
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 1

Distributed multi-level Data Fusion for
Networked Embedded Systems

Andreas Klausner,Graz University of Technology,Allan Tengg,Graz University of Technology,
and Bernhard Rinner,Klagenfurt University

Abstract—Recently much research has been conducted
in visual sensor networks. Compared to traditional sensor
networks, vision networks differ in various aspects such
as the amount of data to be processed and transmitted,
the requirements on quality-of-service, and the level of
collaboration among the sensor nodes.

This paper deals with sensor fusion on visual sensor
networks. We focus here on methods for fusing data from
various distributed sensors and present a generic frame-
work for fusion on embedded sensor nodes. This paper
extends our previous work on distributed smart cameras
and presents our approach toward the transformation of
smart cameras into a distributed, embedded multi-sensor
network.

Our generic fusion model has been completely imple-
mented on a distributed embedded system. It provides
a middleware which supports automatic mapping of our
fusion model to the target hardware. This middleware
features dynamic reconfiguration to support modification
of the fusion application at runtime without loss of sensor
data. The feasibility and reusability of the I-SENSE
concept is demonstrated with experimental results of two
case studies, “vehicle classification” and “bulk good sep-
aration”. Qualitative and quantitative benefits of multi-
level information fusion are outlined in this article.

Index Terms—sensor fusion, middleware, distributed
embedded systems, vehicle classification

I. I NTRODUCTION

PROGRESS in technology has facilitated the devel-
opment of advanced distributed sensor networks.

Recently much research has been conducted in visual
sensor networks which perform image processing on
distributed sensor nodes. Compared to traditional sen-
sor networks visual sensor networks differ in various
aspects such as (i) the amount of data to be processed is
much higher, (ii) data is streamed through the network
requiring specific quality-of-service (QoS), and (iii)
high-level collaboration among nodes is performed.
By migrating resource intensive pre-processing tasks
directly to the sensor nodes, the requirements concern-
ing the communication bandwidth and delay may be
relaxed compared to centralized architectures.

This paper deals with sensor fusion on visual sensor
networks. Fusing data from various sensors helps to
improve robustness and confidence, to extend spatial

This project has been partially supported by the Austrian Research
Promotion Agency under grant #812033 and #812204

and temporal coverage as well as to reduce ambiguity
and uncertainty of the processed data. We focus here
on methods for fusing data from various distributed
sensors and present a generic framework for sensor
fusion on embedded systems. This paper extends our
previous work on distributed smart cameras [1], [2]
and presents our approach toward the transformation
of smart cameras into a distributed, embedded multi-
sensor network. Preliminary results of parts of this
work have been presented at conferences ([3], [4]),
however this paper comprehensively reports on this
research for the first time.

There exist a large variety of multi-sensor fusion
systems, but most of them are very application-specific
(e.g., [5], [6]) or support only centralized data fusion
(e.g., [7]). Our approach is focused on distributed
sensor fusion performed in anetwork of embedded
sensor nodes. However, our embedded nodes provide
higher performance than typically found in sensor
networks [8] but have tighter resource limitations than
on general-purpose platforms.

The main contributions of this research can be
summarized as follows:

• We introduce a generic fusion model—referred to
as I-SENSE—which supports fusion at multiple
levels, i.e., raw-data fusion, feature-based fusion
and decision fusion. Our fusion model further
considers the data flow in the sensor network
as well as the resource restrictions on embedded
systems. More specifically, the I-SENSE model
accounts for data transfer costs in the distributed
sensor network and provides a classifier dedicated
for embedded systems, i.e., a least-square support
vector machine with preselection of training data.

• The I-SENSE model represents the fusion appli-
cation by a target hardware model and a software
model. We have developed a light-weight mid-
dleware which supports the automatic mapping
of our fusion model to the distributed embedded
system. This middleware makes distributed pro-
cessing transparent to the user and further fea-
tures dynamic reconfiguration, i.e., the mapping
of fusion tasks on the processing elements can be
modified during runtime without loss of sensor
data.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2

• We have evaluated our approach in two case
studies, namely a traffic monitoring system and
a bulk good separation. In these case studies
we fuse visual data with other sensory data at
multiple levels of data abstraction, distinguished
by the amount of information they provide, and
demonstrate the advantage of multi-sensor over
single-sensor detection and classification. In our
vehicle classification case study, this approach
achieves an improvement from 90% to 96% com-
pared to single sensor classification out of a
data set of about 4000 vehicles. Applied to bulk
good separation, our I-SENSE concept increases
the overall classification accuracy from 86.8% to
98%.

The remainder of this paper is organized as follows:
Section II reviews related work in the area of fusion
models and frameworks. Section III presents our I-
SENSE fusion model and briefly describes feature
extraction, selection as well as fusion and decision
modeling focusing on resource-constrained embedded
systems. In Section IV, we present the I-SENSE mid-
dleware starting with an introduction of the available
middleware services and some performance results. We
then describe the specification of the hardware and
software models as well as the applied method for op-
timizing the configuration on the distributed embedded
system. Section V reports on the case studies of the I-
SENSE framework to vehicle classification and bulk
good separation. Section VI concludes the paper with
a brief discussion and an outlook for future research.

II. RELATED WORK

Over the last decades various data fusion models and
frameworks have been developed—both in commercial
as well as in research environments.

In the early years of data fusion the Joint Directors
of Laboratories (JDL) within the US Department of
Defense defined theJDL data fusion framework[9]
(cp. Figure 1a) which has been widely used. The
main goal was to aid the developments in military
applications. The JDL model describes a number of
levels for data fusion. These levels include (i) the
location and identification of objects, (ii) the construc-
tion of an image from incomplete information, (iii)
the provision of possible opportunities (i.e., prediction
of effects on situations) and (iv) the optimization of
sensor allocations. A data management system for
storage and human interaction is included as well.

In [10] an architecture for data fusion consisting
of three modules, calledThomopoulos architecture,
is proposed. These modules integrate data at three
different levels, namely (i)signal level fusionwhere
data correlation takes place through learning due to
the lack of a mathematical model, (ii)evidence level

fusion where data is combined based on a statistical
model and the assessment required by the user and
(iii) dynamic level fusionwhere fusion is performed
with the aid of mathematical models.

[11] presents amulti-sensor integration fusion model
(cp. Figure 1b). In this system, data from various
sources is combined in a hierarchical way within
embedded fusion centers. A clear distinction between
multi-sensor fusion and multi-sensor integration is
stressed. Data collected at the sensor level is transferred
to the fusion centers where the fusion process takes
place. An information system, containing the relevant
libraries and databases, facilitates the fusion process.
The level of representation is increased from raw
data to more abstract symbolic representations as the
information is combined at the different fusion centers.

The waterfall model[12] (cp. Figure 1c) is another
example of a hierarchical architecture commonly used.
The flow of data operates from the basic data level
to the abstract decision making level. The system is
therefore updated continuously with feedback infor-
mation from the decision making model. These feed-
back elements advise the system on reconfiguration,
recalibration and data gathering aspects. At the basic
level information about the environment is gathered
based on models of the sensors and whenever possible
of the observed phenomena. Experimental analysis or
physical laws are fundamental for those models. A
symbolic level of inference about the data is obtained
by means of feature extraction and accurate fusion. The
aim of this stage is to minimize the data content while
maximizing the delivered information. The output are
estimates with associated probabilities of the observed
objects. The highest level relates objects to events
based on human interaction, databases and libraries.

Two interesting aspects regarding data fusion sys-
tems are given in thedistributed blackboard data
fusion architecture[13]. First, it assigns confidence
levels to each sensor. Second, it refers to situations
where conflicting sensor measurements occur. In this
architecture, the sensors have a supervisor that controls
the fusion process. The method for combining the sta-
tistical information provided by the sensor supervisors
is taken from a database.

The Dasarathy model[14] is based on fusion func-
tions. These functions are characterized by the types
of input and output data. Many researchers have iden-
tified the three main levels of abstraction during the
data fusion process as decisions (symbols or belief
values), features (intermediate-level information), and
data (more specifically sensor data). Dasarathy pointed
out that fusion not only occurs within these levels but
also as a means of transformation between them.

The Omnibus model[15] is a hybrid model that
overcomes some of the main limitations of the previous
models while emphasizing on their advantages. The

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 3

Level 1

Object
Refinement

Situation
Picture

Sensors

Level 2

Situation
Refinement

Situation
Assessment

Level 3

Threat
Refinement

Threat
Assessment

Level 4

Process Refinement

Performance Assessment

Database

(a) JDL model

S1 S2 S3 Sn....

Fusion

Fusion

Fusion

Information System

Pixel

Signal

Feature

Symbol

Level of Representation

(b) Multi-sensor integration model

Situation Assessment

Decision Making

Feature Extraction

Pattern Processing

Sensors

Pre-Processing

Signal

State

Features

Interrogation

Controls

L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

(c) Waterfall model

Fig. 1. Overview of the most popular models for data fusion.

Omnibus modelis used in two ways. First, it character-
izes and subdivides the overall system aims to provide
an ordered list of tasks. Second, the same structure
may be used to organize the functional objectives of
each such task. The cyclic nature of the data fusion
process is made explicit. The constancy of representa-
tion expressed by the Waterfall model is incorporated
into process tasks.

All presented models have one major drawback.
There is no specification given how to handle factors
such as the delay in the transmission of data, transmis-
sion errors as well the as spatial/temporal alignment of
data to be fused. Our proposed approach supports data-
fusion based on a light-weight middleware, specially
designed to meet the needs of distributed data fusion
applications on embedded systems based onraw-data
level, feature leveland decision level. The implemen-
tation of a specific data fusion application based on
our architecture is simplified by providing methods for
communication and configuration.

III. F USION FRAMEWORK

In this section we describe our multi-level fu-
sion framework in detail. First we present the fusion
model—specifying the dataflow and characterizing the
software tasks based on the types of input and output
data. Essential parts are identified asfusion tasks; a
detailed description is given in the following sections.

A. Fusion Model

Figure 2 presents the detailed, data-oriented software
fusion model in our I-SENSE approach [16] for two
physical sensors, labeled withS1 andS2 (e.g, an audio
and a visual sensor). This model combines the ideas of
theJDL model[17], [9], Dasarathy’s functional model
[14] and thewaterfall model [12] to a generic and
reusable model of a multi-level data-fusion process.
Our model basically consists of three different layers:
thesensing unit, thefusion layerand thesensor control
& management unit. The first two units are shown in
Figure 2.

As the name implies thesensor control & manage-
ment unit is responsible for the sensor identification
as well as for providing the interface to other sensing
nodes, human observers and actuators. Furthermore,
this unit controls the overall fusion process and pro-
vides access to a database where resource requirements
for the different fusion tasks are stored. This layer
provides online refinement of the overall fusion process
which is based on (i) the generated output decisions
and (ii) the generated output features.

The sensing unitsrepresent the intelligent sensors
which consist of physical sensors and a suitable data
pre-processors (e.g., resolution based down-sampling,
automatic gain control, etc.). Alocal feature extraction
unit (LFE) is used to extract a single-source feature
vector of an observed object. This means, that each
sensor provides an estimate of the position of an object
with extracted features based only on its own single
source data. These individual feature vectors are input
to a data fusion process, namely thefeature in feature
out (FIFO) process, in order to achieve a joint feature
vector estimate based on multiple sensors. Alocal
decision extraction unit (LDE)is used to extract local
decision from the individual objectives features (e.g.,
classification of objectives identity).

The heart of the framework is thefusion layer
including the following five functional units:

• Data in data out unit (DIDO). This functional
unit is also calledraw-data fusion unit (RDF)
where raw uncorrelated data is fused from dif-
ferent and/or similar multiple sensors. These raw
data streams are labeledRDi. For example, in
our framework we apply wavelet based image
fusion techniques for images from visual sensor
and infrared spectral camera. The output of this
unit is labelledDbD.

• Data in feature out unit (DIFO). This is our
so calledfeature extraction II unit (FEII), where
raw data from the individual sensors and/or fused
raw-data is used to extract suitable features of
the individual tracked objects. These features are
identified by experimental analysis and/or physi-

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 4

S1

Local Feature
Extraction

(LFE)

Local Decision
Extraction

(LDE)

Local Decision
Extraction

(LDE)

Local Feature
Extraction

(LFE)

S2

Data In
Data Out
(DIDO)

Data In
Feature Out

(DIFO)

Feature In
Feature Out

(FIFO)

Feature In
Decision Out

(FIDeO)

Decision In
Decision Out

(DeIDeO)

Sensing Unit 2

Sensing Unit 1

Fusion Layer

RDF FEII FF DF

RD1

RD1

RD1

RD2

RD2

RD2

DbD FbD FbF DebF DebDe

F1

F1F1

F1

F2

F2F2

F2

D1

D2

Fig. 2. The I-SENSE data-oriented fusion model. The functional units (blocks) and their input/output data are shown using
two sensorsS1 andS2.

cal modeling and are described in more detail in
our case studies (Section V). The output data are
feature vectors (FbD) for each detected object in
the observed area.

• Feature in feature out unit (FIFO). This is
our so calledfeature fusion unit (FF), where fea-
tures are fused to an overall feature vector based
on individual objects. Corresponding objects are
found by simple computations of object overlaps
for similar sensor types and time stamping for
different sensors. The output data of this fusion
process are fused feature vectors based on features
(FbF) extracted by theLFE unit ((Fi) or features
extracted by theDIFO unit with an accurate
feature selection stage.

• Feature in decision out unit (FIDeO). This
functional unit is part of ourdecision fusion unit
(DF), where a classifier based onsupport vector
machines(SVM, cp. Section III-D) is trained with
previously recorded and classified sequences. In
the fusion step this SVM is used as a classifier to
derive classification decisions based on previously
extracted single source feature vectors or joint
feature vectors from theFIFO unit. Decisions
based on features and a probability interval of this
decision serve as output of this stage (DebF).

• Decision in decision out unit (DeIDeO).This
functional unit is the second part of ourdecision
fusion unit, where extracted decisions are fused
from multiple sensors from theLDE unit (Di) with
fused data fromFIDeObased on Dempster-Shafer
methods [18]. The output of this unit represents
the overall output of our fusion model (DebDe).

B. Feature Extraction

Usually the raw data delivered by a sensor consists
of much irrelevant information. By means offeature
extraction, the input data is transformed into a reduced
representation—the so calledfeature vector. If the
appropriate set of features is chosen, the feature vector
extracts the relevant information from the input data.

One of the main questions that arise is the aim
of a feature extractor in the entire system. Usually
a different set of features has to be used for object
classification and object tracking. For example, if the
task is to track a vehicle visually, color might be a
very powerful feature. On the other hand, for vehicle
classification color is often irrelevant.

C. Feature Selection - Feature Fusion

This section deals with the fusion of features from
different sensors (cp. Sections V-A and V-C) and the
selection of a suitable set out of a pool of candidate
features. After feature generation often a very large
number of candidate features must be reduced to a
sufficiently small set as the SVM classifier can only
handle a limited number of input features. Some of
these candidate features may provide reliable class
discriminatory information while others do not carry
any relevant information and, hence, must be excluded
as they could mislead the classifier. This task is not
trivial since features that provide good classification
information may only achieve little improvement when
combined in a feature vector, due to high mutual
correlation. In contrast, the combination of features
with little class discriminatory abilities may achieve
good results.

A genetic algorithm (GA) [19] is used as a search
method. We provide two feature selection fitness algo-

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 5

rithms based on (i) class separability criteria calculated
for feature subsets and (ii) based on the classification
result of the classifier itself.

1) Class Separability Measures:Different class
separability measures have been developed as effi-
cient feature selection criteria in various feature subset
searching methods. The major drawback is that they
do not always reflect the classifier behavior, and thus
yield in only a suboptimal classification result. Bet-
ter performance is usually achieved by including the
classifier into the selection process and using the clas-
sification error rate directly as separability criterion.
However, this step also includes a high computational
cost. Therefore, separability measures are especially
important when pre-selecting features out of a large
set of candidate features. Two different measures are
implemented in our model.

• Bhattacharyya Distance:The Bhattacharyya dis-
tance is derived from Bayes decision theory,
which assumes a multivariate Gaussian distribu-
tion for the underlying probability densities.

• Scatter Matrices: Unlike the Bhattacharyya
based measure, the scatter matrices criterion does
not assume Gaussian probability distribution for
individual features, but investigates how feature
vector samples are scattered in the feature vector
space.

2) SVM Classifier Error Measures:Our experi-
ments have shown that the best way to select suit-
able class separation features from a set of candidate
features is to use the classifier itself to obtain the
classification error minimized by a GA. This method
works as follows: For each feature vector combination,
the classification error probability of the classifier is
estimated and the one with minimum error is selected.
That means increased complexity and computational
demand for the feature selection process, but on the
other hand direct inclusion of the classifier into the
optimization process.

As the fitness function is minimized by the GA, the
error rate of the classifier is interpreted as a reciprocal
measure for the fitness. For each individual, the SVM
is trained with a part of the database samples and then
tested with the remaining part, yielding the error rate as
fitness value. A single training and test run of the SVM
does not necessarily lead to a reliable classification
result, since feature data can be overlapped by noise
and the result highly depends on the selected training
samples. Hence, the SVM must be trained and tested
several times with randomly chosen samples from the
database to ensure an accurate average result for the
selected features. Using this method instead of class
separability measures (CSM) leads to better results
while boosting the training time by two orders of
magnitude.

D. SVM - Feature based Decision Modeling

The decision modeling process is provided as a
generic software framework which allows online data
fusion on a distributed embedded system with lim-
ited memory resources. In our multi-level data fusion
framework support vector machines (SVM)[20] are
used as classification method for feature based decision
modeling. ForN > 4000, whereN is the number of
training data sets, common SVM learning strategies
are often not feasible, especially on our embedded
platform (cp. Table II, available memory) because of
their memory usage and required time. The memory
requirement for common SVM learning strategies can
be characterized by the standard measurememory
complexity, which is given byO(N2), caused by the
storage of a Hessian matrix which is needed in the op-
timization process involved in training this kernel mod-
els1. Hence, a modified version of the original SVM,
the so called Least Squares Support Vector Machine
(LS-SVM) [21], [22] is used for decision modeling
in the I-SENSE framework. The main characteristic
of LS-SVMs is the lower computational complexity
compared with original SVMs, without any quality loss
in the classification results. A very attractive feature of
SVM, namely the sparseness was lost by the LS-SVM
formulation. In standard SVM a lot of the Lagrange
multipliers are zero, leading to a smaller subset of
learning data in order to build the decision boundary
between the two involved classes. In LS-SVM almost
all multipliers are non-zero, indicating that all training
data sets will be used as support vectors. This fact
implies slower classification computation and a higher
demand of expensive non-volatile memory to store the
support vectors. We present in the subsequent sections
a method for a intelligent preselection of learning data,
in order to reduce the training set and therefore reduce
the number of support vectors which will be used by
the LS-SVM classifier.

However, a training data set is given by{(xi, yi)}Ni=1

with the inputs xi ∈ Rd and class labelsyi ∈
{1,−1}. The idea of SVM classifier is to find the
linear separating hyper surfaceωT ϕ(x) + b = 0 in
the feature spaceF that separates the mapped data
{(ϕ(x1), y1) , . . . , (ϕ(xN), yN)}. According to statis-
tical learning theory [23], [20] a good generalization
is given if one demands that both classes are separated
with a certain margin. The goal is to find the appro-
priate weight vectorω and the scalar bias termb, such
that the relations hold∀i = {1, . . . , N}:

1For example, a simple calculation reveals that a training data
set of 4100 samples—as used in one of our case studies—exceeds
the memory capacity on our platform. For 4100 data points, the
required memory is(4.1 · 103)2 · 8 Byte (for double precision)=
134.5MByte, which exceeds the physical limits of theI-SENSE
platform.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 6

ωϕ()
T

x
+

b=
-1

ω ϕ()
T

x
+

b=
+1

ω ϕ()
T

x
+

b=
0

2

ω

ωϕ()
T

x
+

b=
-1ω ϕ()

T
x
+

b=
+1

ω ϕ()
T

x
+

b=
0

2

ω

ζi

ζj

ei

ej

(a) (b)

Fig. 3. Classification behavior infeature spaceof (a) standard SVM
with the margin for the separating hyperplane and the misclassifica-
tion measureζi and (b) LS-SVM with two parallel hyperplanes and
the errorei attached to each point.

{
ωT ϕ(xi) + b ≥ +1 if yi = +1
ωT ϕ(xi) + b ≤ −1 if yi = −1

(1)

Instead of building a single hyperplane as in standard
SVM (cp. Figure 3a), LS-SVM builds two parallel
hyperplanes; one for the positive class and one for
the negative class as it is indicated in Figure 3b. The
distance between these hyperplanesωT ϕ(x)+ b = +1
andωT ϕ(x)+b = −1 in the feature space is called the
separating margin. Finding the separating hyperplane
deals with the problem that this margin has to be
maximized. Using Vapniks formalism [23], [20] from
standard SVM, this will lead to a constraint quadratic
programming (QP) problem. In order to avoid this
sometimes hard to solve optimization problem LS-
SVM uses equality constraints instead of inequality
constraints to find the decision hyperplanes. The dif-
ference is compensated by adding an extra term to
the cost function that penalizes the deviations from
the two hyperplanes for each point of the learning
data. The deviations are given by the scalar error
ei,∀i ∈ {1, . . . , N}. The training problem is given by:

{
minω,e,b

1
2 ‖ω‖

2
2 + γ

2 ‖e‖
2
2

s.t yi

(
ωT ϕ(xi) + b

)
= 1− ei ∀i ∈ {1, . . . , N}

(2)
whereγ plays the role of a regularization parameter
between the two quadratic terms in theprimal problem
formulation (see Equation 2), and characterizes the
relative importance of the terms. The first term aims to
maximize the distance between the two hyperplanes,
while the second term aims to minimize the slack
variable ei. This addition of the two quadratic terms
is also responsible for the name least squares SVM.
Since the dimension of the feature space is high,
possibly infinite, this problem is difficult to solve.
Constructing the Lagrangian and using the Karush-
Kuhn-Tucker conditions yields in adual optimization
problem. This formulation is advantageous because the
dimensionality of the optimization problem is equal to

the number of data points, indicating that the training
process is dependent neither on the dimension of the
feature spacenor on the dimension of theinput space.
Furthermore, these optimization problems are convex.
After finding the optimal parameters the classifier is
given in the form:

f(x) = sign

(
N∑

i=1

αiyik(x, xi) + b

)
(3)

Note that in LS-SVM all Lagrangian multipliers
are non-zero, because all training data sets are used
as support vectors for identifying the class separation
surface. This main disadvantage is compensated in our
approach as described in the following section.

1) LS-SVM Approach for Embedded Systems:In
this section we describe a method for selecting vectors
out of the training dataset which are likely to be
support vectors in a LS-SVM and, therefore, describe
best the individual classes. This is done by a data
preselection algorithm based on a modified nearest
neighbor technique, leading to a smaller set of samples
which have to be stored for the classification task.

After this preselection, the remaining datasets are
used as support vectors for a LS-SVM classifier to
find the decision boundary between two classes in the
learning process. Using our approach leads to a sparse
LS-SVM classifier with good classification results and
lower computational and memory requirements than
standard SVM. In embedded systems, the memory re-
sources are quite restricted and, therefore, the proposed
approach is advantageous in comparison to a standard
SVM.

The training data preselection algorithm (PTD) con-
sists of three main stages as described in the following:
A given training datasetT is given by the training
sampless. The training samples can be divided into
two subsetsA ∈ {a0, . . . , an} and B ∈ {b0, . . . , bn}
characterizing the two involved classes.

• Stage 1: The goal of this stage is to find the
samples nearest to the decision boundary which
are needed to classify all samples inT . Therefore,
for each sample out ofA, the nearest neighbor
sample fromB and vice versa is identified by
computing the Euclidean distance for all sample
combinations until this distance is a minimum.
These distance tuples are sorted and verified with
the nearest neighbor rule in order to check if they
are required to classify all samples inT . The
resulting subset is calledΩnn.

• Stage 2:The reduced nearest neighbor rule [24]
is used to obtain the reduced subsetΩrnn from
Ωnn. Therefore, each sample ofΩnn is deleted
and the nearest neighbor is used again to check if
all samples are classified correctly inΩnn without
the deleted ones. If all patterns are classified

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 7

correctly the next pattern is removed. Otherwise
the previous deletion is undone. The remaining
subsetΠ is built by removing those samples from
T .

• Stage 3: At the last stage the final preselection
subsetTps is computed to obtain thek-nearest
samples fromΠ which are closest to the reduced
subsetΩrnn.

The value k influences the size of the required
training data and the quality of the classification result.
It can be set by the user, but our experiments have
shown that3% from the number of samples inT is
a good initial value fork. The resulting subset of the
training data, namelyTps, is provided to the LS-SVM
classifier. Figure 4 shows an example random Gaussian
distribution and the reduced subsetΩrnn after Stage 2
of the proposed algorithm. Figure 5 shows the overall
results of the training data preselection algorithm with
different values ofk.

2) Performance of the LS-SVM with Preselection of
Training Data: To demonstrate the performance of our
PTD LS-SVM approach we present the obtained results
of two different experiments. First, we generate two
random Gaussian distributions, one for each individual
class. The distributions show a tendency to a higher
level of overlap as indicated in Figure 4a. In this
experiment we compare the necessary training time,
classification result and number of necessary support
vectors of four different SVM based approaches under
a constant amount of training samples: (i) standard
SVM, (ii) least squares SVM, (iii) LS-SVM with
training data preselection (PTD-SVM) and (iv) a sparse
LS-SVM, called LS2-SVM [25]. Second, we use again
two random Gaussian distributions with increasing
amount of data points for each class. We evaluate
three different implementations in order to obtain a
training time result. For all experiments we used a
radial basis function (RBF) as kernel function. The
results presented in the following are average values of
a 20 times repeated experiment with random selection
of training datasets.

Table I indicates that the standard SVM has the best
training accuracy. Our proposed approach (PTD LS-
SVM) deviates only about3.1% from the standard
SVM, while being 45% faster in training than the
standard approach. The results presented in this table
also show that the training accuracy is quite similar
for all training approaches. The fastest training strategy
is the LS-SVM approach, followed by the LS2-SVM
approach. Our proposed training data preselection LS-
SVM approach is about3 times slower than the
fastest approach. The last column in this table shows
that our algorithm has detected a smaller amount of
support vectors (SV) even in comparison with the
standard SVM approach. In comparison to the LS-
SVM approach, which considers all training datasets

00 20002000 40004000 60006000 80008000 1000010000 1200012000
-2-2

-1-1

00

11

22

33

44

Training data sets# Training data sets

lo
g

(t
im

e
)

[s
]

l o
g

(t
i m

e
)

[s
]

LS-SVMLS-SVM

SVM-QPSVM-QP

PTD-SVMPTD-SVM

Fig. 6. Comparison of three different learning strategies with regard
to required training time vs. number of training samples: SVM-QP
approach (standard SVM), LS-SVM approach (least squares SVM)
and PTD-SVM approach (preselection of training data LS-SVM).

as support vectors, our algorithm needed only45% of
support vectors for a quite similar classification result.
According to Table I our PTD LS-SVM approach
requires only 23% memory compared to the standard
SVM during the learning process.

Figure 6 shows the required training time as an
averaged value of10 experiments. The standard SVM
approach is the slowest and is therefore not advisable
for large training sets. The fastest approach is the LS-
SVM approach, followed by our proposed approach.
Both algorithms might be used for large training data
sets, however our PTD-SVM approach requires much
less support vectors (cp. Table I) which makes it supe-
rior for embedded systems with memory restrictions.

E. DS combination - Decision based decision model-
ing

This section deals with the fusion of decisions from
individual sensors based on Dempster-Shafer (DS)
theory of evidence [18]. The main objective is to use
the complementary information from different single-
source classifiers to fuse these classification results into
a single decision or more precisely into a matrix of
uncertainty intervals for each possible proposition—
the so called “frame of discernmentΘ”. Here we use
a distance mass function of our SVM based classifier
as our DS belief function.

The common DS rule of combination implies that
we trust all sensors equally. This approach can cause
problems if the DS fusion system is not properly
designed and is, therefore, suitable only for situations
where all sensors have the same accuracy estimates
or in situations where the basic belief assignments
over the frame of discernmentΘ can reflect the ig-
norance going with the observations. Due to building
a generalizable sensor fusion framework working with
sensors of different accuracy we introduce a weighted

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 8

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Original Data

Class 1
Class 2

(a)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Stage 2 Data relevant

Class 1
Class 2

(b)

Fig. 4. The effect of our data preselection algorithm demonstrated on normalized, 2-dimensional random Gaussian distribution: (a) inital
data set (100 samples) and (b) reduced remaining subsetΩrnn.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Stage 3 Data PTD

Class 1
Class 2

(a)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Stage 3 Data PTD

Class 1
Class 2

(b)

Fig. 5. Results of the training data preselection algorithm for the distribution shown in Figure 4a with (a)k = 1 and (b)k = 3.

Algorithm Training time (s) Wrong classified (%) Nb of SV SV (%) Memory
SVM 17.81 ± 1.25 12.4 ± 0.5 50.3 ± 3.6 62.9 ± 4.5 612kB

PTD LS-SVM 10.04 ± 1.11 15.3 ± 0.8 36.6 ± 4.4 45.8 ± 5.5 141kB
LS-SVM 3.85 ± 0.47 14.2 ± 0.5 80.0 ± 0.0 100.0 ± 0.0 209kB
LS2-SVM 4.13 ± 0.64 12.8 ± 0.6 52.8 ± 4.2 66.0 ± 5.3 237kB

TABLE I
PERFORMANCE OF DIFFERENTSVM-BASED CLASSIFIERS WITH RESPECT TO TRAINING TIME, CLASSIFICATION QUALITY, NECESSARY

SUPPORT VECTORS AND REQUIRED MEMORY DURING THE LEARNING PHASE.

combination rule [4]. The basic idea is to exploit the
knowledge of the sensor from similar situations, i.e.,
we can use the historical performance rates to decide
how much we trust in a sensor’s actual estimation. By
using this approach we modify the original DS com-
bination rule to handle cases of sensors with unequal
confidence.

IV. I-SENSE MIDDLEWARE

The main goal of the I-SENSE middleware is to
provide services for (i) mapping and executing a fusion
application on a distributed embedded system, (ii)
optimizing the allocation of fusion tasks onto process-
ing elements, and (iii) modifying the task allocation
during runtime without loosing sensor data during the
reconfiguration process. Much care has been taken on
an open and portable design of this middleware. As
a result, the I-SENSE middleware can be executed on

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 9

µP

Memory

CF-Card

Ethernet/
WLAN

Serial

P
C

I

DSP 1

DSP n

Memory

Memory

. .
 .

. .
 .

. .
 .

Sensing Processing Management
Communication

Sensor node

Preprocessing

Preprocessing

Preprocessing

Fig. 7. The internal structure of a sensor node. Such nodes are
connected via Ethernet among each other to form a distributed data
fusion application.

various distributed embedded platforms with sufficient
computation and communication power [26].

Figure 7 presents the internal structure of our sensor
nodes. For our experiments this node consists of an
”ePCI 101” embedded computing platform equipped
with an Intel Pentium M processor running at 1.6 GHz.
This platform can be extended by several DSP boards
equipped with TMS320C6000 DSPs from Texas In-
struments. The DSP boards are connected with the
embedded platform via PCI.

As operating system Windows XP Embedded has
been chosen, simply because of the premium driver
support and its plug and play features. However, the
core functionality of the middleware is independent of
the operating system and, due to the layered concept, it
should be easy to port it to any other operating system
or hardware.

The sensor nodes used for the I-SENSE system do
not require user interactions, display capabilities or a
permanent storage device. However, there has to be one
extraordinary node, the so calledmaster nodewhere
the user of the system can specify and change the
functionality of the entire network. The master node is
in charge of finding and loading a configuration onto
the network, doing reconfigurations during runtime and
handling problems and exceptions in the system. A
repository of allfusion tasksmust be installed on this
node.

Note that the data fusion application runs on the
distributed embedded fusion nodes. Only the configu-
ration is handled by the centralized master node.

A. Services of the Middleware

During initialization, the middleware first scans the
PCI bus for supported DSP boards and installs the
DSP-based part of the middleware on them. After all
instances have been initialized, the node is ready to
accept commands and execute fusion tasks.

PCI

Message Router T
C

P
/IPPCI

Resource Mon. Task Loader

Clock Sync.

Diagnos. Unit

Dynamic Loader

Task 1
Task n

Task 2

Windows XPem Operating System

H
W

 d
riv

er
s

IP based network

Message Router

DSP BIOS

Drivers

CF

DSP monitor

Clock sync.

Resource Mon.

Dyn. Loader

Task 1

Task 2

Task n

. . .

Task Loader

Message Router

DSP BIOS

Drivers

DSP monitor

Clock sync.

Resource Mon.

Dyn. Loader

Task 1

Task 2

Task n

. . .

Task Loader

Fig. 8. The internal structure and main services of the I-SENSE
middleware.

In Figure 8 the internal structures of the I-SENSE
middleware is illustrated. Themessage routeris re-
sponsible for a correct and efficient data transfer from
one fusion task to another, either on the same processor
via shared memory, the same node via PCI or on a
distant node via Ethernet. Furthermore, the message
router supports message forwarding if a fusion task
has been migrated to another processor.

Each processor in the I-SENSE network offers a
service calledtask loader. It accepts requests to load,
start, stop, migrate and remove fusion tasks. Loading
a task involves basically the following steps: First, the
fusion controller transfers the image of the fusion task,
if it is not yet available at the node. After that the
task environment is transferred and installed. In the
next step the communication links are established and
registered. If all previous steps have been completed
successfully, the task’s main routine is started in an
own thread.

It is the responsibility of theresource monitorto
keep record of all consumed resources by the tasks
(memory blocks, DMA channels, etc.). This is required
for freeing the resources after a fusion tasks has been
removed.

Distributed sensor data fusion implies a uniform
timebase for all nodes. Without a system wide synchro-
nized clock, it would be impossible to combine results
from different sensors. Therefore, each processor has
its own task which keeps the local clock synchronized
with the system time.

To detect software- and hardware-failures, each node
periodically checks its state, and the connection to its
neighbor nodes. This functionality is summarized in
the DSP Monitor and diagnosis unitblocks, respec-
tively.

In Table II the memory requirements of the middle-

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 10

ware are shown. On-chip memory refers to the fast
internal memory of the signal processor while Off-
Chip memory refers to the external connected DRAM
memory.

The buffer sizes for the communication are ad-
justable; we currently use a total of 4 MB for these
buffers. The communication buffers are dynamically
organized and are required for inter-task communica-
tion as well as for storing the sensor data during the
reconfiguration process. Thus, the size of the buffers
influences the maximum time required for the recon-
figuration (such that no data is lost). When porting
to other platforms, these buffers must be adapted to
the actual requirements and can be dimensioned much
smaller.

B. Performance of the Middleware

To test the performance of the middleware and
estimate the time that it takes to configure and re-
configure the system, we constructed some simple
software models consisting of at most four tasks.
Table III presents the time required to load specific
tasks. In this experiment all code and data have been
completely loaded over the network; no local caching
has been performed.

In a second test, we measured the time required
to migrate a task from one processor to another. The
results of this experiment can be seen in Table IV. In
principal two different scenarios have to be considered.
Either the task migrates from one sensor node to
another via Ethernet (remote destination) or the task
just moves between processors on the same node via
PCI (local destination).

C. Definition of Fusion Tasks

There are two parts required to describe a fusion
task: The first part provides the functionality of the task
which is a dynamic loadable library written in C/C++
and has access to the I-SENSE API. The second part
provides meta-information about the task specified in
a separate XML file. This meta-information is required
for two reasons: First, the automatic task assignment
module needs to know the resources and the runtime
of each task to find an optimal mapping of tasks onto
CPUs. Second, when this configuration is loaded onto
the distributed system, this meta-information is used
to initialize the communication buffers and memory
segments for every task.

To build an overall fusion application, individual
fusion tasks have to be connected. Thus, each fusion
task has a number of ports where it can be connected
to other tasks, as defined in thesoftware model. These
communication links are bidirectional. The number of
available ports and the number of available message
slots as well as the size of the message slots for

Fig. 9. The hardware topology of an I-SENSE network.

outgoing and incoming messages have to be declared
in the task’s metadata.

In addition to a simple message passing system, the
I-SENSE API provides other very useful functions to
ease the development of distributed fusion applications.
Via the timebasemodule, tasks can query the system
time—which is synchronized over the entire system—
whenever they want. They can fork new threads by
using theschedulermodule. Thememory management
module standardizes and encapsulates the hardware
dependent memory management functions of the un-
derlying operating system. ADMAmanagerprovides a
variety of functions to ease the programming of DMA
transfers on DSPs.

D. Configuration Method

Whenever thesoftware modelor thehardware model
is changed, a reconfiguration process is triggered. Both
models are the inputs of the so calledoptimizerwhich
tries to find a suitable mapping of the fusion tasks
onto the processors. The optimizer distributes the load
which has been balanced by a genetic optimization
algorithm [27]. Constraints help to enforce the map-
ping of an individual fusion task onto a dedicated
processor. As soon as a valid configuration is found,
the configuration synthesizerdistributes and runs the
fusion tasks on the network of distributed embedded
platforms.

There are three possible situations that require the
master node to trigger a reconfiguration: (i) the user
modifies the hardware or software model, (ii) a fusion
task detects a relevant event and decides to adapt the
software model to better capture this event, or (iii) a
hardware failure has been detected.

1) Hardware Model:The hardware model describes
the distributed embedded system where the fusion
application should run on. In our case it consists
of a set of connected hardware nodes (N1 . . . N3,
cp. Figure 9). Each hardware node has at least one
general purpose CPU (parent) and optionally some
digital signal processors (children) coupled via PCI,
and various ports to interface sensors.

Every processing node allows to query and use
its free resources (i.e., computing power, on/off chip
memory, different sensors, etc.) for fusion tasks. A
middleware module explores the embedded system

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 11

On-Chip Off-Chip
Code 20 kB 24kB
Data 36 kB 4 MB

Available 96 kB 124 MB
(a)

Memory
Code 500 kB
Data 36 kB + 4MB

Available 268 MB
(b)

TABLE II
FOOTPRINT SIZE OF MIDDLEWARE AND AVAILABLE MEMORY ON (A) DSP (TMS320DM642)AND (B) PENTIUM-M

Task Name CPU Type Code Size Environment Time
Image viewer Pentium 154 kB 256 Byte 139.7 ms
Motion detector Pentium 162 kB 512 kB 273.6 ms
Camera driver DSP 5 kB 256 Byte 23.3 ms
Motion detector DSP 7 kB 512 kB 143.6 ms

TABLE III
TIME REQUIRED TO LOAD A TASK ON THE SYSTEM WITHOUT CACHING.

Task Name Source Code Size Environment Destination CPU Time
Image viewer Pentium 154 kB 256 Byte remote Pentium 508 ms
Camera driver DSP 5 kB 256 Byte local DSP 436 ms
Camera driver DSP 5 kB 256 Byte remote DSP 475 ms
Motion detector Pentium 7 kB 512 kB local DSP 520 ms
Motion detector Pentium 7 kB 512 kB remote DSP 552 ms
Motion detector DSP 162 kB 512 kB local Pentium 613 ms
Motion detector DSP 7 kB 512 kB local DSP 395 ms
Motion detector DSP 162 kB 512 kB remote Pentium 623 ms

TABLE IV
TIME REQUIRED TO MIGRATE A TASK BETWEEN PROCESSORS.

automatically. This has two advantages: (i) faulty or
missing hardware nodes can be found during start
up and (ii) the hardware model can be built and
parameterized during the initialization process.

2) Software Model:The software model describes
the functionality of the distributed fusion application.
It is obtained from the fusion model (cp. Figure
2) by increasing the level of detail up to a set of
communicating tasks which may be represented as
a task graphG = (N,E). It is assumed to be a
weighted directed acyclic graph, consisting of nodes
N = (n1, n2, ..., nm) which represent the fusion tasks
and the edgesE = (e12, e13, ..., enm) which represent
the data flow between those tasks.

Each node of the graph has some properties, describ-
ing the (hardware/resource-) requirements of a task.
The weights of each edge from nodeu to node v
(euv) indicates the required communication bandwidth
between those two tasks. A quite simple example of a
software model is shown in Figure 10.

E. Genetic Algorithm for Task Allocation

As mentioned before, a genetic algorithm is used to
allocaten tasks and their interconnections, represented
by the software modelG = (N,E), on a distributed

n1 n2 n3 n4 n5 n6 n7

n8

n10
n11 n12

n9

n13 n14

n15 n16 n17

n18

e1,8 e2,8

e3,11 e4,12

e5,9 e6,9

e7,14

e10,15 e11,15

e11,16

e12,16

e12,17

e14,19

e13,17

e15,19 e17,19e16,19

r9 e9,13

Fig. 10. A simple software model.

embedded system consisting ofm heterogeneous pro-
cessors, described by the hardware model.

1) Encoding of Chromosomes:To solve a problem
by genetic algorithms, it is necessary to find a mapping
of a potential candidate for a solution onto a sequence
of binary digits, the so called chromosome. In our case,

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 12

......CPU Nr.

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

Ta
sk

 6

Ta
sk

 n

c
2

c
1

c
3

c
2

c
3

c
4

c
m

Fig. 11. Mapping of tasks on processors.

however, it is more suitable and efficient to represent
chromosomes as strings of integers. The length of the
chromosomes is given by the number of tasksn that
should be allocated. Every gene in the chromosome
represents the processorm where the task is running
on. Figure 11 presents an example mapping ofn tasks
on m processors.

2) Fitness Function Definition:A problem with a
straight forward implementation of a genetic algorithm
in our case is that in a randomly generated initial
population almost all combinations are invalid. Either
the CPU utilization of any processor in the system is
exceeded or a communication link is overloaded. As
proposed in [28], a penalty in the fitness score for those
violations has proved to be a good approach in our
work.

The fitness score of a CPU is calculated by a
polynomial function of second degree. A processor
work load of 50% gets the highest possible fitness
score. More or less utilization causes the fitness score
to decrease. If a processor is overloaded (more than
90 % usage) the chromosome gets a punishment value
that is higher than the highest possible score of a
perfect chromosome. If more than one CPU in the
chromosome is overloaded, this punishment value is
subtracted for each violation. The fitness of the com-
munication is calculated in a similar way. The main
difference is that a communication utilization of 35 %
results in the best possible fitness score. The settings
of a preferred 35 % network load and 50 % CPU load
have been determined empirically2. The overall fitness
score of a chromosome is simply a weighted sum of
the processor- and communication-fitness.

Table V presents the number of fitness function
evaluations necessary to find a valid configuration
for many different software and hardware models.
All presented values have been averaged over 200
runs. The population size was fixed at 80 elements.
All examples have been classified by its complexity.
Problems classified as ’easy’ have a large number of
valid solutions while in ’hard’ problems the fraction
of valid combinations is very small. For the example
classified as ’very hard’, a special hardware model has
been constructed which utilizes all processors close at
their limit.

The presented Table V reflects the assumed cluster

2This is a pragmatic approach to keep these system resources
available for other applications and to allow the computation and
the deployment of new configurations in the background.

Tasks CPUs Complexity Iterations
15 6 easy 107.2
15 10 easy 267.2
15 14 medium 428.0
26 10 medium 848.8
26 14 hard 4038.4
20 14 hard 5424.8
20 12 very hard 7068.0

TABLE V
FITNESS FUNCTION EVALUATIONS REQUIRED TO FIND A VALID

CONFIGURATION.

CPU.

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

c
2

c
1

c
3

c
2

c
3 CPU.

Ta
sk

 6

Ta
sk

 7

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

c
4

c
4

c
3

c
2

c
3

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

c
2

c
1

c
3

c
2

c
3

Ta
sk

 6

Ta
sk

 7

- -
Ta

sk
 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

- - c
3

c
2

c
3

Ta
sk

 6

Ta
sk

 7

c
4

c
4

A*

Fig. 12. Example for a transfer in the common solution-space.

size of several dozen computation nodes. Currently a
single node is responsible for managing a moderate
number of slaves. Adopting a hierarchical network
approach, similar to [29] might be a solution for
managing reconfigurations for larger networks (several
hundred to many thousand nodes).

The quotation of fitness function evaluations is quite
popular when dealing with genetic algorithms since it
is independent of the actual implementation and used
processor. However, it says nothing about the expected
execution time. On our development computer (Intel
Pentium 4, 1.9 GHz) it takes approximately 0.3 s to
find a solution for the problem specified as ’very hard’.

F. Applying Model Changes at Runtime

A special feature of I-SENSE is the capability to
apply small and medium changes in the software model
or in the hardware model while the system is running.
Therefore, the light-weight I-SENSE middleware sup-
ports loading, unloading as well as migration of tasks
and the update of communication links during runtime.
So it is possible to change an existing configuration
gradually into a modified one by applying those four
operations. Similar to the famousfifteen puzzlewhere
squares are moved around to obtain a specific pattern,
we move tasks on the distributed system to transform
an existing configuration into the desired modified one.

The number of sequential task migrations directly
correlates with the time required for the reconfigu-
ration. To keep this number low, paying attention to
the similarity of the new configuration is essential.
Therefore, in case of a reconfiguration, the fitness score
of a gene is extended by a third weight which expresses
the difference between the existing configuration and
the potential new one. Thus, similar configurations are

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 13

preferred by the genetic algorithm and the search for
a reconfiguration sequence is eased.

Since a changed configuration may differ in the
number of tasks and the number of processing nodes,
both configurations must be transferred into a common
solution space before a path search algorithm can be
invoked (cp. Figure 12).

Finally, an A* search algorithm [30] tries to find a
sequence of valid configurations to transform the cur-
rent configuration into the new one. The two heuristic
functionsf and g for the A* algorithm are currently
the following:

f = number of already moved tasks

g = number of tasks still on the wrong CPU

In cases where a valid sequence for an online
reconfiguration can not be found in an adequate time,
the system reverts to a offline reconfiguration process
automatically. This means all fusion tasks may be
halted during the reconfiguration process and the data
acquisition from the environment is suspended for this
time.

V. CASE STUDIES ON VEHICLE CLASSIFICATION

AND BULK GOOD SEPARATION

In this section we present the case studies which
focus on vehicle classification and granulated material
separation. Vehicle classification is performed by ex-
ploiting visual and acoustic data. In our experiments
we collected a database consisting of about 4100
vehicles which are mainly assigned to three different
classes: large trucks, small trucks and cars. Further ve-
hicle classes (motorcycles and buses) are possible but
the number of samples in these classes are rather low
in comparison to the other classes and we, therefore,
decided to use only these three classes to demonstrate
the feasibility of our multi-level data fusion approach.
A screenshot of the I-SENSE user interface is depicted
in Figure 14. Bulk good separation is focused on visual
data extended by infrared spectral imaging data. In the
subsequent sections we focus on feature extraction for
these case studies.

A. Feature Extraction for Vehicle Classification

For our visual feature extractor we adopted the ideas
of Viola and Jones [31] to build a multi-class extractor
and improved it by usingRealBoost[32]. The feature
set is built by Haar-features and additional gradient-
based information which are calculated in real-time
on an embedded platform. The boosting approach is
mainly used to extract the most powerful features.
Further details are presented in [3].

For our acoustic feature extractor various signal pro-
cessing algorithms have been implemented in order to

collect a pool of candidate features able to distinguish
between vehicle categories. Each of the algorithms
extracts several features from the raw input data.
Features in time domain are generated from short time
energies, zero crossing rates and correlation analysis
algorithms. Spectral features include signal attributes
that describe average energies, positions and spreads in
frequency domain, such as the spectral centroid, signal
bandwidth, spectral flux, or band energy ratios. Cep-
stral coefficients are popular feature candidates as they
provide very good information packing properties: Low
order coefficients capture information about the slowly
varying properties of the spectrum, also referred to as
spectral envelope. A more comprehensive overview is
presented in [33].

B. Audio-Visual Vehicle Classification Results

We have implemented a simple multi-class classifier
by applying the One-against-All technique.30% of the
vehicle database is selected for training and the other
70% is used for evaluation purposes. The results pre-
sented in the following are average values from 20 runs
of our LS-SVM with support vector preselection and
a radial basis function (RBF) as the kernel function.

First, we demonstrate the vehicle classification re-
sults based on a single sensor estimation only. The box
plots shown in Figure 13a indicate that class separation
with acoustic features only is quite difficult, especially
in cases of small trucks. Using a confusion matrix
(cp. Table VI – audio features only) for this experiment
reveals that the classification system achieves a quite
reliable distinction between cars and other vehicles but
has serious problems in distinguishing between the two
types of trucks.

Figure 13b demonstrates quite the same classifica-
tion performance for vision-only sensor data as for
a acoustic-only classification. Higher absolute classi-
fication rates are the main difference between the two
single sensor classifiers.

In Figure 13c and Table VI (cp. decision level
fusion) we show that our approach for fusing data at the
decision level is advantageous in comparison to single
sensor classification in the overall classification result
as well as the individual class separation abilities. In
our case study we use a weightw1 = w2 in order to
trust in both sensors equally.

According to Figure 13d and Table VI (cp. feature
level fusion), fusing data at feature level is superior
to the Dempster-Shafer approach, discussed in Sec-
tion III-E. Note, that classification based on single sen-
sor decisions needs less memory and communication
requirements than using feature based classification.
Therefore, both approaches are suitable in an multi-
level sensor fusion framework – depending on the
current situation and the available computational and
memory resources.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 14

Overall car small truck large truck
0

10

20

30

40

50

60

70

80

90

100

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

(a)

Overall car small truck large truck
0

10

20

30

40

50

60

70

80

90

100

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

(b)

Overall car small truck large truck
0

10

20

30

40

50

60

70

80

90

100

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

(c)

Overall car small truck large truck
0

10

20

30

40

50

60

70

80

90

100

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

(d)

Fig. 13. Classification result with PTD LS-SVM based on (a) acoustic features only, (b) visual features only, (c) DS fused decisions from
individual sensors and (d) fused features from both sensors and accurate feature selection. The lines indicate the lower, median and upper
quartile values; whiskers show the extent of the rest of the data.

While Figure 13 visualizes the overall performance
of our PTD LS-SVM classifier, the confusion matrix
(cp. Table VI) shows detailed information about the
actual and predicted classifications of our presented
classifier. A comparison between the vision-only clas-
sification (cp. Figure 13a) and the classification based
on fused features from audio and visual sensors (cp.
Figures 13c and 13d) can be interpreted as follows: The
vision-only classifier predicts cars very well (95.3%),
but it tends to have problems in distinguishing be-
tween small trucks (74.6%) and large trucks (82.3%).
Quite similar behavior is achieved by using acoustic
features only (91.7%, 64.0% and 63.2%, respectively).
However, fusing data from both sensors either at the
feature level or the decision level leads to good classifi-
cation performance for all three vehicle classes (97.3%,
84.1% and 95.0%, respectively) while decreasing the
false-positive rates (by a factor of 3.3 for cars, by a
factor of 2.1 for small trucks and by a factor of 1.6 for
large trucks).

C. Feature Extraction for Bulk Good Separation

This section presents the feature extraction for the
bulk good separation case study (cp. Figure 15) which
focuses on granulated material classification (e.g.,
rocks, minerals, glasses, etc.).

D. Visual Feature Extraction

Fundamental properties of granulated materials are
size, shape, texture and physical composition. Color
properties can provide useful information about the
composition of materials. Surface texture gives clues to
its crystal content. These properties are characterized
from images of granulated material, summarized in the
following paragraphs.

a) Color Features.: The most common colors
of granulated material used in this case study are
red, brown and yellow which are typically due to
the presence of ferric oxide cement, gray-black which
reflects the presence of carbonaceous material, and
colorless, such as quartz, which contains neither ferric
oxide nor free carbon. Color is an especially important
characteristic for shale. The implemented algorithm in

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 15

audio features only video features only
car s. truck l. truck car s. truck l. truck

car 1377 82 39 1426 48 24
s. truck 13 117 55 25 140 20
l. truck 25 99 264 3 26 359

decision level fusion feature level fusion
car s. truck l. truck car s. truck l. truck

car 1431 42 25 1447 33 18
s. truck 11 153 21 5 170 10
l. truck 1 9 378 2 2 384

TABLE VI
CONFUSION MATRICES OF THE VEHICLE CLASSIFICATION BASED ON(I) ACOUSTIC FEATURES, (II) VISUAL FEATURES, (III) DECISION

FUSION AND (IV) FEATURE FUSION.

Fig. 14. Screenshot of our online vehicle classification build on the I-SENSE middleware

the I-SENSEframework is to normalize each intensity
image (taken from granulated materials on a conveyor
belt) to zero mean and unit variance for pixel intensities
to help to account for changes in camera parameters
when the image was taken. Scenes with highly di-
rectional lighting cause highlights and shadows, the
computed intensity variance for a given material is
larger than the true value, compensated by an adaptive
histogram equalization.

The simplest method of extracting suitable features
is characterizing granulated material albedo or color
which involves two statistical measures: mean and
variance. The mean pixel intensity represents the re-
flectivity of the material, while the variance in inten-
sity provides a measure of how uniform the material
reflectivity is. In theI-SENSEfeature extraction unit
two statistical features are obtained based on mean and
variance of the objects intensity.

The second method is focused on a histogram of
intensities, a method which gives a more complete
representation of the reflectivity of a material. Often a
granulated material will consist of regions of different
reflectivity, which intensity mean and variance alone
cannot accurately characterize. Pixel intensity ranges
from zero to one. In theI-SENSEframework this range
is divided into eight bins to compute the histogram and
then normalize so that the elements of the resulting
vector sum to one. The values of the eight bins serve
as eight numerical features in theI-SENSE feature
extractor.

The third method is focused on the color representa-
tion of a material, a method which involves determin-
ing the reflectivity at all wavelengths. However, the
I-SENSEproject is dealing with images of granulated
materials which provide the intensity for each pixel at
three different wavelengths. Pixel color is commonly

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 16

(a) (b)

Fig. 15. Example materials for granulated material separation: (a) precious rubble (referred to class 1), and (b) worthless rubble (referred
to class 2).

represented in Hue Saturation Value (HSV) [34]. How-
ever, neither the RGB or HSV color space is uniform
in that the numerical distance between colors does
not correspond to the distance perceived by humans.
However, to characterize granulated material, the mean
and variance over each color channel are computed, as
was previously done for intensity. For a more complete
color representation, a color histogram is used. The
previously explained method of intensity histograms
can be applied to each color channel, resulting in a
2-D histogram and 24 color features.

b) Texture Features.:The surface texture is the
size, shape and arrangement of the component el-
ements of granulated materials as well as surface
markings such as polish, striations and pits. Properties
of crystals within the material, such as grain-size, dis-
tribution, sorting, permeability, shape and orientation
are also important characteristics of materials identity.
In the I-SENSEframework two methods for obtaining
suitable features based on object texture analysis are
provided.

First, features from co-occurrence statistics are ob-
tained. Thegray-level co-occurrence matrix(GLCM)
measures spatial relationships of pixels in an object
image. The matrix is defined as follows:

GLCMd,α(i, j) = |{((r, s), (t, v)) : I(r, s) =
i, I(t, v) = j}| (4)

whered is the distance at an angleα between pixels
of intensities i and j and |.| is the cardinality of
a set. In other words, entry(i, j) is the number of
occurrences of the pair of gray levelsi and j at a
distanced and angleα apart. This is computed for
α = 0◦, 45◦, 90◦, 135◦ andd = 1 to 5, averaged over
these values for pixel intensities divided into eight bins.
From this, the following features are computed:

Contrast =
∑
(i,j)

|i− j|2GLCM(i, j) (5)

Correlation =
∑
(i,j)

(i− µi)(j − µj)GLCM(i, j)
σiσj

(6)

Energy =
∑
(i,j)

GLCM(i, j)2 (7)

Homogeneity =
∑
(i,j)

GLCM(i, j)
1 + |i− j|

(8)

These features are computed in theI-SENSEframe-
work and form a vector to represent the texture.

The second method for feature extraction based on
texture involve the most common approach to texture
analysis in computer vision, a method convolving the
texture with a set of filters and clustering the responses
to form textons. In this work the Maximum Response
8 (MR8) filter bank is used. The MR8 filter bank,
originally introduced by Varma and Zisserman in [35],
is based on an edge filter (first derivative of a Gaussian)
and a bar filter (second derivative of a Gaussian)
at six orientations and three scales, and two spot
filters (a Gaussian and a Laplacian of a Gaussian).
The unique trick with this approach is that for each
filter, the maximum response is taken across the six
orientations. This reduces the response vector down to
eight dimensions. Each response vector is normalized
according to

Ri ← Ri
log(1 + ‖R‖/0.03)

‖R‖
(9)

whereR is the vector andRi is each element. Once
the filter bank is convolved with the texture to form a
response vector for each pixel using MR8 filter bank, a
set of textons is computed. The response vectors from
all textures in the set are aggregated into a matrix of
size M x N where M is the total number of pixels

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 17

in the images andN is the dimensionality of the
response vector. In theI-SENSEapproach the response
vectors are clustered using k-means [36]3. Each texton
is displayed as the linear combination of the filters and
represents a form of primitive structure in the set of
textured object images. From this the closest texton for
the response vector is computed at each image pixel,
forming a texton map. This distribution of textons
within an granulated material is represented with a
histogram, counting the number of occurrences of each
texton in the image. Texture features are extracted
based on these representative histograms.

1) Spectral Imaging Feature Extraction:Features
based on spectral imaging can provide useful infor-
mation about the composition of granulated materials.
The overall aim is to extract features with sufficient
class discriminatory abilities from infrared spectra of
the objects of interests. Therefore, in theI-SENSE
framework various materials were analyzed heuristi-
cally for the specific application and regions of interest
(ROI) were extracted during the evaluation stage (cp.
Figure 16). The method of extracting suitable features
is based on two statistical measures (mean and vari-
ance) for each obtained pixel, in order to characterize
the ROI of granulated material’s spectra. Therefore,
measures as min-value, max-value and mean-value are
obtained from objectives spectra. Furthermore, the first
derivative is computed, where the slope is an additional
feasible feature. These features are computed in the
I-SENSEframework and form a vector to represent
the information obtained from granulated materials
infrared spectra.

E. Granulated Materials Classification Results

Bulk good separation or more precise granulated ma-
terials classification is an important task in industrial
applications. To keep this demonstration application
as simple as possible several autonomous experiments
were conducted. For simplicity reason the segmenta-
tion task is not further considered in this section. Only
the quantitative results of the conducted experiment are
presented in the following. In this case study texture
and color features are extracted as described in section
V-C in order to distinguish between two classes of
granulated material, e.g. as indicated by Figure 15.

The results shown in the following tables (cp. Table
VII) present the classification behavior for separating
granulated material. Therefore, the confusion matrix,
which contains information about actual and predicted
classifications done by a classification system, is built.
From the confusion matrix for each individual involved
class, statistical measures as accuracy, true-positive rate
and false-positive rate are computed. Whereby, the

3In this work 32 clusters are used, with each cluster representing
a texton.

accuracyis the proportion of the total number of pre-
dictions that were correct, thetrue-positive rate(TP)
is the proportion of positive cases that were correctly
identified, the false-positive rate(FP) is defined as
the proportion of negatives cases that were incorrectly
classified as positive. To evaluate the feasibility of
I-SENSE approach the following experiments were
conducted: (a) Color based feature extraction & feature
selection & PTD LS-SVM classifier, (b) Color and
spectral imaging based feature extraction & feature
selection & PTD LS-SVM classifier, (c) Color and
spectral imaging based feature extraction & feature
selection & PTD LS-SVM classifier & Fusion based
on multiple decisions (weights were set to 0.5 for each
individual classifier), (d) Color and spectral imaging
based feature extraction & PTD LS-SVM classifier
without feature selection and (e) Color and spectral
imaging based feature extraction & classification based
on k-means clustering as described in [37]. The tables
given below are obtained from 40 times randomly
repeated selection of learning and evaluation examples
out of the pool of objects in order to consider the
generalization behavior.

The results presented in Table VII show the classifi-
cation behavior based on single-sensor color informa-
tion. The overall classification accuracy is about 87%,
and therefore quite high, while both involved classes
are classified with similar true-positive rates. Adding
new types of sensors may have very significant impact
in classification capability, because of an additional
added dimensionality of sensed data, an fact which
is indicated in Table VIIb. Additional features from
spectral imaging sensor increase the overall accuracy
by approx. 11%, due to the integration of a suit-
able feature selection stage. Quite similar to these
results are the results obtained by multiple single-
sensor classifiers and a decision based fusion (i.e.,
weighted DS combination), as given in Table VIIc. In
this case it seems that the final classifier tends to have
problems two treat both involved classes similar. Table
VIId, demonstrate the main difficulties in feature based
information fusion. Without a suitable feature selection
process the classifier is mislead, caused by the high
mutual correlation of features from the two involved
sensors. Therefore, the overall accuracy (i.e., 61%)
decreases dramatically. Using a unsupervised learning
strategy, i.e., k-means clustering, is not feasible in the
presented application field, a fact which is illustrated
by Figure VIIe.

Summarizing the results obtained in this granulated
material separation case study beside the qualitative
benefits of the presented multi-level fusion approach
another important interpretation can be done regarding
the reusability of theI-SENSE framework. The I-
SENSEframework is a generic fusion model suitable
for a broad range of classification applications. The

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 18

Fig. 16. Infrared spectra (range: 1100 nm – 1700 nm) of different minerals with defined regions of interest (indicated by “∗”), where
statistical features are extracted.

Mean classification accuracy 86,84%
mean TP [%] mean FP [%]

Class 1 88,73 11,27
Class 2 84,95 15,05

(a)

Mean classification accuracy 97,99%
mean TP [%] mean FP [%]

Class 1 97,55 2,45
Class 2 98,43 1,57

(b)

Mean classification accuracy 92,22%
mean TP [%] mean FP [%]

Class 1 92,22 7,78
Class 2 94,58 5,42

(c)

Mean classification accuracy 61,53%
mean TP [%] mean FP [%]

Class 1 68,82 31,18
Class 2 54,23 45,77

(d)

Mean classification accuracy 72,82%
mean TP [%] mean FP [%]

Class 1 72,21 27,79
Class 2 73,43 26,57

(e)

TABLE VII
GRANULATED MATERIAL SEPARATION RESULTS BASED ONPTD LS-SVM CLASSIFIER AND UNSUPERVISED K-MEANS CLUSTERING.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 19

model can be easily adapted for numerous applications
by simply exchanging the feature extraction tasks.

VI. CONCLUSION

In this paper, we have presented I-SENSE—our
novel multi sensor fusion model focusing on multi-
level data fusion on networked embedded systems.
The I-SENSE model considers the data flow in the
embedded sensor network and features a light-weight
middleware with dynamic reconfiguration capabilities.
Our framework further provides an enhanced SVM-
based classifier which achieves a good compromise
between computation speed, memory requirements and
classification performance—all of which is important
for distributed, embedded fusion applications.

We have demonstrated the I-SENSE framework in
two case studies. By fusing visual and acoustic data at
different levels of abstraction, we were able to increase
the overall accuracy in our vehicle classification case
study from 90 % of vision-based classification to about
96 %. This case study also showed that the discrimina-
tion among the classes for small and large trucks can
be significantly improved by combining (weak) single
sensor classifiers. A further case study demonstrates
the reusability of the generic fusion model and con-
firms the tendencies obtained in the first case study.

Sensor fusion is an important technique to improve
the quality and robustness of many applications. Since
sensor, computing and communication devices are get-
ting more capable, smaller and cheaper at a very fast
pace, fusion will become an enabling technology for
many embedded applications. By providing a middle-
ware which considers important parameters for dis-
tributed embedded systems, our I-SENSE framework
may help to develop embedded fusion applications.

However, there is still a long road ahead to support
the development process to a full extend. Thus, our
future work will focus on the following issues:

• Exploit the fusion refinement. This introduces
some adaptivity such that individual units in our
fusion model (Figure 2) can be adapted for exam-
ple due to changed environmental conditions.

• Perform distributed sensor fusion. In the cur-
rent case studies we do not exploit the spatial
and temporal relationship among multiple sensors.
However, it is natural to do so to further improve
the quality.

• Integrate different sensors.We plan to integrate
additional sensors for our case study such as
lasers for capturing the height profiles or inductive
loops. An important question is to determine the
tradeoff between increased hardware costs and
increased performance.

• Implement sophisticated error handling. The
entire concept permits error handling on various

levels. But up to now there is no intelligent error
handling implemented. We are planning to use a
policy based approach, similar to [38].

REFERENCES

[1] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and
H. Schwabach, “Distributed Embedded Smart Cameras for
Surveillance Applications,”Computer, vol. 39, no. 2, pp. 68–
75, Feb. 2006.

[2] B. Rinner, M. Jovanovic, and M. Quaritsch, “Embedded Mid-
dleware on Distributed Smart Cameras,” inProceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2007), 2007, pp. 1381–1384.

[3] A. Klausner, A. Tengg, C. Leistner, S. Erb, and B. Rinner, “An
audio-visual sensor fusion approach for feature based vehicle
identification,” inProceedings of the International Conference
on Advanced Video and Signal based Surveillance (AVSS-07),
London, GB, September 2007.

[4] A. Klausner, A. Tengg, and B. Rinner, “Vehicle classification
on multi-sensor smart cameras using feature- and decision-
fusion,” in Proceedings of the First ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC-07), Vi-
enna, Austria, September 2007, pp. 67–74.

[5] R. Chellappa, G. Qian, and Q. Zheng, “Vehicle detection and
tracking using acoustic and video sensors,”IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
2004.(ICASSP 04), vol. 3, pp. 793–796, 2004.

[6] H. Durrant-Whyte and M. Stevens, “Data fusion in decen-
tralised sensing networks,” inProceedings of the International
Conference on Information Fusion, 2001, vol. 3, 2001, pp. 19–
24.

[7] A. Gad and M. Farooq, “Data fusion architecture for Maritime
Surveillance,” inProceedings of the Fifth International Con-
ference on Information Fusion, Washington, USA, July 2002.

[8] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto,
A. Paul, and U. Ramachandran, “DFuse: A Framework for
Distributed Data Fusion,” inProceedings 2003 ACM SensSys,
Los Angeles, CA., Nov 2003.

[9] J. Llinas and D. L. Hall, “An Introduction to Multi-Sensor
Data Fusion,” inProceedings of the 1998 IEEE International
Symposium on Circuits and Systems, vol. 6, May–June 1998,
pp. 537–540.

[10] S. C. Thomopoulos, “Sensor integration and data fusion,” in
Proceedings of SPIE, Sensor Fusion II: Human and Machine
Strategies, ser. Presented at the Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference, P. S. Schenker,
Ed., vol. 1198, Mar. 1990, pp. 178–191.

[11] R. C. Luo and M. G. Kay, “Multisensor Integration and Fu-
sion: Issues and Approaches,” inProceedings of SPIE, Sensor
Fusion, vol. 931, Mar. 1988, pp. 42–49.

[12] C. J. Harris, A. Bailey, and T. J. Dodd, “Multi-Sensor Data
Fusion in Defence and Aerospace,”The Aeronautical Journal,
vol. 102, pp. 229–244, 1998.

[13] J. Schoess and G. Castore, “A distributed sensor architecture
for advanced aerospace systems,” inProceedings of SPIE,
Sensor Fusion, vol. 932, Apr. 1988, pp. 74–86.

[14] B. Dasarathy, “Sensor Fusion Potential Exploitation-Innovative
Architectures and Illustrative Applications,”In Proceedings of
the IEEE, vol. 85, no. 1, 1997.

[15] M. Bedworth and J. O’Brien, “The Omnibus Model: A New
Model of Data Fusion?” inProceeding IEEE AES Systems
Magazine, Apr. 2000, pp. 30–36.

[16] A. Klausner, A. Tengg, and B. Rinner, “Enhanced Least
Squares Support Vector Machines for Decision Modeling in
a Multi-Sensor Fusion Framework,” inProceedings of the
International Conference on Artificial Intelligence and Pattern
Recognition (AIPR-07), Orlando, US, July 2007, pp. 327–333.

[17] A. Steinberg, C. Bowman, and F. White, “Revisions to the
JDL Data Fusion Model,”In Sensor Fusion: Architectures,
Algorithms, and Applications, Proceedings of the SPIE, vol.
3719, 1999.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 20

[18] A. P. Dempster, “A Generalization of Bayesian Inference,”
Journal of the Royal Statistical Society, vol. 30, pp. 205–247,
1968.

[19] M. Mitchell, An introduction to genetic algorithms. Cam-
bridge, MA: MIT Press, 1996.

[20] V. Vapnik, Statistical Learning Theory. New York, US: Wiley,
1998.

[21] J. Suykens and J. Vandewalle, “Least squares support vector
machine classifier,”Neural Processing Letters, vol. 9, no. 3,
pp. 293–300, June 1999.

[22] J. Suykens, P. V. Dooren, B. D. Moor, and J. Vandewalle,
“Least squares support vector machine classifiers: a large
scale algorithm,”European Conference on Circuit Theory and
Design (ECCTD’99), pp. 839–842, 1999.

[23] V. Vapnik, The Nature of Statistical Learning Theory. New
York, USA: Springer-Verlag, 1995.

[24] G. Gates, “The reduced nearest neighbour rule,”IEEE Trans-
actions on Information Theory, vol. 18, no. 3, pp. 431–433,
May 1972.

[25] J. Valyon and G. Horvath, “A Sparse Least Squares Support
Vector Machine Classifier.” inProceedings of the International
Joint Conference on Neural Networks (IJCNN’04), Budapest,
Hungary., July 2004.

[26] A. Tengg, A. Klausner, and B. Rinner, “I-SENSE: A Light-
Weight Middleware for Embedded Multi-Sensor Data-Fusion,”
in Proceedings of the 5th IEEE International Workshop on
Intelligent Solutions in Embedded Systems (WISES), Madrid,
Spain, June 2007, pp. 165–177.

[27] ——, “An Improved Genetic Algorithm for Task Allocation in
Distributed Embedded Systems,” inProceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2007),
London, UK, July 2007, p. 1534.

[28] J. Gottlieb, “On the Feasibility Problem of Penalty-Based Evo-
lutionary Algorithms for Knapsack Problems,” inApplications
of evolutionary Computing: Proc. EvoWorkshops 2001, E. J. W.
Boers, S. Cagnoni, J. Gottlieb, E. Hart, P. L. Lanzi, G. R. Raidl,
R. E. Smith, and H. Tijink, Eds. Berlin: Springer, 2001, pp.
50–59.

[29] M. Bramberger, B. Rinner, and H. Schwabach, “A Method
for Dynamic Allocation of Tasks in Clusters of Embedded
Smart Cameras,” inIn Proceedings of the IEEE International
Conferens on Systems Man and Cybernetics, Hawaii, USA,
Oct. 2005, pp. 2595 – 2600.

[30] S. Russell and P. Norvig,Artificial Intelligence - A Modern
Approach, ser. Prentice Hall International Series in Artificial
Intelligence. Prentice Hall, 2003, rUS st 03:1 1.Ex.

[31] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,”Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2001), vol. 1, no. 3, pp. 511–518, 2001.

[32] R. E. Shapire and Y. Singer, “Improved Boosting Algorithms
Using Confidence-rated Predictions,”Machine Learning, vol.
37, no. 3, pp. 297-336, 1999.

[33] A. Klausner, A. Tengg, S. Erb, and B. Rinner, “DSP based
acoustic vehicle classification for multi-sensor real-time traffic
surveillance,” inProceedings of EUSIPCO 07, Poznán, Poland,
September 2007, pp. 1916–1920.

[34] R. Gonzalez and R. E. Woods,Digital Image Processing.
Prentice Hall Press, 2002.

[35] M. Varma and A. Zisserman, “A statistical approach to tex-
ture classification from single images,”International Journal
of Computer Vision: Special Issue on Texture Analysis and
Synthesis, vol. 62, no. 1, pp. 61–81, 2005.

[36] R. Duda, P. Hart, and D. Stork,Pattern Classification. John
Wiley & Sons LTD, 2001.

[37] S. Theodoridis and K. Koutroumbas,Pattern Recognition. San
Diego, US: Elsevier Academic Press, 2006.

[38] M. Jovanovic and B. Rinner, “Middleware for Dynamic Recon-
figuration in Distributed Camera Systems,” inProceedings of
the 5th IEEE International Workshop on Intelligent Solutions
in Embedded Systems (WISES), Madrid, Spain, June 2007, pp.
139–150.

Andreas Klausner was born in 1979 in
Judenburg, Austria. He studied Telematics
at Graz University of Technology where
he received his B.S. and M.S. degree in
2003 and 2004, respectively. His thesis was
focused on modelling integrated devices at
austriamicrosystems. In 2008 he received
his PhD in Telematics from Graz Univer-
sity of Technology Institute with highest
honors in cooperation withEVK. His re-
search is focused on pervasive data fusion

systems covering multi-level information fusion well as embedded
pattern recognition.

Allan Tengg was born in 1979 in Ju-
denburg, Austria. He studied Telematics at
Graz University of Technology. In 2004 he
earned his M.S., doing his thesis in the field
of electronics and embedded devices in co-
operation withEFKON AG. In April 2004
he joined the embedded software group at
ACG ID in Graz as a software engineer.
The focus of his work was the design and
the development of RFID reader firmwares
based on PIC-powered platforms. In Octo-

ber 2005 he began his PhD research at the Institute for Technical
Informatics at Graz University of Technology, Austria. His research
interests include distributed computing on embedded systems and
data fusion architectures.

Bernhard Rinner is currently full profes-
sor and chair of pervasive computing at
Klagenfurt University, Austria. He received
both his PhD and MSc in Telematics from
Graz University of Technology in 1996
and 1993, respectively. Before joining Kla-
genfurt he was with Graz University of
Technology and held research positions at
the Department of Computer Sciences at
the University of Texas at Austin in 1995
and 1998/99. His research interests include

parallel and distributed processing, embedded systems as well as
mobile and pervasive computing. Bernhard Rinner is currently
working on pervasive computer systems, multi-DSP architectures,
embedded multimedia systems, and distributed smart cameras. He
has authored and co-authored many papers for journals, conferences
and workshops, lead several research projects and served as reviewer,
program committee member, program chair and editor-in-chief. He is
member of the IEEE, AAAI and TIV (Telematik Ingenieurverband).

