14,19

e13,17

e15,19 e17,19e16,19

r9 e9,13

Figure 2: A simple Fusion Model

Each node has some properties, describing the (hardware/resource-) requirements of
a task. Every edge from node u to node v (euv) indicates the required communication
bandwidth between those two tasks. A quite simple example of a fusion model is shown
in figure 2.

3.3 Scheduling of fusion tasks

It is important to note, that the fusion tasks are required to fulfill hard real-time require-
ments (i. e., a video frame is processed in n CPU cycles) while the entire system does not
and can not (due to PCI and usage of standard Ethernet components) guarantee hard real-
time behavior. Instead soft real-time conditions [8] are met. This means, that deadlines

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

may be missed occasionally. In our case such a miss is likely to occur during a reconfig-
uration of the system. During normal operation, our middleware is designed to keep the
delay of data on the communication links as low as possible and constant. Assumed that
there are no hardware faults and the fusion tasks are implemented correctly, the system
guarantees that no data get lost inside the system. This is achieved by using well di-
mensioned buffers on all communication links. Together with the provided timestamping
mechanism, it is ensured that the information from different sensors can be temporally
aligned and the results of the fusion process can always be causally related to their real
world origin. Furthermore, committing to soft-real time behavior and using a preemptive
timeslice based scheduler simplifies the scheduling of the fusion tasks: Every task may
begin as soon as the required data are available in its input buffers [9].

3.4 Description of fusion tasks

There are two parts needed to describe a task: First, a dynamic loadable library, written in
C/C++, that does the data processing and which has access to the I-SENSE API. Second,
meta-information about the task has to be provided in a separate XML file. This meta-
information is required for two reasons: The automatic task placement module needs to
know the resources and precisely predict the run time of each task to find a valid optimal
mapping of tasks onto CPUs. When this configuration is loaded onto the distributed
system, this meta-information is used to initialize the communication buffers and memory
segments for every task. A very simple component description is demonstrated in the
following XML listing:

<component>
<platforms>

<platform name="DSPC64">
<property name="DLLFile" value="ColorCamera.bin"/>
<property name="Stacksize" value="2048"/>
<property name="IntMem" value="2848"/>
<property name="ExtMem" value="0"/>
<property name="NrDMAChannels" value="1"/>
<property name="EnviromentSize" value="256"/>
<property name="Cycles" value="6600"/>

</platform>
</platforms>

<ports>
<port name="0">

<property name="InputMessageSize" value="256"/>
<property name="OutputMessageSize" value="307200"/>
<property name="InputBufferCount" value="3"/>
<property name="OutputBufferCount" value="3"/>
<property name="MessageRate" value="10"/>

</port>
</ports>

</component>

Most of the fields in this XML meta-information file are self explaining. The Envi-
ronmentSize specifies the size of the task state storage which is initialized when a task is
created. If a task is migrated from one processor to another, this memory block is always
transferred along with the code. The field Cycles specifies how long it takes the task to
process a message in the worst case. Finding the correct value is very simple in case of
our used DSP cards. Here it is possible to use a profiler to get an accurate estimation

A. TENGG, A. KLAUSNER, B. RINNER

of the CPU cycles required to process a message. Due to the variety of Pentium based
computer systems, different cache sizes, different memory modules used, and many other
differences, it is quite difficult to say in advance how long it will take to process a mes-
sage on a Pentium class general purpose CPU. We currently evaluate all algorithms on
one specific platform and interpolate the timings linearly for other systems according to
their benchmark results (processor performance, memory).

4 The I-SENSE Middleware

Basically, almost every embedded system with sufficient computation and communica-
tion power can be turned into an I-SENSE hardware node by simply running the I-SENSE
middleware on it. Though for simplicity reasons, the current implementation is designed
for Intel Pentium compatible processor running Windows XP Embedded operating sys-
tem. When started, it first scans the system for supported DSP cards, installs the I-SENSE
system on each detected DSP and establishes a connection via PCI to all DSP processors
in the system. After the WIN32 based part has been initialized as well, the node is ready
to accept commands and execute fusion tasks.

4.1 Software Architecture Overview

Figure 3 illustrates the internal structure of the I-SENSE middleware.
The message router is responsible for a correct and efficient data transfer from one

fusion task to another, either on the same processor via shared memory, the same node
via PCI or on a distant node via Ethernet. Furthermore, the message router supports
message forwarding for tasks which have been migrated to another processor.

PCI

Message Router T
C

P
/IPPCI

Resource Mon. Task Loader

Clock Sync.

Diagnos. Unit

Dynamic Loader

Task 1
Task n

Task 2

Windows XPem Operating System

H
W

dr
iv

er
s

IP based network

Message Router

DSP BIOS

Drivers

CF

DSP monitor

Clock sync.

Resource Mon.

Dyn. Loader

Task 1

Task 2

Task n

. . .

Task Loader

Message Router

DSP BIOS

Drivers

DSP monitor

Clock sync.

Resource Mon.

Dyn. Loader

Task 1

Task 2

Task n

. . .

Task Loader

Figure 3: The main services of the I-SENSE middleware

Each processor in the I-SENSE network offers a service called task loader. It accepts

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

requests to load, start, stop, migrate and remove fusion tasks. Loading a task involves
basically the following steps: First the fusion controller sends a request to load a specific
task in form of a dynamic loadable library. If the code is not yet present at the system,
the image is transferred. After that the task environment is transferred and installed. The
next step involves the creation and registration of the communication links. If all previous
steps have been completed successfully, the task main routine is called in an own thread.

It is the resource monitors responsibility to keep a record of all consumed resources by
a task (Memory blocks, DMA channels, . . .). This assures a neat removal of fusion tasks.

Distributed sensor data fusion implies a uniform timebase for all nodes. Without a sys-
tem wide synchronized clock, it would be impossible to combine results from different
sensors. Therefore each processor has its own task which keeps the local clock synchro-
nized with the system time.

To detect software- and hardware-failures, each node periodically checks its state, and
the connection to its neighbor nodes. This functionality is summarized in the DSP Moni-
tor and Diagnosis Unit block, respectively.

4.2 API for fusion tasks

The last chapter gave a rough overview of the I-SENSE software architecture. The user
of the I-SENSE system hardly ever has to care about the components mentioned before.
Each fusion task has a number of ports where it is connected to other fusion tasks, as
defined in the fusion model. These communication links are bidirectional. The number of
available ports and the number of available message slots as well as the size of the message
slots for outgoing and incoming messages have to be declared in the task’s metadata.

CCommChannel

C
S

en
dB

uf
fe

r

C
R

ec
ei

ve
B

uf
fe

r

CCommChannel

C
S

en
dB

uf
fe

r

C
R

ec
ei

ve
B

uf
fe

r

CCommChannel

C
S

en
dB

uf
fe

r

C
R

ec
ei

ve
B

uf
fe

r

CCommChannel

C
S

en
dB

uf
fe

r

C
R

ec
ei

ve
B

uf
fe

r

FusionTask

* fusion_main (void *comports)

* fusion_resume (void *comports)

- private helper fuctions
- temporare variables

Task
Environment

g_TimeBase

g_MemoryManager

g_Scheduler

g_DmaManager

to other fusion nodes

to other fusion nodes

......

...

void fusion_main(void *commports[])
{

CCommChannel port1(commports[0]);
CCommChannel port2(commports[1]);
MESSAGEHEADER *inmsg, *outmsg;

// ToDo: Initialization, restore state from env.

while (!g_Scheduler.CheckMigrate())
{

if (!port1.GetNextMessage(&inmsg,INFINITE))
{

// ToDo : process the input message

if (port2.PrepareMessage(&outmsg,0)>=0)
{

// ToDo : write the result in the
// ouput message
port2.SendMessage(outmsg);

}
}
port1.DeleteMessage(inmsg);

}

// ToDo: Store task state in environment and
// do cleanup

}

Figure 4: The I-SENSE middleware from the viewpoint of a fusion task

In the listing of figure 4, the skeleton structure of all fusion tasks can be seen. After an
initialization phase, a message is taken from port 1, its data is processed and the result
is posted on port 2. This procedure is repeated potentially forever, as long as the system
doesn’t request the task to terminate/migrate. If the task is requested to prepare for a

A. TENGG, A. KLAUSNER, B. RINNER

migration, it must store its context in the task environment, so that it can continue its
work on the new processor without information loss. The task does not have to care about
unprocessed messages, the communication subsystem transfers them to the new location
transparently.

In addition to a simple message passing system, the I-SENSE API provides other very
useful functions to ease the development of distributed fusion applications. Via the Time-
base module, tasks can query the system time – which is synchronized over the entire
system – whenever they want. They can fork new threads by using the Scheduler module.
The Memory Management module standardizes and encapsulates the hardware dependent
memory management functions of the underlying operating system. A DmaManager pro-
vides a variety of functions to ease the programming of DMA transfers on TI DSPs – a
powerful but complex issue for DSP programmers.

5 Configuration method

The desktop- and embedded-computers in the I-SENSE system do not require user in-
teractions nor do they require a display or a permanent storage device. However, there
has to be one extraordinary node, the so called Master Node where the user of the sys-
tem can specify and change the functionality of the entire network. This particular node
is furthermore in charge of finding and loading a configuration onto the network, doing
reconfigurations during runtime and handling problems and exceptions in the system. On
the Master Node a repository of all fusion tasks must be installed and this is where the
Hardware Model is parameterized before a configuration is computed.

The user triggers, either by loading a predefined or by creating a new Fusion Model or
by changing the Hardware Model, the configuration process. Both models, the Fusion
Model and the Hardware Model are the inputs of the so called Optimizer which tries to
find a suitable mapping of the fusion tasks onto the processors which distributes the load
balanced by invoking a genetic optimization algorithm [10]. Constraints help to enforce
the mapping of an individual fusion task onto a dedicated processor. As soon as a valid
configuration is found, the Configuration Synthesizer distributes and runs the fusion tasks
on the network of distributed embedded platforms.

There are four possible situations that require the Master Node to trigger a reconfigura-
tion:

– The user selects a new Fusion Model or modifies the existing Fusion Model or hard-
ware model.

– A fusion node, usually located at a higher level in the fusion tree, detects a relevant
event and decides to adapt the Fusion Model to better monitor or record this event.

– One of the DSP Monitors or Diagnosis Units reports the failure of a node. In such
a case, the faulty node is removed from the Hardware Model and a reconfiguration
is triggered to find, if somehow possible, an alternative mapping without the faulty
node.

– A reconfiguration may be required if a software task allocates more resources than
it has declared before. The I-SENSE runtime environment however tolerates this
as long as the resources are available but it updates the Fusion Model to the real
requirements to prevent potential conflicts in future.

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

6 Case study traffic surveillance

To demonstrate the feasibility of the I-SENSE approach in a real world scenario, we are
developing a traffic surveillance system. This application requires (i) high data rates from
the sensors to the processing units, (ii) high computation performance, and (iii) sophisti-
cated algorithms for data abstraction and fusion. So in our opinion a promising solution
for these requirements is to integrate sensing and computation into high-performance sen-
sor platforms. To achieve this goal by using the I-SENSE middleware, fusion tasks have to
be developed, beginning from the data acquisition, data preprocessing, object detection,
object tracking, feature extraction, feature fusion – just to name a few.

6.1 Video analysis for traffic surveillance

Image processing tasks are usually very computation expensive and therefore a very good
example to demonstrate the capabilities of the I-SENSE architecture. The following list
gives an incomplete overview of the fusion tasks required to build a multi-sensor traffic
surveillance system.

– Image acquisition: Acquire images from a camera and convert it into a standardized
internal format (resolution, color space, . . .) and detect faulty/missing cameras.

– Image preprocessing: Remove distortions caused by the camera lens, deal with in-
terlaced images

– Image filtering: Apply different filtering methods to enhance or transform images

– Image registration: Transform two images from different cameras into a uniform
coordinate system

– Image fusion: Combine images from two sources into a new image, i. e. create
multi-spectral images

– Motion detection: Find moving objects in a sequence of images

– Feature extraction: Find characteristic features of detected objects to recognize the
object in other frames/cameras again or to perform a classification of the object

– Object tracking: Follow a object in the scene and over more sensor nodes, detect
collisions, lost cargo, etc.

– Video recording: Provide the system with an ability to record interesting scenes.

6.2 Acoustic traffic surveillance

Video based traffic surveillance is quite wide spread. However, there are various situations
where video based surveillance fails or produces wrong inferences. Therefore collecting
acoustic information is a quite natural way to extend the visual sensors. To provide infor-
mation from the acoustic domain for our data fusion, the following software components
are needed:

– Data acquisition: Acquire acoustic samples from microphones and provide it for
further fusion tasks

– Audio filtering: Remove disturbing background noise and unwanted frequency bands

A. TENGG, A. KLAUSNER, B. RINNER

– Signal transformation: Perform a fourier analysis which is the basis for further sig-
nal analysis

– Object detection: Find objects passing by the microphones, estimate their speed by
exploiting a stereo setup

– Acoustic feature extraction: Find characteristic features of detected objects to track
the object from sensor node to sensor node other to perform an acoustic classification
of the object

6.3 Other sensors for traffic surveillance

There are various other sensors available for traffic surveillance [11]. However, we de-
cided to use a light barrier as additional sensor. The inferences of a light barrier alone
are very limited. But as supplement of our audio visual traffic surveillance prototype its
contribution is quite worthy.

6.4 Fusing data from different sensors

In our set of fusion tasks Support Vector Machines (SVM), proposed by Vapnik [12, 13]
are used as classification method for decision modelling. Necessary time and memory
usage are the main bottlenecks for training kernel methods, such as SVM.

For training data sets larger than 3000 elements, common SVM learning strategies are
not feasible, especially on embedded platforms. Therefore, a modified version of the
original SVM, the so called Least Squares Support Vector Machine (LS-SVM) [14, 15]
is used for decision modelling in our system. The main characteristic of LS-SVMs is the
lower computational complexity compared with original SVMs. LS-SVM and the original
SVM are based on the same principals. The main difference is, that LS-SVM formulation
uses equality constraints instead of inequality constraints for the cost function, which have
to be minimized which is much easier to compute. The extraction of support vectors from
a given training dataset is comparable with the problem formulation of finding the most
significant vectors in a given data set. The optimal solution for solving this task should
combine the following features. It should (i) be fast, (ii) lead to a sparse solution (i.e. low
number of support vectors) and (iii) produce good classification results.

In [16] we present a method for an intelligent pre-selection of learning data in order to
reduce the training set and therefore reduce the number of support vectors which are then
used by the LS-SVM classifier. Using our approach leads to a sparse LS-SVM classifier
with good classification results (approx. 2% higher error rate compared to standard SVM,
which is negligible for our case study) and lower computational (70% faster than Standard
SVM) and lower memory costs (about 55% less data for storage compared to LS-SVM)
– especially for embedded systems with limited resources a preferred approach.

Due to the information sources (in more detail the sensors output or SVM output),
contributed information can not associate a 100 percent probability of certainty to their
individual output decisions. Dempster’s rule of combination [17] is used to combine the
knowledge from multiple sensors about events – the so called propositions. Furthermore,
Dempster’s rule lets us find the intersection of the propositions and their associated proba-
bilities. The output of the fusion process at decision level is given to a decision logic. This
task selects the hypothesis favored by the largest amount of evidence from the Dempster-

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

Shafer data fusion task.

7 Results

To test the performance of the middleware and estimate the time that it takes to configure
and re-configure the system, we constructed some simple fusion models consisting of 4
tasks maximum. Table 1 presents the time span to load specific tasks. To obtain the
presented results, caching of fusion tasks was turned of. It is self-evident that loading a
task takes the longer, the larger the code- and environment-size is.

Task Name CPU Type Code Size Environment Time
Image viewer Pentium 154 kB 256 Byte 139.7 ms
Motion detector Pentium 162 kB 512 kB 273.6 ms
Camera driver DSP 5 kB 256 Byte 23.3 ms
Motion detector DSP 7 kB 512 kB 143.6 ms

Table 1: Time required to load a task onto the system

In a second test run, we measured the time it takes the middleware to move a task from
one processor to another. The results of this experiment can be seen in table 2. In principal
two different scenarios have to be considered. Either the task is moved from one node to
another via Ethernet (remote destination) or the task is just moved between processors
on the same node via PCI (local destination). The time spans collected in table 2 have
been measured from issuing the first migration request to the confirmation that the task is
running at its new location.

Task Name Source Code Size Environment Destination CPU Time
Image viewer Pentium 154 kB 256 Byte remote Pentium 508 ms
Camera driver DSP 5 kB 256 Byte local DSP 436 ms
Camera driver DSP 5 kB 256 Byte remote DSP 475 ms
Motion detector Pentium 7 kB 512 kB local DSP 520 ms
Motion detector Pentium 7 kB 512 kB remote DSP 552 ms
Motion detector DSP 162 kB 512 kB local Pentium 613 ms
Motion detector DSP 7 kB 512 kB local DSP 395 ms
Motion detector DSP 162 kB 512 kB remote Pentium 623 ms

Table 2: Time required to migrate a task between processors

Regarding a reconfiguration during runtime, it is furthermore interesting how long it
takes the system to update a communication link. Independent from the platform used, it
took approximately 15 ms to alter a communication link.

8 Conclusion and Outlook

Although presented in connection with a traffic surveillance prototype, our I-SENSE de-
sign is not specialized for a specific scope of application. It can be used for any distributed
application that processes data from geographically distributed sensors and is not required
to fulfill hard real-time criteria.

A. TENGG, A. KLAUSNER, B. RINNER

The presented approach is capable of adapting its functionality if desired by the system
or the user. Unfortunately, a reconfiguration causes the entire system to stop for a short
time and, at least with the current I-SENSE implementation, the internal status of all
fusion tasks is lost. Especially the loss of status information may be intolerable for many
applications. A possible work around would be, that all internal data are gathered before
deleting the actual configuration from the system and loading the new one. We prefer
though a solution where the system continues to run and the internal status of the nodes
remains unchanged.

Therefore our further work will include (i) the exploration of path search algorithms like
A* to find a sequence of valid configurations to apply minimal to medium changes in the
fusion model while the application is still running, (ii) the implementation, optimization
and evaluation of advanced audio-visual feature extraction- and fusion-algorithms and
(iii) the implementation of sophisticated error handling mechanisms for all kinds of faults
imaginable.

Acknowledgments

This project has been partially supported by the Austrian Research Promotion Agency.

References
[1] A. Klausner, B. Rinner, and A. Tengg. I-SENSE: Intelligent embedded multi-sensor fusion. In

Proceedings of the 4th IEEE International Workshop on Intelligent Solutions in Embedded Systems
(WISES), page 105116, Vienna, Austria, June 2006.

[2] Michael Bramberger, Roman Pflugfelder, Bernhard Rinner, Helmut Schwabach, and Bernhard Strobl.
Intelligent Traffic Video Sensor: Architecture and Applications. In Proceedings of the Workshop on
Mobile Computing (TCMC 2003), Graz, Austria, March 2003.

[3] Michael Bramberger, Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach.
Distributed Embedded Smart Cameras for Surveillance Applications. Computer, 39(2):68–75, Febru-
ary 2006.

[4] Rajnish Kumar, Matthew Wolentz, Bikash Agarwalla, JunSuk Shin, Phillip Hutto, Arnab Paul, and
Umakishore Ramachandran. DFuse: A Framework for Distributed Data Fusion. In Proceedings 2003
ACM SensSys, Los Angeles, Ca., November 2003.

[5] David L. Hall and James Llinas. Handbook of Multisensor Data Fusion. CRC Press, 2001.

[6] Ajith Tom P. and C. Siva Ram Murthy. Optimal task allocation in distributed systems by graph
matching and state space search. 46(1):59–75, April 1999.

[7] Hluchy L., Dobrucky M., and Dobrovodsky D. A Task Allocation Tool for Multicomputers. In Proc.
of Scientific Conference with International Participation - Electronic Computers and Informatics,
pages 129–134. Kosice - Herlany, 1996.

[8] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications. Kulwer
Academic Publishers, Norwell, Massachusetts, USA, 1997.

[9] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996.

[10] A. Tengg, A. Klausner, and B. Rinner. An Improved Genetic Algorithm for Task Allocation in
Distributed Embedded Systems. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2007), London, UK, July 2007 (to appear).

[11] M.J. Dalgleish. Vehicle detection for advanced transport telematics. In Proceedings of the 7th Inter-
national Conference on ’Road Traffic Monitoring and Control’, pages 164–167, London, UK, April
1994.

I-SENSE - A MIDDLEWARE FOR EMBEDDED DATA-FUSION

[12] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, USA, 1995.

[13] V. Vapnik. Statistical Learning Theory. Wiley, New York, USA, 1998.

[14] J.A.K Suykens and J. Vandewalle. Least squares support vector machine classifier. Neural Processing
Letters, 9(3):293–300, June 1999.

[15] J.A.K Suykens, P. Van Dooren, B. De Moor, and J. Vandewalle. Least squares support vector ma-
chine classifiers: a large scale algorithm. European Conference on Circuit Theory and Design (EC-
CTD’99), pages 839–842, 1999.

[16] A. Klausner, A. Tengg, and B. Rinner. Enhanced Least Squares Support Vector Machines for Deci-
sion Modeling in a Multi-Sensor Fusion Framework. In Proceedings of the International Conference
on Artificial Intelligence and Pattern Recognition (AIPR-07), Orlando, US, July 2007.

[17] A. P. Dempster. A generalization of bayesian inference. Journal of the Royal Statistical Society,
30:205–247, 1968.

