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Abstract—Recently much research has been conducted and temporal coverage as well as to reduce ambiguity

in visual sensor networks. Compared to traditional sensor
networks, vision networks differ in various aspects such
as the amount of data to be processed and transmitted,
the requirements on quality-of-service, and the level of
collaboration among the sensor nodes.

This paper deals with sensor fusion on visual sensor
networks. We focus here on methods for fusing data from
various distributed sensors and present a generic frame-
work for fusion on embedded sensor nodes. This paper
extends our previous work on distributed smart cameras
and presents our approach toward the transformation of
smart cameras into a distributed, embedded multi-sensor
network.

Our generic fusion model has been completely imple-
mented on a distributed embedded system. It provides
a middleware which supports automatic mapping of our
fusion model to the target hardware. This middleware
features dynamic reconfiguration to support modification
of the fusion application at runtime without loss of sensor
data. The feasibility and reusability of the I-SENSE
concept is demonstrated with experimental results of two
case studies, “vehicle classification” and “bulk good sep-
aration”. Qualitative and quantitative benefits of multi-
level information fusion are outlined in this article.

Index Terms—sensor fusion, middleware, distributed
embedded systems, vehicle classification

I. INTRODUCTION

and uncertainty of the processed data. We focus here
on methods for fusing data from various distributed
sensors and present a generic framework for sensor
fusion on embedded systems. This paper extends our
previous work on distributed smart cameras [1], [2]
and presents our approach toward the transformation
of smart cameras into a distributed, embedded multi-
sensor network. Preliminary results of parts of this
work have been presented at conferences ([3], [4]),
however this paper comprehensively reports on this
research for the first time.

There exist a large variety of multi-sensor fusion
systems, but most of them are very application-specific
(e.g., [5], [6]) or support only centralized data fusion
(e.g., [7]). Our approach is focused on distributed
sensor fusion performed in aetwork of embedded
sensor nodesHowever, our embedded nodes provide
higher performance than typically found in sensor
networks [8] but have tighter resource limitations than
on general-purpose platforms.

The main contributions of this research can be
summarized as follows:

« We introduce a generic fusion model—referred to

as I-SENSE—which supports fusion at multiple
levels, i.e., raw-data fusion, feature-based fusion

ROGRESS in technology has facilitated the devel-
opment of advanced distributed sensor networks.
Recently much research has been conducted in visual
sensor networks which perform image processing on
distributed sensor nodes. Compared to traditional sen-
sor networks visual sensor networks differ in various
aspects such as (i) the amount of data to be processed is
much higher, (ii) data is streamed through the network
requiring specific quality-of-service (QoS), and (iii)
high-level collaboration among nodes is performed.
By migrating resource intensive pre-processing tasks
directly to the sensor nodes, the requirements concern-
ing the communication bandwidth and delay may be
relaxed compared to centralized architectures.
This paper deals with sensor fusion on visual sensor
networks. Fusing data from various sensors helps to
improve robustness and confidence, to extend spatial
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and decision fusion. Our fusion model further
considers the data flow in the sensor network
as well as the resource restrictions on embedded
systems. More specifically, the I-SENSE model
accounts for data transfer costs in the distributed
sensor network and provides a classifier dedicated
for embedded systems, i.e., a least-square support
vector machine with preselection of training data.

o The I-SENSE model represents the fusion appli-

cation by a target hardware model and a software
model. We have developed a light-weight mid-

dleware which supports the automatic mapping
of our fusion model to the distributed embedded

system. This middleware makes distributed pro-

cessing transparent to the user and further fea-
tures dynamic reconfiguration, i.e., the mapping

of fusion tasks on the processing elements can be
modified during runtime without loss of sensor

data.
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« We have evaluated our approach in two cadesionwhere data is combined based on a statistical
studies, namely a traffic monitoring system anchodel and the assessment required by the user and
a bulk good separation. In these case studi¢id) dynamic level fusiorwhere fusion is performed
we fuse visual data with other sensory data atith the aid of mathematical models.
multiple levels of data abstraction, distinguished [11] presents anulti-sensor integration fusion model
by the amount of information they provide, andcp. Figure 1b). In this system, data from various
demonstrate the advantage of multi-sensor oveources is combined in a hierarchical way within
single-sensor detection and classification. In owmbedded fusion centers. A clear distinction between
vehicle classification case study, this approaamulti-sensor fusion and multi-sensor integration is
achieves an improvement from 90% to 96% constressed. Data collected at the sensor level is transferred
pared to single sensor classification out of & the fusion centers where the fusion process takes
data set of about 4000 vehicles. Applied to bullplace. An information system, containing the relevant
good separation, our I-SENSE concept increaséibraries and databases, facilitates the fusion process.
the overall classification accuracy from 86.8% tdhe level of representation is increased from raw
98%. data to more abstract symbolic representations as the

The remainder of this paper is organized as followd?formation is combined at the different fusion centers.

Section Il reviews related work in the area of fusion The waterfall model[12] (cp. Figure 1c) is another
models and frameworks. Section Il presents our ﬁxample of a hierarchical architecture Commonly used.
SENSE fusion model and briefly describes featurEhe flow of data operates from the basic data level
extraction, selection as well as fusion and decisid® the abstract decision making level. The system is
modeling focusing on resource-constrained embeddtgrefore updated continuously with feedback infor-
systems. In Section IV, we present the I-SENSE midnation from the decision making model. These feed-
dleware starting with an introduction of the availabld®ack elements advise the system on reconfiguration,
middleware services and some performance results. Y@salibration and data gathering aspects. At the basic
then describe the specification of the hardware ai@vel information about the environment is gathered
software models as well as the applied method for opased on models of the sensors and whenever possible
timizing the configuration on the distributed embedde®f the observed phenomena. Experimental analysis or
system. Section V reports on the case studies of thePbysical laws are fundamental for those models. A
SENSE framework to vehicle classification and bulRymbolic level of inference about the data is obtained
good separation. Section VI concludes the paper willy means of feature extraction and accurate fusion. The

a brief discussion and an outlook for future researctim of this stage is to minimize the data content while
maximizing the delivered information. The output are

estimates with associated probabilities of the observed
objects. The highest level relates objects to events

Over the last decades various data fusion models abdsed on human interaction, databases and libraries.
frameworks have been developed—both in commercial Two interesting aspects regarding data fusion sys-
as well as in research environments. tems are given in thaistributed blackboard data

In the early years of data fusion the Joint Directorfusion architecture[13]. First, it assigns confidence
of Laboratories (JDL) within the US Department ofevels to each sensor. Second, it refers to situations
Defense defined théDL data fusion frameworf9] where conflicting sensor measurements occur. In this
(cp. Figure l1a) which has been widely used. Tharchitecture, the sensors have a supervisor that controls
main goal was to aid the developments in militarghe fusion process. The method for combining the sta-
applications. The JDL model describes a number @btical information provided by the sensor supervisors
levels for data fusion. These levels include (i) thés taken from a database.
location and identification of objects, (ii) the construc- The Dasarathy mode[14] is based on fusion func-
tion of an image from incomplete information, (iii)tions. These functions are characterized by the types
the provision of possible opportunities (i.e., predictioof input and output data. Many researchers have iden-
of effects on situations) and (iv) the optimization ofified the three main levels of abstraction during the
sensor allocations. A data management system fdata fusion process as decisions (symbols or belief
storage and human interaction is included as well. values), features (intermediate-level information), and

In [10] an architecture for data fusion consistinglata (more specifically sensor data). Dasarathy pointed
of three modules, calledhomopoulos architectuye out that fusion not only occurs within these levels but
is proposed. These modules integrate data at thralso as a means of transformation between them.
different levels, namely (ixignal level fusionwhere The Omnibus model15] is a hybrid model that
data correlation takes place through learning due @wercomes some of the main limitations of the previous
the lack of a mathematical model, (vidence level models while emphasizing on their advantages. The

Il. RELATED WORK
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Fig. 1. Overview of the most popular models for data fusion.

Omnibus modek used in two ways. First, it character- As the name implies theensor control & manage-
izes and subdivides the overall system aims to provigeent unitis responsible for the sensor identification
an ordered list of tasks. Second, the same structuae well as for providing the interface to other sensing
may be used to organize the functional objectives eibdes, human observers and actuators. Furthermore,
each such task. The cyclic nature of the data fusidhis unit controls the overall fusion process and pro-
process is made explicit. The constancy of representades access to a database where resource requirements
tion expressed by the Waterfall model is incorporatefr the different fusion tasks are stored. This layer
into process tasks. provides online refinement of the overall fusion process
All presented models have one major drawbackvhich is based on (i) the generated output decisions
There is no specification given how to handle factorand (ii) the generated output features.
such as the delay in the transmission of data, transmis-The sensing unitgrepresent the intelligent sensors
sion errors as well the as spatial/temporal alignment @fhich consist of physical sensors and a suitable data
data to be fused. Our proposed approach supports dage-processors (e.g., resolution based down-sampling,
fusion based on a light-weight middleware, speciallgutomatic gain control, etc.). ®cal feature extraction
designed to meet the needs of distributed data fusigfit (LFE) is used to extract a single-source feature
applications on embedded systems basedagnrdata vector of an observed object. This means, that each
level feature leveland decision level The implemen- sensor provides an estimate of the position of an object
tation of a specific data fusion application based ofith extracted features based only on its own single
our architecture is simplified by providing methods fosource data. These individual feature vectors are input

communication and configuration. to a data fusion process, namely fleature in feature
out (FIFO) process, in order to achieve a joint feature
I1l. FUSION FRAMEWORK vector estimate based on multiple sensorslogal

decision extraction unit (LDEjs used to extract local

_In this section we describe our multi-level fu-gecision from the individual objectives features (e.g.,
sion framework in detail. First we present the fusiog|assification of objectives identity).

model—specifying the dataflow and characterizing the
software tasks based on the types of input and outqH
data. Essential parts are identified fasion tasksa
detailed description is given in the following sections. « Data in data out unit (DIDO). This functional
unit is also calledraw-data fusion unit (RDF)
) where raw uncorrelated data is fused from dif-
A. Fusion Model ferent and/or similar multiple sensors. These raw
Figure 2 presents the detailed, data-oriented software data streams are labeldRDi. For example, in
fusion model in our I-SENSE approach [16] for two  our framework we apply wavelet based image
physical sensors, labeled wiffi and.S2 (e.g, an audio fusion techniques for images from visual sensor
and a visual sensor). This model combines the ideas of and infrared spectral camera. The output of this
the JDL model[17], [9], Dasarathy’s functional model unit is labelledDbD.
[14] and thewaterfall model[12] to a generic and « Data in feature out unit (DIFO). This is our
reusable model of a multi-level data-fusion process. so calledfeature extraction Il unit (FEIl) where
Our model basically consists of three different layers:  raw data from the individual sensors and/or fused
thesensing unitthefusion layerand thesensor control raw-data is used to extract suitable features of
& management unitThe first two units are shown in the individual tracked objects. These features are
Figure 2. identified by experimental analysis and/or physi-

The heart of the framework is théusion layer
E:Iuding the following five functional units:
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Fig. 2. The I-SENSE data-oriented fusion model. The functional units (blocks) and their input/output data are shown using
two sensorsS1 and S2.

cal modeling and are described in more detail iB. Feature Extraction

our case studies (Section V). The output data are ygya|ly the raw data delivered by a sensor consists
feature vectors (FbD) for each detected object igf mych irrelevant information. By means édature
the observed area. _ ~ extraction the input data is transformed into a reduced
- Feature in feature out unit (FIFO). This is (gpresentation—the so callei@ature vector If the
our so calledeature fusion unit (FF)where fea- annropriate set of features is chosen, the feature vector
tures are fused to an overall feature vector basggracts the relevant information from the input data.
on |nd|V|du.aI objects. Correspondlng objects are One of the main questions that arise is the aim
found by simple computations of object overlapgs 4 feature extractor in the entire system. Usually
for similar sensor types and time stamping fof giterent set of features has to be used for object
different sensors. The output data of this fusiop|agsification and object tracking. For example, if the
process are fused feature vectors based on featufgs is to track a vehicle visually, color might be a

(FbF) extracted by the-FE unit ((Fi) or features o1y powerful feature. On the other hand, for vehicle
extracted by theDIFO unit with an accurate ¢jagsification color is often irrelevant.

feature selection stage.
« Feature in decision out unit (FIDeO). This ) )
functional unit is part of oudecision fusion unit C. Feature Selection - Feature Fusion
(DF), where a classifier based @upport vector  This section deals with the fusion of features from
machinegSVM, cp. Section l1I-D) is trained with different sensors (cp. Sections V-A and V-C) and the
previously recorded and classified sequences. $election of a suitable set out of a pool of candidate
the fusion step this SVM is used as a classifier ti@atures. After feature generation often a very large
derive classification decisions based on previoushumber of candidate features must be reduced to a
extracted single source feature vectors or joirdufficiently small set as the SVM classifier can only
feature vectors from théIFO unit. Decisions handle a limited number of input features. Some of
based on features and a probability interval of thihese candidate features may provide reliable class
decision serve as output of this stadeebF). discriminatory information while others do not carry
« Decision in decision out unit (DelDeQO).This any relevant information and, hence, must be excluded
functional unit is the second part of odecision as they could mislead the classifier. This task is not
fusion unit where extracted decisions are fusettivial since features that provide good classification
from multiple sensors from theDE unit (Di) with  information may only achieve little improvement when
fused data fronfrIDeO based on Dempster-Shafercombined in a feature vector, due to high mutual
methods [18]. The output of this unit representsorrelation. In contrast, the combination of features
the overall output of our fusion modeDébDg. with little class discriminatory abilities may achieve
good results.
A genetic algorithm (GA) [19] is used as a search
method. We provide two feature selection fitness algo-
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rithms based on (i) class separability criteria calculatdd. SVM - Feature based Decision Modeling

for feature subsets and (ii) based on the classification o ) ) )
result of the classifier itself. The decision modeling process is provided as a

generic software framework which allows online data

1) Class Separability MeasuresDifferent class . distributed bedded ¢ ith li
separability measures have been developed as efl’f\§'on on a distributed embedded system with im-
?d memory resources. In our multi-level data fusion

. . L. . |
cient feature selection criteria in various feature subs .
f mework support vector machines (SVM20] are

searching methods. The major drawback is that th ed as classification method for feature based decision
do not always reflect the classifier behavior, and th . .
Y modeling. ForN > 4000, where N is the number of

yield in only a suboptimal classification result. Bet- ™. dat ‘ SUM | . trateqi
ter performance is usually achieved by including thgammg ata sets, common > ceaming strategies
e often not feasible, especially on our embedded

classifier into the selection process and using the cl if Table Il i1abl b p
sification error rate directly as separability criterionP 2H0"M (cp. Table II, available memory) because o

However, this step also includes a high computation!':ne'r_memOry usage and required t|_me. The memory
%}quwement for common SVM learning strategies can

cost. Therefore, separability measures are especigl .
P y b jé characterized by the standard measomemory

important when pre-selecting features out of a lar . O

sefof candidate F1)‘eatures. T\?vo different measures aqgmplexny which 1S g|ven'by(9(_N2.), caused .by the

implemented in our model. s_to_rag(_a of a Hessan matrlx_ Whlqh_ is ne_eded in the op-
timization process involved in training this kernel mod-

« Bhattacharyya Distance:The Bhattacharyya dis- e|s!. Hence, a modified version of the original SVM,

tance is derived from Bayes decision theonthe so called Least Squares Support Vector Machine
which assumes a multivariate Gaussian distriquS_SVM) [21], [22] is used for decision modeling
tion for the underlying probability densities.  in the I-SENSE framework. The main characteristic

« Scatter Matrices: Unlike the Bhattacharyya of LS-SVMs is the lower computational complexity

based measure, the scatter matrices criterion da&smpared with original SVMs, without any quality loss
not assume Gaussian probability distribution fof, the classification results. A very attractive feature of
individual features, but investigates how featurgVM’ name|y the sparseness was lost by the LS-SVM
vector samples are scattered in the feature vectgrmulation. In standard SVM a lot of the Lagrange
space. multipliers are zero, leading to a smaller subset of

2) SVM Classifier Error MeasuresOur experi- learning data in order to build the decision boundary
ments have shown that the best way to select Suhetween the two involved classes. In LS-SVM almost
able class separation features from a set of candid@lémultipliers are non-zero, indicating that all training
features is to use the classifier itself to obtain th@ata sets will be used as support vectors. This fact
classification error minimized by a GA. This methodmplies slower classification computation and a higher
works as follows: For each feature vector combinatioslemand of expensive non-volatile memory to store the
the classification error probability of the classifier i$Upport vectors. We present in the subsequent sections
estimated and the one with minimum error is selected.method for a intelligent preselection of learning data,
That means increased complexity and computationialorder to reduce the training set and therefore reduce
demand for the feature selection process, but on tHte number of support vectors which will be used by
other hand direct inclusion of the classifier into théhe LS-SVM classifier.
optimization process. However, a training data set is given by, y;) } ¥,

As the fitness function is minimized by the GA, thewith the inputsz; € R¢ and class labely; €
error rate of the classifier is interpreted as a reciprocé}: —1}. The idea of SVM classifier is to find the
measure for the fitness. For each individual, the Sviinear separating hyper surface’ o(z) +b = 0 in
is trained with a part of the database samples and thé&¢ feature spac& that separates the mapped data
tested with the remaining part, yielding the error rate dd% (1), 1) ;- - -, (¢(zn),yn)}. According to statis-
fitness value. A single training and test run of the SVNical learning theory [23], [20] a good generalization
does not necessarily lead to a reliable classificatid given if one demands that both classes are separated
result, since feature data can be overlapped by noi¢é&h a certain margin. The goal is to find the appro-
and the result highly depends on the selected trainifigiate weight vectow and the scalar bias terin such
samples. Hence, the SVM must be trained and testét the relations holti = {1,..., N}
several times with randomly chosen samples from the
database to ensure an accurate average result for th‘%or example, a simple calculation reveals that a training data
selected features. Using this method instead of class of 4100 samples—as used in one of our case studies—exceeds
separability measures (CSM) leads to better resulf§ memory capacity on our platform. For 4100 data points, the
while boosting the training time by two orders oﬁ%j”gjij‘jm"v%iE’;fgxggd)s t.hse Bfe -(foﬁ ?qule ]E) rﬁc's'on):

. yte, physical limits of tHeSENSE
magnitude. platform.
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the number of data points, indicating that the training
process is dependent neither on the dimension of the
feature spaceor on the dimension of th@put space
Furthermore, these optimization problems are convex.
After finding the optimal parameters the classifier is
given in the form:

N
f(z) = sign (Z aiyik(z, xi) + b) (3)
=1
Fig. 3. Classification behavior iieature spacef (a) standard SVM Note that in LS-SVM all Lagrangian multipliers
with the margin for the separating hyperplane and the misclassificgre non-zero. because all training data sets are used
tion measure; and (b) LS-SVM with two parallel hyperplanes and ' . e .
the errore; attached to each point. as support vectors for identifying the class separation
surface. This main disadvantage is compensated in our
approach as described in the following section.
_ 1) LS-SVM Approach for Embedded Systerrs:
wlho(@;) +b>+1 if y; =+1 ) this section we describe a method for selecting vectors
wlhp(r)+b< -1 if y; = —1 out of the training dataset which are likely to be

- . ) support vectors in a LS-SVM and, therefore, describe
Instead of building a single hyperplane as in standaj st the individual classes. This is done by a data

SVM (cp. Figure 3a), LS-SVM builds two parallel reselection algorithm based on a modified nearest

hyperplanes; one for the positive class and one f reighbor technique, leading to a smaller set of samples

:jhe negatgve class ss I 'r‘? Indlclatsg in F'gl;)r(ie’b' Tnﬁhich have to be stored for the classification task.
istance between these hyperplasesp(x) +5 = +1 After this preselection, the remaining datasets are

T - : .
andw Q’f(x)ﬂ) . 71. |n.the feature space Is called thq.lsed as support vectors for a LS-SVM classifier to
separatlpg marginFinding the se_paratmg hyperplanefind the decision boundary between two classes in the
deal; W'tz the_ prci?lem_kth%at th'? marzg:;n g%s fto bﬁéarning process. Using our approach leads to a sparse
maximized. Usmg' apniks formatism [ ] [20] oM 5.SVM classifier with good classification results and
standard SVM, this will lead to a constraint quadratq:ower computational and memory requirements than

progrqmming (QP) problem. I_n _ord_er to avoid thisstandard SVM. In embedded systems, the memory re-
sometimes.hard .to solve qptlm_lzauon pro*?'em L.Séources are quite restricted and, therefore, the proposed
SVM uses equality constraints instead of inequalit

i i i ‘approach is advantageous in comparison to a standard
constraints to find the decision hyperplanes. The di F\)/F,)\A g p
ference is compensated by adding an extra term to.l.he training data preselection algorithm (PTD) con-

the cost function that penalizes the deviations fr_o@ists of three main stages as described in the following:
the two hyperplanes for each point of the Iearnlng‘ given training datasef is given by the training

data: The deviations are.g.iven by the. sc_alar er.rg'émpleSS. The training samples can be divided into
e;,Vi € {1,..., N}. The training problem is given by: two subsetsd € {ag, ..., an} and B € {bo,...,bn}

characterizing the two involved classes.

minges 3wl + % llel5 . Stage 1:The goal of this stage is to find the
st oy (whe(z)+b)=1—¢ Vie{l,...,N} samples nearest to the decision boundary which
2) are needed to classify all sampleslinTherefore,
where v plays the role of a regularization parameter for each sample out ofl, the nearest neighbor
between the two quadratic terms in gkemal problem sample fromB and vice versa is identified by

formulation (see Equation 2), and characterizes the computing the Euclidean distance for all sample
relative importance of the terms. The first term aims to  combinations until this distance is a minimum.

maximize the distance between the two hyperplanes, These distance tuples are sorted and verified with
while the second term aims to minimize the slack the nearest neighbor rule in order to check if they
variable e;. This addition of the two quadratic terms are required to classify all samples iA. The

is also responsible for the name least squares SVM. resulting subset is calle@,,,.

Since the dimension of the feature space is high, Stage 2:The reduced nearest neighbor rule [24]

possibly infinite, this problem is difficult to solve. is used to obtain the reduced subs$kgt,,, from
Constructing the Lagrangian and using the Karush- €,,. Therefore, each sample 6f,, is deleted
Kuhn-Tucker conditions yields in dual optimization and the nearest neighbor is used again to check if

problem This formulation is advantageous because the all samples are classified correctlyy,,, without
dimensionality of the optimization problem is equal to  the deleted ones. If all patterns are classified
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correctly the next pattern is removed. Otherwise
the previous deletion is undone. The remaining
subseflI is built by removing those samples from
T. Al
« Stage 3:At the last stage the final preselection
subsetT},; is computed to obtain thé&-nearest
samples frondI which are closest to the reduced

w
T

log(time) [s]

subsetQ, ... of @ ]
The value k influences the size of the required
training data and the quality of the classification result. -1 —e—Lssw |
It can be set by the user, but our experiments have Toomes
shown that3% from the number of samples i is 25 2000 2000 6000 8000 10000 12000
a good initial value fork. The resulting subset of the #Training data sets

tra'”'r‘g dat_a' namelgfps, is provided to the LS-SVM Fig. 6. Comparison of three different learning strategies with regard
classifier. Figure 4 shows an example random Gaussi@hequired training time vs. number of training samples: SVM-QP

distribution and the reduced subsgt,,, after Stage 2 approach (standard SVM), LS-SVM approach (least squares SVM)
of the proposed algorithm. Figure 5 shows the overaﬁpd PTD-SVM approach (preselection of training data LS-SVM).
results of the training data preselection algorithm with

different values ofk. :
. . support vectors, our algorithm needed ofil{ of
2) Performance of the LS-SVM with Preselection Qjﬁpport vectors for a quite similar classification result.

Training Data: To demonstrate the performance of ourﬁccording to Table | our PTD LS-SVM approach
PTD LS-SVM approach we present the obtained resu : o

of two different experiments. First, we generate twll'e;quwes only 23% memory compared to the standard
random Gaussian distributions, one for each individu

%IVM during the learning process.
o . Figur hows the required training tim n
class. The distributions show a tendency to a h|ghg(/ gure 6 shows the required training e as a
level of overlap as indicated in Figure 4a. In this

eraged value of0 experiments. The standard SVM

. L ._approach is the slowest and is therefore not advisable
experiment we compare the necessary training tlm%

. tr large training sets. The fastest approach is the LS-
classification res_ult and number of necessary SUPPQI\1 approach, followed by our proposed approach.
vectors of four different SVM based apprf)aphes und%roth algorithms might be used for large training data
a constant amount of training samples: (i) standaysdets’ however our PTD-SVM approach requires much

t?;/imhg('gatlzisréssé?;ﬁgz (21\{::\)/'-,8\(/“!3) I;\:ds(?\//l)vla \;V;I)?rslrgss support vectors (cp. Table I) which makes it supe-
LS-SVM, called LS-SVM [25]. Second, we use again or for embedded systems with memory restrictions.
two random Gaussian distributions with increasin
amount of data points for each class. We evalual DS combination - Decision based decision model-
three different implementations in order to obtain 49
training time result. For all experiments we used a This section deals with the fusion of decisions from
radial basis function (RBF) as kernel function. Théndividual sensors based on Dempster-Shafer (DS)
results presented in the following are average valuestbieory of evidence [18]. The main objective is to use
a 20 times repeated experiment with random selectitime complementary information from different single-
of training datasets. source classifiers to fuse these classification results into
Table | indicates that the standard SVM has the bestsingle decision or more precisely into a matrix of
training accuracy. Our proposed approach (PTD L$mcertainty intervals for each possible proposition—
SVM) deviates only abouB.1% from the standard the so called “frame of discernme€6X’. Here we use
SVM, while being 45% faster in training than the a distance mass function of our SVM based classifier
standard approach. The results presented in this tabke our DS belief function.
also show that the training accuracy is quite similar The common DS rule of combination implies that
for all training approaches. The fastest training strategye trust all sensors equally. This approach can cause
is the LS-SVM approach, followed by the BESVM problems if the DS fusion system is not properly
approach. Our proposed training data preselection L&esigned and is, therefore, suitable only for situations
SVM approach is abouB times slower than the where all sensors have the same accuracy estimates
fastest approach. The last column in this table shows in situations where the basic belief assignments
that our algorithm has detected a smaller amount ofer the frame of discernmer@ can reflect the ig-
support vectors (SV) even in comparison with the@orance going with the observations. Due to building
standard SVM approach. In comparison to the LS generalizable sensor fusion framework working with
SVM approach, which considers all training datasetensors of different accuracy we introduce a weighted
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Fig. 4. The effect of our data preselection algorithm demonstrated on normalized, 2-dimensional random Gaussian distribution: (a) inital
data set (100 samples) and (b) reduced remaining sUbset.
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Fig. 5. Results of the training data preselection algorithm for the distribution shown in Figure 4a with=(a)and (b)k = 3.

Algorithm Training time (s) | Wrong classified (%) | Nb of SV SV (%) Memory

SVM 17.81 £1.25 124+ 0.5 50.3 £ 3.6 62.9+4.5 612kB

PTD LS-SVM 10.04 £1.11 15.3+0.8 36.6 4.4 45.8 +5.5 141kB

LS-SVM 3.85+0.47 14.24+0.5 80.0+£ 0.0 | 100.0+ 0.0 | 209kB

LS?-SVM 4.13 £0.64 12.8 £0.6 52.8 +4.2 66.0 £ 5.3 237kB

TABLE |

PERFORMANCE OF DIFFERENTSVM-BASED CLASSIFIERS WITH RESPECT TO TRAINING TIMECLASSIFICATION QUALITY, NECESSARY
SUPPORT VECTORS AND REQUIRED MEMORY DURING THE LEARNING PHASE

combination rule [4]. The basic idea is to exploit the IV. I-SENSE MIDDLEWARE

knowledge of the sensor from similar situations, i.e.,

we can use the historical performance rates to decligg
how much we trust in a sensor’s actual estimation.

using this approach we modify the original DS com
bination rule to handle cases of sensors with uneqy

confidence.

The main goal of the I-SENSE middleware is to
fovide services for (i) mapping and executing a fusion
é(pplication on a distributed embedded system, (ii)
optimizing the allocation of fusion tasks onto process-
elements, and (iii) modifying the task allocation
during runtime without loosing sensor data during the
reconfiguration process. Much care has been taken on
an open and portable design of this middleware. As
a result, the I-SENSE middleware can be executed on
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Fig. 7. The internal structure of a sensor node. Such nodes are
connected via Ethernet among each other to form a distributed data
fusion application.

Windows XPem Operating System

various distributed embedded platforms with suﬁicierﬁi%d‘f' The internal structure and main services of the I-SENSE
computation and communication power [26]. middieware.
Figure 7 presents the internal structure of our sensor
nodes. For our experiments this node consists of anin Figure 8 the internal structures of the I-SENSE
"ePCl 101" embedded computing platform equippethiddleware is illustrated. Thenessage routeis re-
with an Intel Pentium M processor running at 1.6 GHzponsible for a correct and efficient data transfer from
This platform can be extended by several DSP boardae fusion task to another, either on the same processor
equipped with TMS320C6000 DSPs from Texas Invia shared memorythe same node via PCIl or on a
struments. The DSP boards are connected with thestant node via Ethernet. Furthermore, the message
embedded platform via PCI. router supports message forwarding if a fusion task
As operating system Windows XP Embedded hdsms been migrated to another processor.
been chosen, simply because of the premium driverEach processor in the I-SENSE network offers a
support and its plug and play features. However, tteervice calledask loader It accepts requests to load,
core functionality of the middleware is independent oftart, stop, migrate and remove fusion tasks. Loading
the operating system and, due to the layered conceptaitask involves basically the following steps: First, the
should be easy to port it to any other operating systefusion controller transfers the image of the fusion task,
or hardware. if it is not yet available at the node. After that the
The sensor nodes used for the I-SENSE system thsk environment is transferred and installed. In the
not require user interactions, display capabilities or mext step the communication links are established and
permanent storage device. However, there has to be gagistered. If all previous steps have been completed
extraordinary node, the so calledaster nodewhere successfully, the task’s main routine is started in an
the user of the system can specify and change then thread.
functionality of the entire network. The master node is It is the responsibility of theesource monitorto
in charge of finding and loading a configuration onteep record of all consumed resources by the tasks
the network, doing reconfigurations during runtime antmemory blocks, DMA channels, etc.). This is required
handling problems and exceptions in the system. fr freeing the resources after a fusion tasks has been
repository of allfusion taskamust be installed on this removed.
node. Distributed sensor data fusion implies a uniform
Note that the data fusion application runs on thémebase for all nodes. Without a system wide synchro-
distributed embedded fusion nodes. Only the configi¥zed clock, it would be impossible to combine results
ration is handled by the centralized master node. from different sensors. Therefore, each processor has
its own task which keeps the local clock synchronized
with the system time.
To detect software- and hardware-failures, each node
During initialization, the middleware first scans theperiodically checks its state, and the connection to its
PCI bus for supported DSP boards and installs thesighbor nodes. This functionality is summarized in
DSP-based part of the middleware on them. After alhe DSP Monitor and diagnosis unitblocks, respec-
instances have been initialized, the node is ready tively.
accept commands and execute fusion tasks. In Table Il the memory requirements of the middle-

A. Services of the Middleware
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ware are shown. On-chip memory refers to the fast | B4 X 2 ) R
internal memory of the signal processor while Off- Display
Chip memory refers to the external connected DRAM
memory.
The buffer sizes for the communication are ad-

[oP<Pu] g
justable; we currently use a total of 4 MB for these [
buffers. The communication buffers are dynamically
organized and are required for inter-task communic&id. 9. The hardware topology of an I-SENSE network.
tion as well as for storing the sensor data during the
reconfiguration process. Thus, the size of the buffers . . .
influences the maximum time required for the recorP—UthIng and incoming messages have to be declared
figuration (such that no data is lost). When portinﬂ] the task's metadata.

to other platforms, these buffers must be adapted toIn addition to a simple message passing system, the

the actual requirements and can be dimensioned mdéﬁENSE API provides other_very useful funct!on§ to
smaller. ease the development of distributed fusion applications.

Via the timebasemodule, tasks can query the system
time—which is synchronized over the entire system—
whenever they want. They can fork new threads by
To test the performance of the middleware andsing theschedulemodule. Thememory management
estimate the time that it takes to configure and renodule standardizes and encapsulates the hardware
configure the system, we constructed some simplgpendent memory management functions of the un-
software models consisting of at most four taskslerlying operating system. BMAmanagerprovides a
Table Il presents the time required to load specifigariety of functions to ease the programming of DMA
tasks. In this experiment all code and data have begansfers on DSPs.
completely loaded over the network; no local caching

has been performed. D. Configuration Method

In a second test, we measured the time required
q Whenever thsoftware modebr thehardware model

to migrate a task from one processor to another, Triwchan ed, a reconfiguration process is triggered. Both
results of this experiment can be seen in Table IV. 15 ged, . 9 P S tggered.
odels are the inputs of the so calleptimizerwhich

rincipal two different scenarios have to be considered. . X ) .
b P ries to find a suitable mapping of the fusion tasks

Either the task migrates from one sensor node oonto the processors. The optimizer distributes the load
another via Ethernetrémote destinationor the task P ' P

just moves between processors on the same node W‘E\'Ch has been balanged by a genetic optimization
PCI (ocal destinatioj. algorithm [27]. Constraints help to enforce the map-

ping of an individual fusion task onto a dedicated
o ) processor. As soon as a valid configuration is found,
C. Definition of Fusion Tasks the configuration synthesizedistributes and runs the
There are two parts required to describe a fusidnsion tasks on the network of distributed embedded
task: The first part provides the functionality of the tasplatforms.
which is a dynamic loadable library written in C/C++ There are three possible situations that require the
and has access to the I-SENSE API. The second paraster node to trigger a reconfiguration: (i) the user
provides meta-information about the task specified modifies the hardware or software model, (ii) a fusion
a separate XML file. This meta-information is requiredask detects a relevant event and decides to adapt the
for two reasons: First, the automatic task assignmeswftware model to better capture this event, or (iii) a
module needs to know the resources and the runtirhardware failure has been detected.
of each task to find an optimal mapping of tasks onto 1) Hardware Model:The hardware model describes
CPUs. Second, when this configuration is loaded ontbe distributed embedded system where the fusion
the distributed system, this meta-information is useapplication should run on. In our case it consists
to initialize the communication buffers and memorypf a set of connected hardware node€$1( .. N3,
segments for every task. cp. Figure 9). Each hardware node has at least one
To build an overall fusion application, individualgeneral purpose CPU (parent) and optionally some
fusion tasks have to be connected. Thus, each fusidigital signal processors (children) coupled via PCI,
task has a number of ports where it can be connectadd various ports to interface sensors.
to other tasks, as defined in teeftware modelThese Every processing node allows to query and use
communication links are bidirectional. The number oits free resources (i.e., computing power, on/off chip
available ports and the number of available messagemory, different sensors, etc.) for fusion tasks. A
slots as well as the size of the message slots foriddleware module explores the embedded system

B. Performance of the Middleware
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On-Chip | Off-Chip Memory
Code 20 kB 24kB Code 500 kB
Data 36 kB 4 MB Data 36 kB + 4MB
Available | 96 kB 124 MB Available 268 MB
(@) )
TABLE Il

FOOTPRINT SIZE OF MIDDLEWARE AND AVAILABLE MEMORY ON (A) DSP (TMS320DM642nND (B) PENTIUM-M

Task Name CPU Type | Code Size| Environment Time

Image viewer Pentium 154 kB 256 Byte 139.7 ms

Motion detector| Pentium 162 kB 512 kB 273.6 ms

Camera driver DSP 5 kB 256 Byte 23.3 ms

Motion detector DSP 7 kB 512 kB 143.6 ms
TABLE 1l

TIME REQUIRED TO LOAD A TASK ON THE SYSTEM WITHOUT CACHING

Task Name Source | Code Size| Environment | Destination CPU | Time

Image viewer Pentium| 154 kB 256 Byte remote Pentium | 508 ms
Camera driver DSP 5 kB 256 Byte local DSP 436 ms
Camera driver DSP 5 kB 256 Byte remote DSP 475 ms
Motion detector| Pentium 7 kB 512 kB local DSP 520 ms
Motion detector| Pentium 7 kB 512 kB remote DSP 552 ms
Motion detector| DSP 162 kB 512 kB local Pentium 613 ms
Motion detector| DSP 7 kB 512 kB local DSP 395 ms
Motion detector| DSP 162 kB 512 kB remote Pentium | 623 ms

TABLE IV

TIME REQUIRED TO MIGRATE A TASK BETWEEN PROCESSORS

automatically. This has two advantages: (i) faulty or
missing hardware nodes can be found during start
up and (ii) the hardware model can be built and
parameterized during the initialization process.

2) Software Model:The software model describes
the functionality of the distributed fusion application.
It is obtained from the fusion model (cp. Figure
2) by increasing the level of detail up to a set of
communicating tasks which may be represented as
a task graphG = (N, E). It is assumed to be a
weighted directed acyclic graph, consisting of nodes
N = (n1,na,...,n,y,) Which represent the fusion tasks
and the edge® = (e12, €13, ..., €nm ) Which represent
the data flow between those tasks. | n | | n, | n, |

Each node of the graph has some properties, describ-
ing the (hardware/resource-) requirements of a task.

The weights of each edge from nodeto nodew (14 LK é) é) [ LK 0
(ewv) indicates the required communication bandwidtBiy 10, A simple software model.

between those two tasks. A quite simple example of a

software model is shown in Figure 10.

e7,14

embedded system consisting raf heterogeneous pro-
cessors, described by the hardware model.
1) Encoding of Chromosome§io solve a problem
As mentioned before, a genetic algorithm is used tay genetic algorithms, it is necessary to find a mapping
allocaten tasks and their interconnections, represented a potential candidate for a solution onto a sequence
by the software model = (N, E), on a distributed of binary digits, the so called chromosome. In our case,

E. Genetic Algorithm for Task Allocation
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N O > B o Q Tasks | CPUs | Complexity | Iterations
G & 4 < & 15 6 easy 107.2
15 10 easy 267.2
CPUNT. ‘ G ‘ C, ‘ G ‘ C, ‘ G ‘ C, ‘ ------ ‘ Gy 15 14 medium 428.0
26 10 medium 848.8
Fig. 11. Mapping of tasks on processors. 26 14 hard 4038.4
20 14 hard 5424.8
20 12 very hard 7068.0
however, it is more suitable and efficient to represent TABLE V

chromosomes as strings of integers. The length of thEITNESS FUNCTION EVALUATIONS REQUIRED TO FIND A VALID
chromosomes is given by the number of tagkthat CONFIGURATION.
should be allocated. Every gene in the chromosome

represents the processer where the task is running SRR I
; . R A SIS S
on. Figure 11 presents an example mapping tdsks FAE E & P
Oon m Processors. e [afe Jo Jo o] [ alealee]c]
2) Fitness Function Definition:A problem with a M A X v
f . . . . RTINS I Do IR
straight forward implementation of a genetic algorithm .« & " "« & (4 1 1

in our case is that in a randomly generated initial_c[c [ [c [¢ [ -]- ] - [-Telefefala]
population almost all combinations are invalid. Either ) )
the CPU utilization of any processor in the system il§|g. 12. Example for a transfer in the common solution-space.
exceeded or a communication link is overloaded. As

roposed in [28], a penalty in the fithess score for those .
Propo [28], ap y . Size of several dozen computation nodes. Currently a
violations has proved to be a good approach in our . . .
work Single node is responsible for managing a moderate

number of slaves. Adopting a hierarchical network

The fl'tness score of a CPU s calculated by gpproach, similar to [29] might be a solution for
polynomial function of second degree. A processor

work load of 50% gets the highest possible fitne%uind?gggt’orﬁgggq[l;?:g;nnsdf?]rogg;a r networks (several
tsgoégér'\élgéi olrf lzssrgggzzg?qsc?)?/:ﬁzgzgglt?nﬁifesfﬁgﬁrhe quotation of fithess function evaluations is quite
0 X b ) P%pular when dealing with genetic algorithms since it
90 % usage) the chromosome gets a punishment valu : .
that is higher than the hiahest possible score of |3|ndependent of the actual implementation and used
9 9 P : processor. However, it says nothing about the expected
perfect chromosome. If more than one CPU in th

chromosome is overloaded. this punishment value execution time. On our development computer (Intel
' P Pentium 4, 1.9 GHz) it takes approximately 0.3 s to

subtracted for each violation. The fitness of the corr%.- ) o i )
S ! o .find a solution for the problem specified as 'very hard’.
munication is calculated in a similar way. The main

difference is that a communication utilization of 35 %
results in the best possible fitness score. The settingsApplying Model Changes at Runtime
of a preferred 35 % network load and 50 % CPU load p special feature of I-SENSE is the capability to
have been determined empiricaflyThe overall fitness 4 ply small and medium changes in the software model
score of a chromosome is simply a weighted sum @ in the hardware model while the system is running.
the processor- and communication-fitness. Therefore, the light-weight I-SENSE middleware sup-
Table V presents the number of fitness functioports loading, unloading as well as migration of tasks
evaluations necessary to find a valid configuratiogng the update of communication links during runtime.
for many different software and hardware modelssg it is possible to change an existing configuration
All presented values have been averaged over 2Qghqually into a modified one by applying those four
runs. The population size was fixed at 80 elementgperations. Similar to the famotifteen puzzlevhere
All examples have been classified by its complexityguares are moved around to obtain a specific pattern,
Problems classified as 'easy’ have a large number @& move tasks on the distributed system to transform
valid solutions while in "hard’ problems the fractiongn existing configuration into the desired modified one.
of valid combinations is very small. For the example The number of sequential task migrations directly
classified as 'very hard’, a special hardware model hagrelates with the time required for the reconfigu-
been constructed which utilizes all processors close @fion. To keep this number low, paying attention to
their limit. the similarity of the new configuration is essential.
The presented Table V reflects the assumed clustgferefore, in case of a reconfiguration, the fitness score
- , of a gene is extended by a third weight which expresses
This is @ pragmatic approach to keep these system resour e difference between the existing configuration and
available for other applications and to allow the computation an
the deployment of new configurations in the background. the potential new one. Thus, similar configurations are
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preferred by the genetic algorithm and the search fapllect a pool of candidate features able to distinguish
a reconfiguration sequence is eased. between vehicle categories. Each of the algorithms
Since a changed configuration may differ in thextracts several features from the raw input data.
number of tasks and the number of processing nodésgatures in time domain are generated from short time
both configurations must be transferred into a comma@mnergies, zero crossing rates and correlation analysis
solution space before a path search algorithm can algorithms. Spectral features include signal attributes
invoked (cp. Figure 12). that describe average energies, positions and spreads in
Finally, an A* search algorithm [30] tries to find afrequency domain, such as the spectral centroid, signal
sequence of valid configurations to transform the cubandwidth, spectral flux, or band energy ratios. Cep-
rent configuration into the new one. The two heurististral coefficients are popular feature candidates as they
functions f and g for the A* algorithm are currently provide very good information packing properties: Low

the following: order coefficients capture information about the slowly
varying properties of the spectrum, also referred to as
f = number of already moved tasks spectral envelope. A more comprehensive overview is

. resented in [33].
g = number of tasks still on the wrong CPU P [33]
reconfiguration can not be found in an adequate time,We have implemented a simple multi-class classifier
the system reverts to a offline reconfiguration procesy applying the One-against-All techniqu®% of the

automatically. This means all fusion tasks may beehicle database is selected for training and the other
halted during the reconfiguration process and the data% is used for evaluation purposes. The results pre-
acquisition from the environment is suspended for thisented in the following are average values from 20 runs

time. of our LS-SVM with support vector preselection and
a radial basis function (RBF) as the kernel function.
V. CASE STUDIES ONVEHICLE CLASSIFICATION First, we demonstrate the vehicle classification re-
AND BULK GOOD SEPARATION sults based on a single sensor estimation only. The box

In this section we present the case studies whi(H%OtS shown in Figure 13a indicate that class separation

focus on vehicle classification and granulated materi4ith acoustic featILIJres oknly is quite difficult, especially
separation. Vehicle classification is performed by e casi:‘ of smad.tr?c S Usm? af coE-fusmn matrix
ploiting visual and acoustic data. In our experimenl@p' Table Vi - audio eatures on y) fort IS experiment
we collected a database consisting of about 41(56veals that the classification system achieves a quite

vehicles which are mainly assigned to three differeﬁf’“able distinction between cars and other vehicles but

classes: large trucks, small trucks and cars. Further \2&S Serious problems in distinguishing between the two

hicle classes (motorcycles and buses) are possible b(ges of trucks.

the number of samples in these classes are rather |Om;:|gure 13b demonstr_at_es quite the same classifica-
flon performance for vision-only sensor data as for

in comparison to the other classes and we, therefore, ) o . .

decided to use only these three classes to demonst tgc_oustm—only cIaSS|f|cgt|on. Higher absolute classi-
the feasibility of our multi-level data fusion approach.',cat:On rates arle th,?_ main difference between the two
A screenshot of the I-SENSE user interface is depictéaqg € Sensor classillers.

in Figure 14. Bulk good separation is focused on visual In Figure 13c and Table VI (cp. decision level

data extended by infrared spectral imaging data. In t léSion) we show that our approach for fusing data at the

subsequent sections we focus on feature extraction %(?ﬁISICr)n IIeveilﬁls 3d\r/]airr11t?geouvs ;nlf:olrnpali;:sog tr? rsmglltte
these case studies. sensor classificatio e overall classification resu

as well as the individual class separation abilities. In
. . o our case study we use a weight = ws in order to
A. Feature Extraction for Vehicle Classification trust in both sensors equally.

For our visual feature extractor we adopted the ideasAccording to Figure 13d and Table VI (cp. feature
of Viola and Jones [31] to build a multi-class extractolevel fusion), fusing data at feature level is superior
and improved it by usindRealBoos{32]. The feature to the Dempster-Shafer approach, discussed in Sec-
set is built by Haar-features and additional gradiention IlI-E. Note, that classification based on single sen-
based information which are calculated in real-timeor decisions needs less memory and communication
on an embedded platform. The boosting approach risquirements than using feature based classification.
mainly used to extract the most powerful feature§herefore, both approaches are suitable in an multi-
Further details are presented in [3]. level sensor fusion framework — depending on the

For our acoustic feature extractor various signal praurrent situation and the available computational and
cessing algorithms have been implemented in order reemory resources.
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Fig. 13. Classification result with PTD LS-SVM based on (a) acoustic features only, (b) visual features only, (c) DS fused decisions from
individual sensors and (d) fused features from both sensors and accurate feature selection. The lines indicate the lower, median and upper
guartile values; whiskers show the extent of the rest of the data.

While Figure 13 visualizes the overall performanc€. Feature Extraction for Bulk Good Separation
of our PTD LS-SVM classifier, the confusion matrix  this section presents the feature extraction for the

(cp. Table VI) shows detailed information about thg good separation case study (cp. Figure 15) which

actual and predicted classifications of our presented. ses on granulated material classification (e.g.,
classifier. A comparison between the vision-only Cla%cks minerals, glasses, etc.)

sification (cp. Figure 13a) and the classification based
on fused features from audio and visual sensors (cp. .
Figures 13c and 13d) can be interpreted as follows: T Visual Feature Extraction

vision-only classifier predicts cars very well (95.3%), Fundamental properties of granulated materials are
but it tends to have problems in distinguishing besjze shape, texture and physical composition. Color
tween small trucks (74.6%) and large trucks (82.3%pyroperties can provide useful information about the

Quite similar behavior is achieved by using acousti§omposition of materials. Surface texture gives clues to
features only (91.7%, 64.0% and 63.2%, respectivelyjs crystal content. These properties are characterized

However, fusing data from both sensors either at thgym images of granulated material, summarized in the
feature level or the decision level leads to good classify|lowing paragraphs.

cation performance for all three vehicle classes (97.3%, a) Color Features.: The most common colors
84.1% and 95.0%, respectively) while decreasing thg granulated material used in this case study are
false-positive rates (by a factor of 3.3 for cars, by fed, brown and yellow which are typically due to
factor of 2.1 for small trucks and by a factor of 1.6 fope presence of ferric oxide cement, gray-black which
large trucks). reflects the presence of carbonaceous material, and
colorless, such as quartz, which contains neither ferric
oxide nor free carbon. Color is an especially important
characteristic for shale. The implemented algorithm in
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audio features only video features only

car | s.truck | I. truck car | s.truck | I truck
car 1377 82 39 1426 48 24
s. truck 13 117 55 25 140 20
I. truck 25 99 264 3 26 359
decision level fusion feature level fusion

car | s.truck | I. truck car | s.truck | I truck
car 1431 42 25 1447 33 18
s. truck 11 153 21 5 170 10
I. truck 1 9 378 2 2 384

TABLE VI

CONFUSION MATRICES OF THE VEHICLE CLASSIFICATION BASED ONI) ACOUSTIC FEATURES (1) VISUAL FEATURES, (II1) DECISION
FUSION AND (IV) FEATURE FUSION
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Fig. 14. Screenshot of our online vehicle classification build on the I-SENSE middleware

the I-SENSEframework is to normalize each intensity The second method is focused on a histogram of
image (taken from granulated materials on a conveyotensities, a method which gives a more complete
belt) to zero mean and unit variance for pixel intensitie®presentation of the reflectivity of a material. Often a
to help to account for changes in camera parametepanulated material will consist of regions of different
when the image was taken. Scenes with highly dieflectivity, which intensity mean and variance alone
rectional lighting cause highlights and shadows, theannot accurately characterize. Pixel intensity ranges
computed intensity variance for a given material ifom zero to one. In the SENSHramework this range
larger than the true value, compensated by an adaptigelivided into eight bins to compute the histogram and
histogram equalization. then normalize so that the elements of the resulting

The simplest method of extracting suitable featuré&ctor sum to one. The values of the eight bins serve
is characterizing granulated material albedo or col@s €ight numerical features in tHeSENSEfeature
which involves two statistical measures: mean arfKtractor.
variance. The mean pixel intensity represents the re-The third method is focused on the color representa-
flectivity of the material, while the variance in inten-tion of a material, a method which involves determin-
sity provides a measure of how uniform the materiahg the reflectivity at all wavelengths. However, the
reflectivity is. In thel-SENSEfeature extraction unit I-SENSEproject is dealing with images of granulated
two statistical features are obtained based on mean andterials which provide the intensity for each pixel at
variance of the objects intensity. three different wavelengths. Pixel color is commonly
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(a) (b)

Fig. 15. Example materials for granulated material separation: (a) precious rubble (referred to class 1), and (b) worthless rubble (referred
to class 2).

represented in Hue Saturation Value (HSV) [34]. How-
ever, neither the RGB or HSV color space is uniform _
in that the numerical distance between colors doeg”orrelation =

3 (0 = pa) (G = pj) GLC M (i, 5)

. . — O'iO'j
not correspond to the distance perceived by humans. (4,9)
However, to characterize granulated material, the mean (6)
and variance over each color channel are computed, as
was previously done for intensity. For a more complete Energy =Y GLCM(i, j)? (7)
color representation, a color histogram is used. The (4,4)
previously explained method of intensity histograms GLCM(i, )
can be applied to each color channel, resulting in a Homogeneity = Z —_— = (8)
2-D histogram and 24 color features. (7 Ltli—Jl

_ b) Texture Features.The surface texture is the These features are computed in tHRENSEframe-
size, shape and arrangement of the component el-
. work and form a vector to represent the texture.
ements of granulated materials as well as surface :
The second method for feature extraction based on

markings such as polish, striations and pits. Properti?s .
o . o . texture involve the most common approach to texture
of crystals within the material, such as grain-size, dis-

tribution, sorting, permeability, shape and orientatioanaIySIS in computer vision, a method convolving the

are also important characteristics of materials identitpexture with a set of filters and clustering the responses

In the I-SENSEframework two methods for obtaining go I,\O/Irgig;eﬁg;%;nnlih'; vt/j(;;kdth_?hl\élaﬁgg nf]",:z ?SE;):; €

;gg&zt dfeatures based on object texture analysis <’?‘)rrtlaginally introduced by Varma and Zisserman in [35],

. - bc, based on an edge filter (first derivative of a Gaussian)
First, features from co-occurrence statistics are ob-

tained. Thegray-level co-occurrence matrigGLCM) and a b"?“ f|It§r (second derivative of a Gaussian)
aﬁ six orientations and three scales, and two spot

measures spatial relationships of pixels in an objeF ers (a Gaussian and a Laplacian of a Gaussian)

. . . ) 1
image. The matrix is defined as follows: The unique trick with this approach is that for each

GLCMg.0(t,7) = {((r,s), (t,v)) : I(r,s) = filter, the maximum response is taken across the six
i, I(t,v)=j}| (4) orientations. This reduces the response vector down to

) ) . eight dimensions. Each response vector is normalized
whered is the distance at an angte between pixels according to

of intensitiesi and j and |.| is the cardinality of
a set. In other words, entryi, j) is the number of
occurrences of the pair of gray levelsand j at a

distanced and anglea apart. This is computed for whereR is the vector and?; is each element. Once

o = 0%,45°,90°,135° andd = 1 10 5, averaged over . ‘g hani is convolved with the texture to form a
these values for pixel intensities divided into eight bins,

. . ) response vector for each pixel using MR8 filter bank, a
From this, the following features are computed: )
set of textons is computed. The response vectors from

Contrast = Z li — jPGLCM (i, §) (5) all textures in the set are aggregated into a matrix of
(3,9) size M x N where M is the total number of pixels

1 .
PR TITL

)
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in the images andV is the dimensionality of the accuracyis the proportion of the total number of pre-
response vector. In tHeSENSEapproach the responsedictions that were correct, thieue-positive rate(TP)
vectors are clustered using k-means f3@ach texton is the proportion of positive cases that were correctly
is displayed as the linear combination of the filters andentified, thefalse-positive rate(FP) is defined as
represents a form of primitive structure in the set ahe proportion of negatives cases that were incorrectly
textured object images. From this the closest texton folassified as positive. To evaluate the feasibility of
the response vector is computed at each image pixeSENSE approach the following experiments were
forming a texton map. This distribution of textonsconducted: (a) Color based feature extraction & feature
within an granulated material is represented with selection & PTD LS-SVM classifier, (b) Color and
histogram, counting the number of occurrences of easpectral imaging based feature extraction & feature
texton in the image. Texture features are extracteglection & PTD LS-SVM classifier, (c) Color and
based on these representative histograms. spectral imaging based feature extraction & feature
1) Spectral Imaging Feature ExtractionFeatures selection & PTD LS-SVM classifier & Fusion based
based on spectral imaging can provide useful infopn multiple decisions (weights were set to 0.5 for each
mation about the composition of granulated materialgdividual classifier), (d) Color and spectral imaging
The overall aim is to extract features with sufficienbased feature extraction & PTD LS-SVM classifier
class discriminatory abilities from infrared spectra oWithout feature selection and (e) Color and spectral
the objects of interests. Therefore, in tiSENSE imaging based feature extraction & classification based
framework various materials were analyzed heuriston k-means clustering as described in [37]. The tables
cally for the specific application and regions of interegiiven below are obtained from 40 times randomly
(ROI) were extracted during the evaluation stage (cpepeated selection of learning and evaluation examples
Figure 16). The method of extracting suitable featuresmut of the pool of objects in order to consider the
is based on two statistical measures (mean and vageneralization behavior.
ance) for each obtained pixel, in order to characterize The results presented in Table VII show the classifi-
the ROI of granulated material’s spectra. Thereforeation behavior based on single-sensor color informa-
measures as min-value, max-value and mean-value fom. The overall classification accuracy is about 87%,
obtained from objectives spectra. Furthermore, the firahd therefore quite high, while both involved classes
derivative is computed, where the slope is an additionafe classified with similar true-positive rates. Adding
feasible feature. These features are computed in thew types of sensors may have very significant impact
I-SENSEframework and form a vector to represenin classification capability, because of an additional
the information obtained from granulated materialadded dimensionality of sensed data, an fact which

infrared spectra. is indicated in Table Vllb. Additional features from
spectral imaging sensor increase the overall accuracy
E. Granulated Materials Classification Results by approx. 11%, due to the integration of a suit-

Bulk d i : lated able feature selection stage. Quite similar to these
Uik good separation ormore precise granulated Masq, us are the results obtained by multiple single-

terials classification is an important task in industriaéensor classifiers and a decision based fusion (i.e

applications. To keep this demonstration applicatio\ﬂeighted DS combination), as given in Table Viic. In
as simple as possible several autonomous experim '

N e{ht& case it seems that the final classifier tends to have
were con_ducted. For 3|mpl_|C|ty reason the SEIMeNtas,hlems two treat both involved classes similar. Table
tion task IS n.ot further considered in this secugn. Onl Ild, demonstrate the main difficulties in feature based
the quantlta}twe results c_)f the con_ducted experiment lfformation fusion. Without a suitable feature selection
presented in the following. In this case study textur rocess the classifier is mislead, caused by the high
and <_:o|or features are ex_tracted as described in sect Utual correlation of features fro'm the two involved
V-C in order to ¢stmgwsh _bet_ween two _classes %ensors. Therefore, the overall accuracy (i.e., 61%)
granulated material, €.g. as |nd|cgted by Figure 15. decreases dramatically. Using a unsupervised learning
The results shown in the following .tables (cp. Tat."%trategy, i.e., k-means clustering, is not feasible in the
Hresented application field, a fact which is illustrated
Figure Vlle.
Summarizing the results obtained in this granulated

granulated material. Therefore, the confusion matri
which contains information about actual and predicte
classifications d(_)ne by a cIaSS|f|cat!on_s_ysten_1, Is bui aterial separation case study beside the qualitative
From the confusion matrix for each individual involve

. g enefits of the presented multi-level fusion approach
class, statistical measures as accuracy, true-positive I ther important interpretation can be done regarding

and false-positive rate are computed. Whereby, tr?ﬁe reusability of thel-SENSE framework. Thel-
3In this work 32 clusters are used, with each cluster representim= NS Effamework is a generic fl_JSIOﬂ m(_)del_ suitable
a texton. for a broad range of classification applications. The
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Fig. 16.
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[| Mean classification accuracy  86,84%

mean TP [%] mean FP [%]
Class 1 88,73 11,27
Class 2 84,95 15,05
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[| Mean classification accuracy  92,22%

mean TP [%)] mean FP [%)]
Class 1 92,22 7,78
Class 2 94,58 5,42
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Infrared spectra (range: 1100 nm — 1700 nm ) of different minerals with defined regions of interest (indicat&q Wwhere

[[ Mean classification accuracy 97,99% ||
mean TP [%] mean FP [%]
Class 1 97,55 2,45
Class 2 98,43 1,57
(©)
[| Mean classification accuracy  61,53% ||
mean TP [%)] mean FP [%)]
Class 1 68,82 31,18
Class 2 54,23 45,77
(d)

[| Mean classification accuracy  72,82%

mean TP [%)] mean FP [%]
Class 1 72,21 27,79
Class 2 73,43 26,57
(e)
TABLE VI

GRANULATED MATERIAL SEPARATION RESULTS BASED ONPTD LS-SVMCLASSIFIER AND UNSUPERVISED KMEANS CLUSTERING
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model can be easily adapted for numerous applications
by simply exchanging the feature extraction tasks.

VI. CONCLUSION

In this paper, we have presented |-SENSE—our
novel multi sensor fusion model focusing on multi- 1
level data fusion on networked embedded systems.
The I-SENSE model considers the data flow in the
embedded sensor network and features a light-weighg;
middleware with dynamic reconfiguration capabilities.
Our framework further provides an enhanced SVM-
based classifier which achieves a good compromisg;
between computation speed, memory requirements and
classification performance—all of which is important
for distributed, embedded fusion applications.

We have demonstrated the I-SENSE framework irf4]
two case studies. By fusing visual and acoustic data at
different levels of abstraction, we were able to increase
the overall accuracy in our vehicle classification case
study from 90 % of vision-based classification to about®!
96 %. This case study also showed that the discrimina-
tion among the classes for small and large trucks can
be significantly improved by combining (weak) single [€]
sensor classifiers. A further case study demonstrates
the reusability of the generic fusion model and con-
firms the tendencies obtained in the first case study. [7]

Sensor fusion is an important technique to improve
the quality and robustness of many applications. Sincg)
sensor, computing and communication devices are get-
ting more capable, smaller and cheaper at a very fast
pace, fusion will become an enabling technology forg;
many embedded applications. By providing a middle-
ware which considers important parameters for dis-
tributed embedded systems, our I-SENSE frameworlg)
may help to develop embedded fusion applications.

However, there is still a long road ahead to support
the development process to a full extend. Thus, our
future work will focus on the following issues: [11]

« Exploit the fusion refinement. This introduces
some adaptivity such that individual units in oufl2]
fusion model (Figure 2) can be adapted for exam-
ple due to changed environmental conditions. [13]

o Perform distributed sensor fusion. In the cur-
rent case studies we do not exploit the spati 4
and temporal relationship among multiple sensors.
However, it is natural to do so to further improve
the quality. (23]

« Integrate different sensors.We plan to integrate
additional sensors for our case study such @]
lasers for capturing the height profiles or inductive
loops. An important question is to determine the
tradeoff between increased hardware costs and
increased performance. (17]

« Implement sophisticated error handling. The
entire concept permits error handling on various

19

levels. But up to now there is no intelligent error
handling implemented. We are planning to use a
policy based approach, similar to [38].
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