
24

A Novel Software Framework for Embedded
Multiprocessor Smart Cameras

ANDREAS DOBLANDER

Allgemeines Rechenzentrum GmbH

ANDREAS ZOUFAL

Austrian Research Centers GmbH

and

BERNHARD RINNER

Klagenfurt University

Distributed smart cameras (DSC) are an emerging technology for a broad range of important
applications including smart rooms, surveillance, entertainment, tracking, and motion analysis.
By having access to many views and through cooperation among the individual cameras, these
DSCs have the potential to realize many more complex and challenging applications than single-
camera systems.

This article focuses on the system-level software required for efficient streaming applications on
single smart cameras as well as on networks of DSCs. Embedded platforms with limited resources
do not provide middleware services well known on general-purpose platforms. Our software frame-
work supports transparent intra- and interprocessor communication while keeping the memory
and computation overhead very low. The software framework is based on a publisher–subscriber
architecture and provides mechanisms for dynamically loading and unloading software components
as well as for graceful degradation in case of software- and hardware-related faults. The software
framework has been completely implemented and tested on our embedded smart cameras consist-
ing of an ARM-based network processor and several digital signal processors. Two case studies
demonstrate the feasibility of our approach.

Categories and Subject Descriptors: D.2.11 [Domain-specific architectures]: Patterns; C.3
[Real-time and embedded systems]

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Smart cameras, publisher–subscriber, fault tolerance, video
surveillance, distributed embedded systems

The authors would like to acknowledge support from Texas Instruments.
Authors’ addresses: A. Doblander, Allgemeines Rechenzentrum GmbH, Tschamlerstraße 2, A-6020
Innsbruck, Austria; email: andreas.doblander@arz.at; A. Zoufal, Austrian Research Centers GmbH,
Donau-City-Straße 1, A-1220 Wien, Austria; email: andreas.zoufal@arcs.ac.at; B. Rinner, Institute
of Networked and Embedded Systems, Klagenfurt University, Lakeside B02b, A-9020 Klagenfurt,
Austria; email: bernhard.rinner@uni-klu.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/04-ART24 $5.00
DOI 10.1145/1509288.1509296 http://doi.acm.org/10.1145/1509288.1509296

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:2 • A. Doblander et al.

ACM Reference Format:
Doblander, A., Zoufal, A., Rinner, B. 2009. A novel software framework for embedded multiprocessor
smart cameras. ACM Trans. Embedd. Comput. Syst. 8, 3, Article 24 (April 2009), 30 pages. DOI =
10.1145/1509288.1509296 http://doi.acm.org/10.1145/1509288.1509296

1. INTRODUCTION

Recently, much effort has been put into the development of distributed vision
systems with smart cameras [Wolf et al. 2002; Bramberger et al. 2006] as
key components. Smart cameras combine video sensing, processing, and com-
munication within a single embedded device and are equipped with a high-
performance onboard computing and communication infrastructure. Instead of
streaming raw video data they typically deliver abstracted information such as
color or geometric features, segmented objects, or rather high-level decisions
from the observed scene.

Networks of distributed smart cameras (DSC) [Aghajan and Kleihorst 2007;
Rinner and Wolf 2008a] are an emerging technology for a broad range of impor-
tant applications including smart rooms, surveillance, entertainment, track-
ing, and motion analysis. By having access to many views and through coop-
eration among the individual cameras, these networks have the potential to
realize many more complex and challenging applications than single-camera
systems. DSCs exemplify two recent trends in visual computing research: dis-
tributed processing and embedded computing. Thus, DSC systems use dis-
tributed algorithms to perform complex vision tasks across multiple cameras in
real-time.

Designing, implementing, and deploying applications on DSC networks is
much more complex than for single-camera systems. On general-purpose plat-
forms, distributed applications are often developed based on a middleware
system, which provides services for networking and data transfer. On DSC
networks, we would like to take advantage of middleware services as well.
However, the requirements of a middleware, for distributed image process-
ing on embedded devices are significantly different. Component-based mid-
dleware, such as DCOM or CORBA, are targeted for general-purpose comput-
ing and are not suitable for resource-limited devices. The CORBA technology
has been adapted to resource-constrained real-time systems (e.g., by the Real-
Time CORBA [RT-CORBA] specification and its TAO implementation Schmidt
[2002]). However, this approach is still very resource consuming. On the other
hand, recent research in wireless sensor networks (WSN) has come up with
some interesting middleware concepts as well [Akyildiz et al. 2002]. Due to the
nature of WSNs, these middleware systems especially focus on reliable services
for ad-hoc networks and energy awareness [Molla and Ahamed 2006].

DSC networks differ from WSNs in various aspects as well. First, the amount
of data to be processed is much higher in DSC networks than in WSNs. Second,
individual processing nodes in a DSC network are more capable than in WSNs.
While resource constraints on the embedded smart cameras are important, the
resource limitations, especially energy, are of top priority in WSN. Third, due to
ad-hoc networking, communication in WSN has a very dynamic nature. DSCs,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:3

on the other hand, are typically connected via wired networks providing higher
communication bandwidths.

This article focuses on the system-level software required for efficient video
processing applications on single smart cameras as well as on networks of DSCs.
We describe the architecture of this middleware, discuss the design and imple-
mentation alternatives, present performance data, and demonstrate its appli-
cability towards fault tolerance. The main contributions of this research can be
summarized as follows:

Software framework for embedded multiprocessor platforms. The devel-
oped software framework is based on a publisher–subscriber (PS) model de-
signed for real-time multimedia applications. This software framework sup-
ports transparent intra- and interprocessor communication and scales well with
the number of processors on the embedded platform. Our software framework
introduces very little overhead concerning memory requirements and communi-
cations times compared to an implementation using standard operating system
calls.

Dynamic component composition. Our software framework supports dy-
namic component composition—a feature typically known only on general-
purpose platforms. Algorithms can be specified using a component model, which
includes the algorithm’s binary, the resource requirements, the performance
ratings, and the reconfigurable algorithm attributes. By monitoring the avail-
able system resources and by exploiting dynamic loading and reconfiguration,
software components can be loaded and unloaded on the embedded platform
during runtime. Thus, dynamic component composition provides the mecha-
nism to change the functionality (code and quality of service [QoS]) on demand
and during runtime.

Simple but effective fault-tolerance mechanisms. The software framework
includes simple but effective mechanisms for fault tolerance as well. Various
software- and hardware-related faults can be detected by monitoring the re-
source utilization and by applying simple fault detection mechanisms such as
alive messaging and watchdog timers. By exploiting dynamic reconfiguration,
detected faults can be eluded and the services may then still be available—
potentially at a lower QoS-level.

Implementation and case studies. The software framework has been com-
pletely implemented on our embedded smart camera platform (SmartCam).
Although our smart camera is a dedicated hardware platform consisting of a
network processors and several digital signal processors (DSPs), the software
framework can be easily ported to other platforms. Several case studies have
been conducted to demonstrate the feasibility of our approach.

The remainder of this article is organized as follows. Section 2 reviews re-
lated work on middleware and frameworks as well as component models and
technology. This review on related work focuses on embedded systems with
their inherent strong resource limitations. Section 3 briefly summarizes our
embedded multiprocessor SmartCam architecture, which provides the hard-
ware and basic software platform for the implementation of our novel software

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:4 • A. Doblander et al.

framework. Section 4 presents our middleware architecture in detail. We first
describe the design of the PS architecture for single-camera applications and
then focus on dynamic component composition based on our PS architecture.
Section 5 describes our fault-tolerance approach for graceful degradation in
networks of DSCs. Section 6 presents experimental results concerning the per-
formance of the PS middleware as well as an evaluation of the fault-tolerance
architecture using two fault scenarios. Section 7 concludes this article with a
discussion and an outlook for future work.

2. RELATED WORK

2.1 Middleware and Frameworks for Embedded Systems

2.1.1 CORBA-Based General-Purpose Middleware. Middleware for dis-
tributed and embedded systems is a very active research field. Much work has
been done to support transparent communication and to ease distributed appli-
cation development. Component-based middleware technologies from general-
purpose computing, such as, Microsoft DCOM [Sessions 1997], Java RMI [Pitt
and McNiff 2001], and OMG CORBA [Pope 1998] are not suitable for very
resource-limited devices [Mascolo et al. 2002]. To adapt the CORBA technology
to resource-constrained real-time systems the Real-Time CORBA (RT-CORBA)
and minimum CORBA specifications [The Object Management Group 2001;
Object Management Group 2002] have been introduced.

Schmidt et al. [2002] invented “TAO” as an implementation of the RT-CORBA
specification. It is an object request broker especially developed for distributed
real-time and embedded systems. Their CIAO framework [Balasubramanian
et al. 2003] extends TAO to also include a component model for distributed
real-time and embedded systems that enables easy component composition.
All these approaches are quite large and, therefore, not suitable for our multi-
DSP platform. They are further not available on the operating system of our
DSPs and cannot easily be ported to it.

In general, all these approaches share the idea of providing transparent com-
munication among objects or components residing in different address spaces.
The problem is that they also aim at supporting a wide range of programming
languages and mostly general-purpose computer architectures. That is the rea-
son why these middleware systems impose substantial overhead. What they
provide rather well is software reuse and platform independence. But as these
advantages cannot be exploited in the highly specialized SmartCam platform,
a very light-weight approach was chosen and is presented in this work.

2.1.2 A Microbroker-based Middleware for Pervasive Computing. In
Becker et al. [2003] the authors present their BASE middleware for perva-
sive computing. This article aims at a scalable and efficient middleware that
serves all possible computing architectures for pervasive computing.

BASE is based on a microbroker that only implements very basic function-
ality. All other features can be added as plug-ins, as needed. Especially, trans-
port protocols are added as plug-ins. By this technology, it is easy to adapt the
middleware to new protocols and communication devices.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:5

In this article a very similar approach is presented where a medium-
abstraction entity takes care of transparent communication. This abstraction
object is also easily extended to handle new communication media. The
microbroker is quite analogous to micro kernels known from operating system
technology.

Although the BASE middleware was implemented in Java, it is very mem-
ory efficient due to the microbroker approach that focuses only on the most
important middleware features. However, transport of remote invocations is
realized through the Java RMI interface. Therefore, it suffers from substantial
performance overhead for remote service invocations. It exploits locality so that
unlike RMI, it does not need to pass through the RMI and TCP protocol stacks.

2.1.3 Distributed SW Architecture for Ubiquitous Sensor Systems. Lin
et al. [2006] present a software framework for ubiquitous smart cameras. It
is a joint effort of the Princeton’s smart camera group and the Vanderbilt Uni-
versity’s Model-Integrated Computing (MIC) group. Their focus lies on the mod-
eling and design of real-time embedded camera systems.

Based on their gesture recognition system prototype they investigate a fully
distributed communication pattern to support intelligent and ubiquitous appli-
cations using several cameras. As the heart of the system, a multilayer software
framework provides a service-oriented platform for different algorithms.

Although their goals are similar to ours, their implementation differs sig-
nificantly. Their framework is based on the model-integrated computing (MIC)
environment [Karsai et al. 2003], and they use DirectX as a middleware system.
Standard PCs have been used as prototyping platforms, which is obviously not
a distributed embedded system.

2.1.4 Texas Instruments DaVinci Technology. The DaVinci technology by
Texas Instruments (TI) [Mody 2006] is an innovative framework for multicore
embedded DSP solutions. The intended applications are multimedia appliances
that rely strongly on complex signal processing algorithms. Extending previous
architectures, TI provides a complete software bundle to ease application devel-
opment. On the one hand there are the two operating systems, that is, Linux
for the ARM and DSP/BIOS for the C64x DSP, along with different support
libraries. On the other hand there is an abstraction to aid developers in using
third-party components easily.

Similar to our approach presented in previous work [Bramberger et al. 2006],
signal processing algorithms are treated as components. The application devel-
oper can plug and unplug them using standardized interfaces. But in contrast
to our approach, they currently support only encoder and decoder algorithms.
Based on their XDAIS [Instruments 2002] component standard, they extended
it to XDAIS-DM or XDM to also support algorithm descriptions that are needed
for proper composition of multimedia algorithms. Mainly, this information is
dedicated to different QoS settings as resolution, frame rate, and the like.

In contrast, the algorithm description interface presented in this article is
more flexible and is not limited to encoder and decoder tasks. Another difference
to the presented approach is that the XDAIS-DM framework focuses on a single
system-on-chip. Indeed, it handles two different cores, but it does not address

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:6 • A. Doblander et al.

distributed nodes and communication among different algorithms residing in
different address spaces as does the framework presented in this article.

2.2 Component Models and Technology

2.2.1 Large-Scale Server Component Models. One of the most well-known
component models is the CORBA component model (CCM) [Group 2005] that
is specified for the CORBA specification in its third version. Other well-known
commercial component-based approaches include Sun Enterprise Java Beans
[DeMichiel 2002] and Microsoft .NET [Microsoft 2005]. These are full-featured
component systems that are mostly used in the development of large-scale busi-
ness applications.

Because of the rich feature set, they are also very large software systems that
also impose substantial performance overhead. In embedded systems, the fo-
cus is on light-weight solutions and, therefore, these major component systems
along with their corresponding component models are not suitable in a typical
embedded setting. To overcome the problems of excessive memory and comput-
ing power requirements, Light-Weight CCM (LwCCM) [Systems and Thales
2003] was submitted to the Object Management Group for specification.

LwCCM aims at providing only core features. Advanced functionality of the
CCM is not included in LwCCM. Thus, it can be implemented for resource-
critical embedded systems. Embedded CORBA-based applications can, there-
fore, be realized using LwCCM. Persistence, transactions, and security are not
addressed in the LwCCM specification. Nevertheless, compatibility with the
full-flagged CCM specification is retained so that LwCCM components can also
be deployed on CCM-based systems.

2.2.2 SaveCCM—A Component Model for Safety-Critical Real-Time Sys-
tems. SaveCCM [Hansson et al. 2004] is a specialized component model aimed
at safety-critical control applications in vehicular systems. It is only of limited
flexibility but, on the other hand, facilitates analysis of real-time and depend-
ability issues in embedded control systems. As part of an overall effort to im-
prove dependability in vehicular systems, SaveCCM is also accompanied by a
dedicated component framework to improve development processes.

Note that the term SaveCCM has nothing to do with the CCM. It is merely
a composition of the project name SAVE, the framework SaveComp, and the
general term component model and might be stated as SaveComp component
model. Based on a pipes and filters paradigm, the execution model of SaveCCM
is rather restrictive. Components as the basic unit of encapsulation can be in
either state, executing or waiting to be triggered, respectively.

The component model defines three other entities besides a component. First,
there are switches that are used to dynamically change component intercon-
nections. Second, assemblies are a means for forming aggregate components.
As the third part, the runtime framework provides services like component
communication, component execution, and control of sensors and actuators.

2.2.3 An Efficient Component Model for the Construction of Adaptive Mid-
dleware. In Clarke et al. [2001], the authors present OpenCOM, which is a
light-weight component model based on the standardized COM component

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:7

model [DeMichiel 1995]. To be efficient, it only supports a subset of the overall
COM specification. That is, only a single address space is supported.

This is in contrast with the approach described in this article, where the bene-
fit is that component interaction is supported beyond address space boundaries
in a transparent way. Furthermore, OpenCOM does not implement standard
component model features such as distribution, persistence, security, and trans-
actions. But the OpenCOM model is designed for dynamic reconfiguration of
components, which is in contrast to most standard component models that do
not very well support the deployment phase of components in a dynamic appli-
cation environment.

The interesting thing with OpenCOM is that it is designed as a component
model for the design of middleware platforms itself. That is, it is not used to
provide a structure for component interaction on top of a framework to form
applications but to develop the framework.

2.2.4 AFT-CCM—Adaptive Fault-Tolerance on the CORBA Component
Model. AFT-CCM [Fraga et al. 2003] is a component model based on CCM. It
is aimed at applications with fault-tolerance requirements. Like most CORBA-
based technologies it is also designed for large-scale distributed computing sys-
tems, mostly applied in Web applications. The application programmer can
specify QoS requirements for services and the desired levels of dependability
can also be defined.

To achieve a special dependability level, different forms of component (i.e.,
service) replication are employed. Several dedicated system components are
responsible for the transparent replication of application components. Further-
more, key system components are also replicated on different hosts in the sys-
tem to guarantee correct replication also in case of failures in the runtime
environment supporting the component model. Of course, it is also possible to
integrate components into the system that are not critical and, therefore, do not
need to be replicated. Persistence of component state information is achieved
by constantly saving it to local nonvolatile storage. Hence, on failure of a com-
ponent, its state is restored to a replica, to continue normal operation after
minimum downtime.

Given the significant overhead of the overall management framework and
the full redundancy of replication, it is understandable that each host in such
a system has to provide substantial hardware resources. Therefore, AFT-CCM
is not suitable for cost-sensitive embedded applications.

3. EMBEDDED SMART CAMERA PLATFORM

Our SmartCam [Bramberger et al. 2006] provides the hardware and basic
software platform for the implementation of our novel software framework.
This section summarizes the embedded platform; more details can be found in
Bramberger [2005] and Doblander et al. [2006a].

3.1 SmartCam Hardware Platform

Figure 1 depicts the hardware architecture of our SmartCam, which is com-
prised of a sensing unit, a processing unit, and a communication unit. A CMOS

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:8 • A. Doblander et al.

Fig. 1. The SmartCam hardware architecture. It comprises a sensing unit, a processing unit, and
a communication unit. Up to 10 DSPs provide the necessary computing power for video analysis
algorithms.

image sensor is the heart of the sensing unit. It delivers color images up to VGA
resolution at 25 frames per second to the processing unit via a FIFO memory.
The processing unit is composed of a variable number of DSPs, which are con-
nected via a local PCI bus. The image processing algorithms are executed on
these DSPs. An ARM-based network processor (XScale) controls the communi-
cation unit, which has two main tasks. First, it coordinates the internal com-
munication among the DSPs as well as the DSPs and the network processor.
Second, it provides IP-based communication channels to the outside world.

3.2 Basic Software Architecture

The software architecture of our smart camera is designed for flexibility and
reconfigurability. It consists of several layers, which can be grouped into (i)
the DSP-framework (DSP-FW), running on the DSPs and (ii) the SmartCam-
framework (SC-FW), running on the network processor. This architecture is
based on the abstraction that the application logic is running on the network
processor and loads and unloads the actual analysis algorithms onto the DSPs,
as needed. An overview of the software architecture of our smart camera is
depicted in Figure 2.

SmartCam-Framework. The SC-FW that is illustrated in the left part of
Figure 2 serves two main purposes. First, it provides an abstraction of the DSPs
to ensure platform independence of the application layer. Second, the applica-
tion layer uses the provided communication methods (i.e., internal messaging
to the DSPs and external IP-based communication) to exchange information
or offer data relay services for the DSP-FW. Modules of this part of the soft-
ware architecture support application development in that they provide high-
level interfaces to DSP algorithms and functions of the DSP-FW. Especially, the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:9

Fig. 2. The overall software architecture of our smart camera. In the left part of the figure,
the so-called SmartCam-Framework is illustrated, while the right part shows the so-called DSP-
Framework.

mobile agent system makes extensive use of these services to access the DSPs.
To further ease application development, the network processor is operated by
Linux. Thus, the SC-FW is running on top of a standard Linux kernel.

DSP-Framework. This part of the software architecture, as indicated in the
right part of Figure 2, runs on every DSP in the system. The main purposes of
the DSP-FW are (i) the abstraction of the hardware and communication chan-
nels, (ii) the support for dynamic loading and unloading of application tasks, and
(iii) the management of on-chip and off-chip resources of the DSP. Of course, the
sensor interface module is only needed on the DSP to which the image sensor is
connected. The key functionality in the DSP-Framework is the PS middleware
that is described in Section 4.1. These service management facilities are needed
to allow algorithms on different DSPs to establish connections to each other,
dynamically. The DSP-FW is built upon the DSP/BIOS operating system from
Texas Instruments.

Dynamic Loading. All video analysis algorithms and also some framework
components can be loaded and unloaded at runtime by the Dynamic Loader
module. Actually, only modules of the DSP-FW, in dark shade in Figure 2, have
to be available at startup. All other components can be dynamically loaded at
runtime. Therefore, the framework and the application can easily be extended
or adapted to dynamic changes in the system’s environment, if desired.

The dynamic loading facilities are also the basis for more sophisticated ser-
vices like load distribution [Bramberger 2005], dynamic power management
[Maier 2006], and graceful degradation to cope with faults.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:10 • A. Doblander et al.

Table I. Qualitative Comparison of Different Software Architectures

software architecture advantages disadvantages
for single processors only

“no architecture” efficiency no support for component modeling
only static connections / limited scalability

efficiency (ie. streaming) limited to specific platform
multimedia frameworks (static) component building no networking

limited resource monitoring
state machine/ no component modeling
data-flow oriented versatile control scheme only synchronous operation
frameworks for fine and coarse grain algorithms only static configurations
publisher–subscriber dynamic component composition system-level software required
architecture transparent communication only for coarse grain components

implicit scalability
dynamic component composition heavy resource requirements

general-purpose versatile limited real-time capabilities
middleware implicit scalability limited data-streaming

programming overhead

4. MIDDLEWARE ARCHITECTURE

Distributed image and video processing are the main applications typically
found on smart cameras and visual sensor networks. Our major goal was to
develop a middleware that supports the requirements of visual sensor network
applications as much as possible:

Flexibility in application composition. The overall application should by
easily composed by individual tasks, which follow a transparent communication
pattern. The functionality of the individual tasks as well as their provided QoS
should be modified dynamically during runtime.

Scalability. The software framework should be scalable concerning the
number and type of individual tasks, the available hardware resources, as well
as the data volume transferred within the network.

Limited resource consumption. The software framework should carefully
utilize the limited resources on the embedded platform (i.e., memory and CPU
capacity).

Low-performance overhead. The performance overhead of the software
framework should be kept low, since the desired applications demand high-
processing, memory and communication capacities.

Support for real-time operation. The runtime behavior of the software
framework should be predictable in order to support real-time operation.

We compared the various potential software architectures to select the best
fitting architecture for target applications (Table I). Applications using “no-
architecture” (only OS-calls) are probably very efficient concerning resource
consumption, but are very limited concerning networking, scalability, and
flexibility. Multimedia frameworks, such as the MFP from Texas Instruments,
provide high-resource efficiency and development support for streaming appli-
cations. However, these frameworks are limited to a specific platform and offer

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:11

only restricted networking. State machine and data-flow oriented frameworks
provide versatile control schemes and can be applied at various levels of abstrac-
tion. Their limitations are synchronous communication, static configuration,
and limited networking. PS architectures and general-purpose middleware
systems provide various networking services, support dynamic component
composition, and are scalable with regard to the software components and
hardware nodes. They are typically applied for coarse-grained components and
require a substantial system-level software on top of the operating system.

Thus, a resource-aware PS architecture would best fit our requirements.

4.1 The Publisher–Subscriber Middleware

The PS architecture is an integral part of the DSP-FW and the SC-FW. It aims at
providing seamless and flexible connections between the algorithms running
on the DSPs. Furthermore, it has to provide the basic means for supporting
application reconfigurations aimed at reducing power consumption or realizing
graceful degradation in case of failures.

From the framework’s point of view, every video analysis algorithm is a sepa-
rate entity that is executed in its own thread. Interconnections of the algorithms
are defined by the application. In previous work, we used statically defined
relations among different data services (i.e., algorithms to simplify intertask
communication). This resulted in a very efficient message exchange over the
PCI bus. However, the static bindings of data producers and consumers sub-
stantially restricted flexibility in dynamically combining algorithms. Further-
more, algorithms had to directly invoke PCI communication primitives, which
reduced portability.

To overcome these limitations a publisher–subscriber middleware layer
(PS-MW) has been introduced. It provides the algorithms on the DSPs with ba-
sic message-oriented communication facilities that are transparent concerning
the underlying transport medium. Additionally, a directory service was added
to enable dynamic service discovery. It is important to mention that the major
goal of our efforts was to provide these services with minimum overhead to save
resources on the DSPs.

Each application’s algorithm is running in its own task. Communication
between algorithms is established via mailboxes, which are available in the DSP
operating system. Among the different choices for intertask communication
mailboxes provide several advantages, such as (i) transparent and efficient
communication and (ii) buffered and unbuffered communication, which allows
to realize synchronous as well as asynchronous communication with the same
OS mechanism.

In video applications, a large amount of data has to be processed. To use
the limited memory of the DSPs efficiently, image data is not copied when
sent between algorithms on the same DSP. Only references to actual data are
exchanged. Small messages like system commands or monitored performance
information are directly posted to mailboxes.

Figure 3 depicts the situation for two algorithms residing on the same DSP.
The first algorithm provides a data service X that the second uses for further

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:12 • A. Doblander et al.

Fig. 3. Fundamental relations between objects of the publisher–subscriber architecture. Only local
connections within a single DSP are sketched.

processing. The core of our PS architecture is realized as an efficient object-
oriented implementation. A detailed description of the architecture objects is
presented in previous papers [Doblander et al. 2006a, 2006b].

4.2 Dynamic Component Composition

4.2.1 Dynamic Loading and Reconfiguration. A central aspect of our smart
cameras is the dynamic loading and unloading of video analysis algorithms
at runtime. The dynamic loader module from Texas Instruments is able to
dynamically link and load DSP binaries and has been integrated into the DSP-
FW.

Furthermore, each algorithm has to support different QoS levels that can be
changed at runtime. A required change in the QoS configuration is signaled by
the DSP-FW using a special command message type. Commands are not time-
critical and are, therefore, not treated as important as normal data services
with tight timing requirements.

In general, there are two different types of trigger sources for reconfiguration
actions. One source of triggers for these reconfigurations are alarms generated
by the analysis algorithms. Another possibility for triggering a reconfiguration
are events raised by internal system-level services like the load distribution
service [Bramberger et al. 2005], the power management facility [Maier et al.
2005], or a failure management service.

4.2.2 DSP Algorithm Component Model. To support the dynamic reconfig-
uration of algorithms (i.e, their composition and change of attributes) in our
surveillance applications it is necessary for each algorithm to comply with a
special component model—the DSP algorithm component model (DACM)—as
indicated in Figure 4. The DACM is based on the XDAIS algorithm compo-
nent model from Texas Instruments [Instruments 2002]. It extends the XDAIS
model to support dynamic loading and the PS communication scheme, as well

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:13

Fig. 4. Principle structure of a DACM component.

as by adding crucial entries in the algorithm’s resource descriptions to address
all critical system resources. In the XDAIS model, the focus is on design time
integration and, therefore, resource ratings are only provided in the component
documentation.

In the DACM, all components have to provide all their resource information
at runtime to allow for dynamic component composition. The framework further
defines the necessary interfaces and algorithm descriptions that are required
to load an algorithm at runtime. Only algorithms following the DACM can be
dynamically composed at runtime. Algorithm characteristics that have to be
exhibited by each algorithm component are collected in Table II.

In the framework, the resource manager module keeps track of already al-
located resources and available resources. Based on this information and the
algorithm characteristics, the framework can decide whether a component can
be (dynamically) integrated into the system. Note that the enhanced direct
memory access controller (EDMA) of the DSPs is a critical resource as image
analysis is very memory intensive and data is mostly copied by EDMA to keep
CPU load as low as possible.

4.2.3 Resource Monitoring. The PS-MW has to ensure proper component
composition when new algorithms are loaded at runtime. As a basis, the frame-
work uses the component resource descriptions provided by each algorithm fol-
lowing the DACM to determine the component’s resource requirements. Now, to
decide on the feasibility of a composition, the available resources in the system
have to be calculated and compared to the resource requirements. The resource
monitoring module in the framework constantly computes the resource loading.

Countable resource metrics like the number of used EDMA channels, EDMA
tables, and EDMA transfer complete interrupts are quite easy to determine for
each algorithm. In the software framework, this is achieved by a EDMA man-
ager that is the only authority to request EDMA related resources. Therefore,

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:14 • A. Doblander et al.

Table II. Example Algorithm Information as
Provided by the DACM

Required Services from other components
QoS levels
Resource requirements

EDMA channels and their priorities
EDMA tables
EDMA interrupts

Performance Ratings
CPU utilization for each QoS level
Transfer frequency of each EDMA channel
Transfer length of each EDMA channel

it is also easy to check whether a component’s resource requirements can be
met by a simple comparison of available and demanded resources. Only if suffi-
cient resources are available, the component is loaded and started. The actual
composition is then simply realized by the PS-MW. All required data services
are looked up and connected adequately, as described in Section 4.1.

On the other hand, it is quite hard to provide exact characteristics of more
complicated resource metrics like CPU utilization, PCI bus utilization, and
EDMA controller utilization—they are also subject to constant fluctuations,
which makes accurate a priori characterization impossible. However, these
metrics are typically critical in terms of real-time operation of the system. As
they are dynamically changing, it is necessary for the framework to observe
them constantly. If limits are going to be violated, the framework initiates a
graceful degradation in QoS of less important algorithms. That is, the QoS
levels of low-priority algorithms are reduced. Prioritization of algorithms is
used to control the QoS adaptation. An importance value defines the priority
for each algorithm. This value specified by the application developer. The
implicit assumption for this procedure is that a lower QoS level results in
reduced resource utilization.

Information about PCI bus utilization is not part of an algorithm description.
As algorithms are composed at runtime, it cannot be determined a priori by the
algorithm designer whether local mailbox communication or remote PCI com-
munication will be used at algorithm deployment. However, for system stability,
it is important not to overload the PCI bus. Therefore, PCI utilization is mon-
itored by the resource manager on the network processor. To do so, it collects
measurements of the traffic through the medium abstraction objects (MAOs)
of all DSPs and the network processor. This is possible because the MAO is the
unit on each processor where all traffic to other processors is routed through.
Therefore, overall PCI bus load in a single SmartCam i (i.e., LoadPCI,i) can be
computed as

LoadPCI,i = LoadPCI,XScale +
N∑

n=1

LoadPCI,DSPn , (1)

where N is the number of DSPs and LoadPCI,X Scale and LoadPCI,DSPn denote
the load in bytes per second measured at the MAO of the XScale and DSP n,
respectively.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:15

Table III. Overview of the Monitored Resources in the PS Middleware

Resource monitoring method monitoring period
CPU utilization (at each QoS-level) DACM description at initialization
EDMA (channels, tables, interrupts DACM description at initialization
memory limits (static, dynamic) DACM description at initialization
PCI load tracking transfer rates (MAO) at each invocation
EDMA load tracking EDMA controller at each invocation
dynamic memory usage tracking OS-calls at each invocation
execution times measurements by hooks at message rate
communication times measurements by hooks at message rate

Utilization of the EDMA resources on the DSPs is a critical metric for overall
system performance because image data is mostly transferred by EDMA. If the
EDMA subsystem is overloaded, the timely operation of all algorithms is at risk.
To improve the reliability of the system especially with respect to timeliness,
it is necessary to avoid resource overloading. EDMA controller load generated
from an algorithm is estimated from the algorithm’s characteristics provided by
the DACM. It can be noted as LoadEDMA = ∑

LoadEDMA,l , where l = 1, . . . , L
are the L hardware priority queues of the EDMA controller and

LoadEDMA,l =
K∑

c=1

length(c, l) freq(c, l) (2)

denotes the transfer bandwidth of priority queue l taking into account all of the
K channels c. The function length(c, l) yields the number of bytes transferred
on channel c if channel c is assigned priority l . It returns zero for all other
values of l . Similarly, freq(c, l) yields the number of transfers issued per second
on channel c iff c is assigned priority l .

The third critical system resource is memory. As the PS-MW provides a dy-
namic environment, it is key to estimate dynamic memory usage of algorithms
and to monitor dynamic memory availability. Maximum buffer sizes are known
at design time. Therefore, algorithm resource descriptions can be made quite
accurate. Monitoring of free dynamic memory resources is done by querying
operating system memory management calls.

Table III summarizes the monitored resources in our PS-MW. Note that the
first three resource parameters are specified in the DACM description and are
checked at the initialization time of the (new) components. The remaining re-
source parameters are monitored continuously. Execution and communication
times are measured at message transfer rates. Thus, for most algorithms, the
measurement rate corresponds to the frame rate of the sensor data. The deter-
mination of the component performance from these parameters is described in
Section 4.2.5.

4.2.4 Component Composition. Given the resource requirements informa-
tion in the algorithm description of the DACM and the continuous monitoring
of actual resource occupancy, as described in Section 4.2.3, the basic step of the
composition process is a comparison of required and available resources.

The algorithm is loaded by the dynamic loader facility when the algorithm’s
resource requirements are met. On load of the algorithm it registers with the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:16 • A. Doblander et al.

PSM (i.e., it queries for services it requires and publishes services it provides).
In this respect, our approach is somewhat different to other component-based
middleware because the algorithm is loaded even if required services are cur-
rently not available in the system. However, then the algorithm is put to sleep,
because it cannot do its work. But if at a later time another component is in-
serted that provides the missing service, then the sleeping algorithm is brought
back to work by the PSM. With this simple mechanism, we can load algo-
rithms without worrying about the sequence of algorithms defined by data-flow
dependencies.

Another relaxation in our component composition approach compared to
standard middleware technology is that there is some degree of freedom con-
cerning service querying. In general, it is necessary that service interfaces (i.e.,
output of one component and input of another component) completely match in
order to be connected. This is in principle also true for this approach, but with
the introduction of different QoS levels it is also possible for a component to
accept services that do not match up to a certain extent. Of course, it is required
that key attributes have to match. But it is up to the algorithm to decide which
ones it is able to accept even if diverting.

In that respect, it is possible that there are several services available in
the system that potentially match new components requirements. Then this
component has to choose one of these. Generally, the one with the highest QoS
level would be the best choice. But especially in abnormal situations like failure
conditions and the like, the situation might be different. Then, it could be the
case that using a lower-quality service can allow the algorithm to at least pro-
vide rudimentary functionality. This is a basic feature that is exploited when
graceful degradation is used to cope with faults that lead to resource failures.

4.2.5 Component Performance Monitoring. It is important for several rea-
sons to continually monitor all components in the system for their performance.
First, it allows the framework to reason about likely deadline misses that com-
promise real-time operation. Second, performance measurements can be used
to reason about the fitness of components, which is important for fault-tolerance
mechanisms.

4.2.5.1 Dynamic Memory Usage. Especially, memory consumption of a com-
ponent observed over time can exhibit buffer management problems in algo-
rithms or other memory leaks. Of course, only dynamic memory allocation in
heap memory is observed. Operating system primitives are used to determine
current memory usage for each task in the system. This is sufficient, since every
algorithm runs in its own execution task.

4.2.5.2 Execution Time. Execution times are constantly measured by hooks
in the PS-MW at the inputs and the outputs of all algorithms (Figure 5). That
is, a system counter is captured each time a hook function is called in a sub-
scriber or a publisher, respectively. By this mechanism current computation
time in CPU cycles is determined as the difference TAi ,exec = |TAi ,out − TAi ,in|,
where TAi ,in represents the counter value at the time when all inputs of algo-
rithm Ai were ready. TAi ,out stands for the counter value when all outputs of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:17

Fig. 5. Basic mechanism to monitor the algorithm execution times.

Fig. 6. Basic mechanism to monitor the communication delay from algorithm Ai to algorithm
Ai+1.

algorithm Ai were ready. Image analysis algorithms are typically implemented
such that they take some input data, process it, and produce some output data
on a frame-by-frame basis. Therefore, measuring the CPU cycles from the mo-
ment an algorithm receives data to the moment it posts the output is a good
estimate for its execution time.

As a side product the input frame rate of an algorithm can be checked by
observing two subsequent input counter values TAi ,in[n] and TAi ,in[n + 1]. An
estimate E fframe [n+1] for the current input frame rate of algorithm Ai at sample
time n + 1 is then given by

E fframe [n + 1] = fCPU

|TAi ,in[n] − TAi ,in[n + 1]| (3)

where fCPU denotes the clock frequency of the CPU. By continually observing
these frame rate estimates, problems can be detected early so that interventions
are likely to prevent failures.

4.2.5.3 Communication Delay. Another performance rating that can be ob-
served by the framework is communication delay. That is, the delay from a
publisher to its associated subscribers is evaluated. As the execution time, the
communication delay is also an estimate based on capturing a counter at well-
defined interaction points in the PS subsystem.

In Figure 6, the principle is illustrated for two algorithms Ai and Ai+1, re-
spectively. Note that the same measurement points are involved as used for
the execution time estimation. But in this case, the probe points of different
algorithms are used.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:18 • A. Doblander et al.

The estimate EAi→Ai+1 [n] for the communication delay at sample time n can
be written as

EAi→Ai+1 [n] = |TAi ,out[n] − TAi+1,in[n]|
fCPU

(4)

with fCPU being the CPU clock frequency.
Observing communication delays over a certain period can reveal timing

problems. Possible causes could be high loads on the CPU or the PCI bus. Sin-
gle absolute values of communication delay can be used to uncover real-time
problems. For example, the sum of all execution times and communication de-
lays in a processing chain determine the maximum possible frame rate at the
system perspective. The overhead introduced by hooks is neglectable since the
hooks require only simple table look-ups and are typically called at rates of tens
or hundreds of milliseconds.

5. MIDDLEWARE-BASED FAULT TOLERANCE

Monitoring the various performance parameters over time provides valuable
information about the overall status of the application. By applying adequate
reactions when certain resource limits are reached, we can increase the avail-
ability of the application. We incorporate this approach into our PS-MW to
take a step toward autonomous operation of smart cameras. Integrating sim-
ple fault-tolerance mechanisms into our middleware helps to reduce the ap-
plication development time as well as to reduce the overall code size since the
fault-tolerance code has to be included only once in the whole system. The main
management parts of this fault-tolerance architecture (FTA) are hosted on the
network processor within the SC-FW, whereas mainly low-level monitoring is
included in the DSP-FW of each DSP and simple fault-handling mechanisms
are available.

5.1 Fault Handling in a Network of Smart Cameras

The principle idea of our FTA is to introduce some degree of fault tolerance
by embedding simple mechanisms in our middleware. We avoid additional
hardware components or sophisticated software replication techniques to keep
our middleware light-weight. However, it is possible to exploit domain-specific
knowledge in our DSCs to provide some fault tolerance. Simple methods are
used to detect and localize faults and then graceful degradation is employed to
mitigate fault effects to prevent system failures.

In order to achieve fault tolerance, we exploit two basic mechanisms of our
software framework: dynamic reconfiguration and QoS adaptation. By migrat-
ing software components from a faulty to a healthy processor during runtime,
several services may become operational again—potentially on a different cam-
era. QoS adaptation may free resources on individual nodes, since lower QoS-
levels typically demand for lower memory and computing resources. Thus, in
situations with reduced available resources (either due to a hardware failure
or a corrupt software module), we may still provide some services.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:19

Table IV. Considered Fault Classes, Detection Methods and Fault-Handling
Procedures

fault classes detection mechanisms fault handling procedures
algorithm faults plausibility checks algorithm reload

resource monitoring graceful degradation
communication faults alive messages node reboot
hardware faults watchdog DSP reboot

alive messages node reboot

5.1.1 Considered Fault Classes. In our work, we currently consider only
a subset of all possible faults within a single SmartCam or in a network of
collaborating SmartCams.

Algorithm faults. The main focus of the FTA is to provide some higher-level
fault detection for algorithms based on application-specific knowledge. That
is, analysis results of different algorithms are often related to each other. For
example, in case of a traffic jam two stationary vehicle detection algorithms on
two adjacent cameras have to come to the same decision—at least after some
limited time interval. If an algorithm detects the traffic jam and the other fails
to do so it can be deduced that one of them exhibits incorrect behavior. There are
other cases where inconsistent observations of two or more algorithms suggest a
failure of one of them. Exceeding the specified resource limits might be another
reason for an algorithm fault.

Communication faults. It is essential for a network of cooperating smart
cameras to have mutual communication paths readily available to exchange
information about the observed scene. The middleware framework employs a
simple messaging protocol between neighboring nodes to check mutual reach-
ability. These so called alive- or heartbeat-messages are exchanged regularly.
Missing messages over a preset time span results in the corresponding node to
be considered as down.

Hardware faults. As the main focus of the FTA is handling software prob-
lems, it makes sense to treat several hardware problems as well. This fault class
is considered mainly because it is relatively easy to handle them in the given
framework for dynamic reconfiguration and coping with algorithm problems.
In our FTA, we distinguish between a faulty processor (DSP breakdown) and
complete breakdown of a SmartCam.

5.1.2 Fault Handling Procedures. To cope with the previously-mentioned
fault classes, different counter measures are used by the FTA (Table IV).

Algorithm reload. If an algorithm shows unexpected behavior, it has to be
restarted. That is, the algorithm is reloaded on the DSP. This procedure takes
only a couple of milliseconds.

As the reboot of a DSP takes significantly longer than the reload of an algo-
rithm, it is advisable to first try if reloading the algorithm in question solves
the problem. But if restarting or even repeated restarting does not lead to a
successful recovery, rebooting the DSP can be of assistance. Incorrect behavior

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:20 • A. Doblander et al.

of all algorithms running on one DSP indicates a malfunction caused by the
DSP and a reboot is necessary.

Graceful degradation. A key mechanism for increasing service availability
is to degrade some functionality, despite risking overall system failure. There
are two basic means for degrading a service. First, its QoS level can be reduced.
A simple but realistic assumption we make here is that higher QoS results in
increased resource usage. Second, an algorithm can be shut down completely.
Graceful degradation is controlled by an importance parameter, which is as-
signed to each algorithm. The FTA reduces the QoS level of algorithms with
lower-importance parameter first.

DSP reboot. The reboot of a DSP is necessary if a DSP crashed or is under
the strong suspicion to have at least partially crashed (e.g., temporary malfunc-
tion of the RAM).

Node reboot. In case a node recognizes that it is isolated from the rest of
the network, it can decide to undergo a reboot procedure to eliminate possible
transient network (stack) problems. Rebooting in this case is unproblematic
because if network communication failed, it does not contribute to system goals
anymore. But chances are that a transient problem is eliminated after reboot.

Operator notification. An operator (i.e., some global monitoring authority)
has to be informed if any unexpected behavior is noticed. If a node repeatedly
shows abnormal behavior despite automatic recovery actions, human inspection
and maintenance actions are inevitable. Therefore, all detected fault events
subsequent counter measures are logged so that an operator can retrieve the
information on demand.

Furthermore, a node must always be informed about the operational relia-
bility of its neighbors. That is, if a node diagnoses itself as (partially) faulty,
its direct neighbors have to be informed about these fault condition. This is
to simplify credibility checks in neighboring nodes. Because if a node testifies
itself as faulty, the others can skip the voting process and exclude the faulty
camera’s results from further consideration.

5.2 Middleware-Based Fault-Tolerance Architecture for Smart Cameras

The SmartCam software framework incorporates the FTA that provides fault
tolerance as middleware services. The FTA comprises several units on the net-
work processor and the DSPs. Figure 7 illustrates the principle relationships
of the different components.

Every algorithm on the DSP that is subject to the FTA monitoring is reg-
istered with the PSM so its input and output connections are known. Fur-
thermore, the algorithm descriptions, as described in Section 4.2.2, provide the
basis for decisions on the algorithm’s resource usage. Most relevant are the algo-
rithm’s name for identification, its current QoS level and what other QoS levels
are offered, the resources requirements for the current QoS level, the current
importance measure assigned by the application developer, and information
about the algorithm’s typical execution time. The individual components of our

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:21

Fig. 7. Overview of the fault-tolerance architecture as it is included in the SmartCam software
framework.

FTA can be described as follows whereas the main part of the FTA resides in
the so-called monitoring and diagnosis unit (MDU) on the network processor.

Resource Checker Module. The resource checker module (RCM) is the only
module in addition to already described framework components of the DSP-FW.
The RCM monitors all relevant data concerning projected and actual resource
usage of each active algorithm. Resources demanded by the algorithms are com-
pared to the resources available in the system. Necessary resource information
is queried from the RM residing on the DSP. The RCM determines whether
sufficient resources are available and also communicates its data to the node
state manager (NSM) on the network processor.

Node State Manager. The NSM is the central entity of the FTA. It deter-
mines a node’s state by evaluating data from the RCM, the voter, and the anal-
ysis results of the currently active algorithms.

We consider the following states of the node: (i) the normal state, where all al-
gorithms work correctly; (ii) the low-resource state, where insufficient resources
are available; (iii) the DSP crash state, where at least one DSP has crashed on
the SmartCam; (iv) the algorithm crash state, where a malfunctioning algo-
rithm has been detected; and (v) the communication error state, where commu-
nication to other SmartCams can currently not be established. The transitions
among the node’s states are controlled by a simple finite state machine.

Most conditions for entering a specific state can be evaluated by our fault-
detection mechanisms or by checking the current resource usage. Detecting an

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:22 • A. Doblander et al.

algorithm fault is based on application-specific plausibility checks. These checks
often require information from neighboring cameras.1 The voter unit compares
the node’s analysis results with the results of the two closest neighboring nodes.
Deviations are then fed to the NSM that changes the node’s state if applicable.
A reasonable frequency for voting analysis results from algorithms is once in a
few seconds depending on the application requirements.

Logger. The node’s state is recorded by the logger framework unit. This
data can be used to detect abnormal behavior in the long-term behavior of a
node such as periodical failures of the hardware or software due to, for example,
environmental conditions. Depending on the node’s state, appropriate actions
are induced by the NSM and recorded by the logger. Furthermore, logged data
can be retrieved by remote clients (i.e., operator workstations).

Reloading. In case of the necessity of a reload or unload, the NSM instructs
the migration and dynamic loading facility (MDL) to reload or unload, the suspi-
cious algorithm. The MDL induces the reload or, in case of an unload, performs
the unload and updates the list of current algorithms residing on the DSP. This
list holds information including which algorithm runs on which DSP on this
node as well as on the two closest neighboring nodes. In that way, the status
quo can be restored after rebooting from a DSP crash.

6. EXPERIMENTAL RESULTS

6.1 Performance Analysis of the Publisher–Subscriber Middleware

The PS middleware has been implemented on our SmartCam prototype, which
consists of an Intel IXP425 XScale network processor running at 533 MHz and
two Texas Instruments TMS320C6415 DSPs running at 600MHz. The most im-
portant performance parameters are presented in the following sections; more
implementation details can be found in Doblander et al. [2006b, 2006a].

6.1.1 Memory Requirements. An important requirement for the task com-
munication framework on the DSPs of the SmartCam is to use only little mem-
ory to save it for the analysis algorithms. Although our middleware has been
implemented in C++, the memory footprint is only 15.78KB. The runtime mem-
ory consumption is also low (i.e., in the order of several hundred bytes per
management object in the framework).

The total memory consumption overhead depends on the number of pub-
lished services and subscriptions in the system. In a typical setting, there are
two algorithms per DSP and each algorithm provides one service and subscribes
to one service. Together with the management objects this yields a typical total
memory overhead of the middleware of 3.71KB per DSP (Table V).

1Consider a simple traffic monitoring scenario where information from neighboring cameras may
be exploited to identify an algorithm fault: Three consecutive SmartCams on a highway section
report the traffic statistics where the first and the third camera report a traffic jam and the second
camera reports high-traffic throughput.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:23

Table V. Memory Requirements and Initialization Times of Management Objects in
the PS-MW

Component Memory [Bytes] Initialization time [μs]

Publisher–Subscriber Manager (PSM) 472 4.68
Directory Service (DS) 256 9.90
Publisher Object (PO) 192 10.17
Subscriber Object (SO) 96 11.01
Properties Object (PrO) 34-72 NA

Table VI. Message Transfer
Times for Plain Mailbox

Communication and for a
Transfer Using our

Publisher–Subscriber
Middleware

Transfer Mode Value [μs]

Mailbox only 1.04
With PS-MW 1.21

6.1.2 Initialization and Communication Overhead. As the PS-MW adds
some management overhead, we measured the times spent in the initialization
phase of the PS-MW at system start-up. This one-time initialization introduced
an overhead of only up to about 10 μs (Table V).

To assess the overhead in message transfer time when employing our light-
weight PS-MW, we have performed some simple experiments. Several different
scenarios have been examined. First, the time spent for a plain mailbox com-
munication between two tasks was measured. After that, the same tasks have
been adapted to use the PS-MW. That is, they communicated via a PO at the
sender and a SO (including a mailbox) at the receiving task. In this experi-
ment, the time spent from sending the message at the publisher until it had
been received at the subscriber was measured.

Note that in this scenario, one publisher with exactly one connected sub-
scriber was examined (i.e., a unicast communication scheme). The results are
summarized in Table VI. The overhead in this simple configuration amounts
to 16% compared to simple mailbox transfers. This overhead is introduced by
the additional setup mechanism of the PS framework. It is independent on the
size of the transferred data. However, this overhead is neglectable when large
amounts of data, such as an image frame, are transferred and processed.

We also examined the multicast communication scheme (i.e., one publisher
with several subscribers connected to it). The significant time measure in this
case is the overall time needed to transfer the published message to all sub-
scribed tasks. Again, only tasks on the same DSP were considered. Transfer
time increases almost linearly with the number of subscribers.

In another experiment, the transfer times between tasks on different DSPs
have been analyzed. The results are summarized in Table VII. The overhead
in this case stems from the indirection in the involved proxy mechanism to
bridge the PCI bus. It can be seen from the table that multiple subscribers on
the same remote DSP yield in a reduced overhead than if they all reside on

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:24 • A. Doblander et al.

Table VII. Message Transfer Overhead
Time for Publisher and Subscribers

Residing on Different DSPs. Overhead is
Given Compared to Direct PCI Transfers

Without the PS-MW

Number Transfer overhead [μs]
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 — —
2 4.69 5.24 —
3 5.91 6.44 7.49

different DSPs. This is due to less management overhead in the target. Also
note that data is transferred only once to each DSP even if there are multiple
subscribers for that data on the DSP.

6.2 Evaluation of the Fault-Tolerance Architecture

The performance of the FTA was evaluated by experiments with dedicated test
algorithms (TAs) instead of real video analysis algorithms. A TA is a piece
of code suited for the framework that mimics the behavior of a surveillance
algorithm. Its output is simulated by a parameterizable data generator. The
TA is well suited for fault injection experiments where faulty behavior of video
analysis algorithms can be simulated. No real faults have to be provoked and
adequate test patterns can be applied. Thus, different fault scenarios can be
examined easily.

Every TA is launched as a single task. It implements the standard interfaces
needed to be deployed within the software framework. This includes also an ap-
propriate algorithm description as it is required by the framework. The outputs
of the TAs are, therefore, as meaningful as those of the actual algorithms with
respect for their use with the FTA.

To evaluate the fault-tolerance architecture two key metrics are used as the
evaluation criteria:

—the time elapsed to detect a fault and
—the time required for the execution of counter measures.

In order to demonstrate the FTA’s ability to detect faults and to illustrate its
reactions, two example fault scenarios are presented in the following:

(1) Scenario 1: Inconsistent observations of algorithms on different nodes, and
(2) Scenario 2: A crashed DSP.

The surveillance setting assumed for the two scenarios comprises three
smart camera nodes Ni−1, Ni, and Ni+1 along a highway where the cameras
are equipped as the prototype described in Section 3.1. It is the assumed appli-
cation design that three algorithms run on each camera to observe the scene.
The algorithms and their attributes of this example application are listed in
Table VIII.

The following considerations are based on performance numbers presented
in earlier work [Bramberger et al. 2004]. Over the PCI bus, a transfer rate of

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:25

Table VIII. Algorithms and Their Attributes for the Example Traffic Surveillance Application

QoS Minimum
Algorithm Levels Importance QoS Level

MPEG-4 Encoder (MPEG) Q1, Q2, Q3 5 Q2
Stationary Vehicle Detection (SVD) Q1, Q2 2 Q2

Traffic Statistics (STAT) Q1, Q2 1 —

15 MB/s for communication between a DSP and the XScale is assumed as the
lower bound for small messages. The size of the transferred messages is always
128 bits consisting of a 32-bit message ID and 96 bits of data. These include the
algorithm’s reference number and analysis results (e.g., the considered time
interval and the number of vehicles counted during this interval). Therefore,
every message sent over the PCI bus via the PS-MW was measured to result in
an average transfer time of tmsg,PCI = 0.031 ms.

6.3 Scenario 1: Inconsistent Observations

Given are three camera nodes Ni−1, Ni, and Ni+1 along a highway. Node Ni
is observing an area characterized by stop-and-go traffic and it is in normal
mode. It hosts an MPEG-4 encoder (MPEG) on one DSP and a stationary ve-
hicle detection (SVD) on the second DSP. The SVD on node Ni is faulty and,
therefore, does not detect any stationary vehicles during time interval t. The
two neighboring nodes Ni−1 and Ni+1, however, register a number of vi−1 and
vi+1 stationary vehicles during time interval t, respectively.

6.3.1 System Response to Scenario 1. As node Ni ’s neighbor’s observations
are not consistent with those of node Ni, a plausibility check will eventually
detect this inconsistency (i.e., the voter’s output does not match the SVD’s out-
put and the NSM indicates a malfunction of the SVD). The NSM instructs the
MDL to reload the SVD. It sets the node to inconsistent observation mode and
sends this information to the logger. The SVD is then reloaded and initialized.
As most problems with algorithm’s detection results are due to transient buffer
problems, it is likely that the reinitialization solves the problem and the algo-
rithm works properly again. If the problem persists, the algorithm has to be
removed and the operator has to be notified.

6.3.1.1 Time to Fault Detection. The SVD sends its output every 2s to the
ACM and the voter, respectively. The voter’s output is sent to the NSM, thus,
two messages have to be sent and the first message is sent τ seconds after
the occurrence of the fault. The voter’s output reaches the NSM within a time
interval of

tdetection = τ + 2 · tmsg,PCI = τ + 0.062ms (5)

where τ ≤ 2s is the interval of alive messages specified in the framework.

6.3.1.2 Time Required for Counter Measures. To handle the problem the
FTA sends one or more messages to the MDL to reload the SVD. The time
treload,SVD required for reloading the SVD was measured to be 46 ms. Additional

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:26 • A. Doblander et al.

Table IX. Resource Requirements for Surveillance Tasks According to Bramberger et al. [2004]

QoS QoS CPU RAM
Algorithm Level Description [MIPS] internal external

MPEG-4 Q1 PAL 20 fps 2,840 400 kB 0
MPEG-4 Q2 PAL 10 fps 1,920 400 kB 0

SVD Q1 CIF 12 fps 3,600 500 kB 17 MB
SVD Q2 QCIF 12 fps 900 330 kB 4 MB

time treg,SVD = 1 ms for registering and starting the algorithm, has also to be
considered. Initialization of the SVD takes approximately 10 frames, which
corresponds to tinit,SVD = 500 ms in case of QoS level Q2 with 10 fps. The total
time spent on counter measures adds up to

tcounter = tmsg,PCI + treload,SVD + treg,SVD + tinit,SVD (6)
tcounter = 0.031ms + 46ms + 17ms + 500ms (7)
tcounter = 563.031ms (8)

It can be seen from this result that the overhead of the FTA is negligible
compared to the algorithm-specific reinitialization times. Of course, algorithms
with less initialization time result in less out time of the service in case of
necessary reconfiguration.

6.4 Scenario 2: DSP Crash

In this scenario, the MPEG encoder operates at QoS level Q1 and an importance
of 5 on DSP 1. Additionally, the SVD runs with QoS level Q1 and an importance
value of 2 on DSP 2. Then, the DSP 2 crashes and cannot be rebooted so that
the system has to proceed with only one remaining DSP.

6.4.1 System Response to Scenario 2. As the network processor maintains
a list of currently active algorithms along with their importance values and
DSP assignments, the node state manager (NSM) can determine that the SVD
algorithm is missing on the node.

This is because DSP 2 has not reacted to polling from the MDU for 1s. A
message is sent to the NSM informing that DSP 2 crashed. As resources de-
manded by the MPEG encoder and the SVD on the highest QoS level exceed
the remaining DSP’s computational power of 4,800 MIPS (Table IX), the NSM
has to reconfigure the system. Note that image scaling and the shutter control
for the image sensor takes approximately 1,900 MIPS, which is also considered
by the NSM.

Since the SVD has the lower importance the NSM calculates whether it is
possible to have the MPEG encoder run on QoS level Q1 and the SVD on QoS
level Q2. Hence this is not feasible due to the previously-mentioned overhead
of 1,900 MIPS, the NSM subsequently determines that it is possible to run the
MPEG encoder on Q2 in combination with the SVD on Q2. In that way, the node
chooses to gracefully degrade the QoS as opposed to a degradation of the service
availability. The NSM instructs the MDL to load the SVD onto DSP 1, the MPEG
encoder’s QoS level is adjusted, and relevant information is sent to the logger.
When loading of the SVD onto DSP 1 is finished, the procedure is complete.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:27

6.4.1.1 Time to Fault Recognition. The time elapsed until the fault is rec-
ognized is primarily determined by the polling interval tpolling. By adding the
transfer time of the notification message tmsg,PCI from the polling interface re-
sults in a detection time tdetection of

tdetection = tpolling + tmsg,PCI (9)
tdetection = 1000ms + 0.031ms (10)
tdetection = 1000.031ms. (11)

6.4.1.2 Time Required for Counter Measures. Again the measures for
treload,SVD, treg,SVD, and tinit,SVD of the SVD introduced in Section 6.3.1 can be used
to compute the time for handling the problem. Additionally, the times for read-
justing the MPEG-4 encoder’s QoS level and the time tadapt,MPEG for the encoder
adapting to the new QoS level have to be considered. The MPEG needs only
one frame for adaptation, which corresponds to tadapt,MPEG = 100 ms, respec-
tively. Furthermore, two message sending times are involved in the handling of
this scenario. First, the MDL has to be notified to reload the SVD. Second, the
MPEG encoder has to be commanded to switch to QoS level Q2. Therefore, the
time for necessary reconfigurations to handle the detected problem computes to

tcounter = 2 · tmsg,PCI + treload,SVD + treg,SVD + tinit,SVD + tadapt,MPEG (12)
tcounter = 0.062ms + 46ms + 17ms + 500ms + 100ms (13)
tcounter = 663.062ms. (14)

6.5 Summary

Both of the described scenarios show that the detection and reconfiguration
overhead is dominated by algorithm-specific initialization times. Current al-
gorithm implementations often rely on building some kind of models of the
scene. The quality of the analysis depends strictly on the quality of the models.
Therefore, many frames are used to build up the models before actual analysis
is performed. The encoder algorithms are better in this respect as they do not
rely on sophisticated scene models.

The presented brief results are based on quite restrictive figures for commu-
nication times. That is, typically communication is much faster over the PCI
bus. But to have some upper limit of the detection times the minimum measured
PCI speed was considered.

7. CONCLUSION

In this article, we have presented a novel middleware for embedded smart
camera networks. This middleware is based on a very resource-aware PS archi-
tecture that supports synchronous and asynchronous communication between
tasks in the given dynamic application environment. Our middleware supports
dynamic component composition and enables dynamic task reconfiguration dur-
ing runtime—both of which are quite unusual in such resource-limited dis-
tributed embedded systems.

Although the middleware has been implemented on a SmartCam network
and evaluated in a traffic monitoring application, this research might be useful

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:28 • A. Doblander et al.

for a broader research community. The major lessons we have learned through-
out this research can be summarized as follows:

—There is currently a strong trend towards visual sensor networks, which pro-
cess visual data directly at the sensor nodes and stream abstracted data
throughout the network. The recent developments in smart camera networks
[Aghajan and Kleihorst 2007; Rinner and Wolf 2008b; Rinner et al. 2008]
demonstrate this trend very well. As briefly discussed in the introduction, vi-
sual sensor networks have different requirements on hardware and software
compared to traditional sensor networks. Our middleware addresses these
requirements and is, therefore, applicable to various visual sensor networks
as well.

—Monitoring relevant and critical resources is crucial in distributed embedded
systems. This is especially important in dynamic software environments in-
cluding methods for dynamic loading and reconfiguration. Most middleware
systems, however, monitor only “standard” resources such as CPU utilization
and global memory consumption. Thus, much care must be taken for identi-
fying and monitoring critical resources such as DMA, communication loads,
and the memory consumption for individual segments.

—Our middleware provides mechanisms for dynamic reconfiguration, QoS
adaptation, and resource monitoring. By exploiting these mechanisms, we
have integrated simple but effective fault-tolerance methods in our middle-
ware. Due to its intented simplicity, only very limited guaranties concerning
the fault-tolerance behavior can be achieved. However, our experiments show
that in “real” applications the availability can be significantly improved. Note
that our fault-tolerance architecture is transparent to the application devel-
oper and causes virtually no additional overhead.

There are several directions for future work. A natural direction is to fur-
ther explore the fault tolerance mechanisms of the middleware framework with
the goal of increasing the overall system’s availability. Another line of research
would be to include additional host and networking services in the middleware
framework (compare [Rinner et al. 2007]). These services strongly support the
development of distributed applications. A more general research approach
would deal with the design process of distributed applications based on middle-
ware frameworks. Important topics for this direction are composability, scal-
ability, and portability of the distributed application. Finally, the middleware
framework will be demonstrated in different application scenarios.

ACKNOWLEDGMENTS

This work has taken place at the Institute for Technical Informatics, Graz Uni-
versity of Technology.

REFERENCES

AGHAJAN, H. AND KLEIHORST, R., EDS. 2007. Proceedings of the ACM/IEEE International Confer-
ence on Distributed Smart Cameras (ICDSC’07). ACM, New York.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras • 24:29

AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. 2002. Wireless sensor networks: a
survey. Comput. Netw. 38, 4, 393–422.

BALASUBRAMANIAN, K., WANG, N., GILL, C., AND SCHMIDT, D. C. 2003. Towards composable distributed
real-time and embedded software. In Proceedings of the 8th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems. IEEE, Los Almitos, CA, 226–233.

BECKER, C., SCHIELE, G., GUBBLES, H., AND ROTHERMEL, K. 2003. BASE—a micro-brokerbased mid-
dleware for pervasive computing. In Proceedings of the 1st IEEE International Conference on
Pervasive Computing and Communications. IEEE, Los Alamitos, CA, 443–451.

BRAMBERGER, M. 2005. Distributed dynamic task allocation in clusters of embedded smart cam-
eras. Ph.D. thesis, Institute for Technical Informatics, Graz University of Technology, Graz, Aus-
tria.

BRAMBERGER, M., BRUNNER, J., RINNER, B., AND SCHWABACH, H. 2004. Real-Time video analysis on
an embedded smart camera for traffic surveillance. In Proceedings of the 10th IEEE Real-Time
and Embedded Technology and Applications Symposium. IEEE, Los Alamitos, CA, 174–181.

BRAMBERGER, M., DOBLANDER, A., MAIER, A., RINNER, B., AND SCHWABACH, H. 2006. Distributed smart
cameras for surveillance applications. Computer 39, 2, 68–75.

BRAMBERGER, M., RINNER, B., AND SCHWABACH, H. 2004. An embedded smart Camera on a scalable
heterogeneous multi-DSP system. In Proceedings of the European DSP Education and Research
Symposium.

BRAMBERGER, M., RINNER, B., AND SCHWABACH, H. 2005. A method for dynamic allocation of tasks in
clusters of embedded smart cameras. In Proceedings of the International Conference on Systems,
Man and Cybernetics. IEEE, Los Alamitos, CA, 2595–2600.

CLARKE, M., BLAIR, G. S., COULSON, G., AND PARLAVANTZAS, N. 2001. An efficient component model
for the construction of adaptive middleware. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, R. Guerraoui, Ed. Lecture Notes in Computer
Science. Vol. 2218. Springer, 160–178.

DEMICHIEL, L. G. 1995. The component object model specification. Tech. rep., Microsoft Corpo-
ration.

DEMICHIEL, L. G. 2002. Enterprise JavaBeans specification version 2.1. Tech. rep., SUN Mi-
crosystems.

DOBLANDER, A., RINNER, B., TRENKWALDER, N., AND ZOUFAL, A. 2006a. A light-weight publisher-
subscriber middleware for dynamic reconfiguration in networks of embedded smart cameras.
In Proceedings of the 5th World Scientific and Engineering Academy and Society International
Conference on Software Engineering, Parallel and Distributed Systems. ACM, New York.

DOBLANDER, A., RINNER, B., TRENKWALDER, N., AND ZOUFAL, A. 2006b. A middleware framework for
dynamic reconfiguration and component composition in embedded smart cmeras. WSEAS Trans.
Comput. 5, 3, 574–581.

FRAGA, J., SIQUEIRA, F., AND FAVARIM, F. 2003. An adaptive fault-tolerant component model. In
Proceedings of the 9th IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems. IEEE, Los Alamitos, CA, 179–186.

HANSSON, H., ÅKERHOLM, M., CRNKOVIC, I., AND TÖRNGREN, M. 2004. SaveCCM—a component model
for safety-critical real-time systems. In Proceedings of the 30th EUROMICRO Conference. IEEE,
Los Alamitos, CA, 627–635.

KARSAI, G., SZTIPANOVITS, J., LEDECZI, A., AND BAPTY, T. 2003. Model-integrated development of
embedded software. Proc. IEEE 91, 1, 145–164.

LIN, C. H., WOLF, W., DIXON, A., KOUTSOUKOS, X., AND SZTIPANOVITS, J. 2006. Design and imple-
mentation of ubiquitous smart cameras. In Proceedings of the IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing. IEEE, Los Alamitos, CA, 32–
39.

MAIER, A. 2006. Dynamic power-aware camera configuration in distributed embedded surveil-
lance clusters. Ph.D. thesis, Institute for Technical Informatics, Graz University of Technology,
Graz, Austria.

MAIER, A., RINNER, B., AND SCHWABACH, H. 2005. A hierarchical approach for energy-aware dis-
tributed embedded intelligent video surveillance. In Proceedings of the IEEE/IFIP Interna-
tional Workshop on Parallel and Distributed Embedded Systems. IEEE, Los Alamitos, CA,
12–16.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

24:30 • A. Doblander et al.

MASCOLO, C., CAPRA, L., AND EMMERICH, W. 2002. Mobile computing middleware. In Advanced
Lectures on Networking: NETWORKING 2002 Tutorials, E. Gregori, G. Anastasi, and S. Basagni,
Eds. Lecture Notes in Computer Science, vol. 2497. Springer, Berlin, Germany, 20–52.

MICROSOFT. 2005. .Net Home Page. http://www.microsoft.com/net.
MODY, M. 2006. XDAIS-DM (XDM): A step towards the “plug and play” architecture for multi-

media codecs. TI Developer Conference. http://www.s.ti.com/sc/techlit/sprp496.pdf.
MOLLA, M. M. AND AHAMED, S. I. 2006. A survey of middleware for sensor Networks and

Challenges. In Proceedings of the International Conference on Parallel Processing Workshops
(ICPPW’06). IEEE, Los Alamitos, CA, 223–228.

OBJECT MANAGEMENT GROUP. 2001. Real-Time CORBA 2.0. http://www.omg.org.
OBJECT MANAGEMENT GROUP. 2002. Minimum CORBA 1.0. http://www.omg.org.
OBJECT MANAGEMENT GROUP. 2005. http://www.omg.org/technology/documents/formal/components.

htm.
PITT, E. AND MCNIFF, K. 2001. Java.rmi: The Remote Method Invocation Guide. Addison Wesley,

Upper Saddle River, NJ.
POPE, A. 1998. The CORBA Reference Guide: Understanding the Common Oject Request Broker

Architecture. Addison Wesley, Upper Saddle River, NJ.
RINNER, B., JOVANOVIC, M., AND QUARITSCH, M. 2007. Embedded middleware on distributed smart

cameras. In Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Pro-
cessing (ICASSP’07). IEEE, Los Alamitos, CA, 1381–1384.

RINNER, B., SCHRIEBL, W., WINKLER, T., QUARITSCH, M., AND WOLF, W. 2008. The evolution from
single to pervasive smart sameras. In Proceedings of the ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC’08). ACM, New York.

RINNER, B. AND WOLF, W. 2008a. A bright future for distributed smart cameras (guest editor’s
introduction). Proc. IEEE 96, 10, 1562–1564.

RINNER, B. AND WOLF, W. 2008b. An introduction to distributed smart cameras. Proc. IEEE 96,
10, 1565–1575.

SCHMIDT, D. C. 2002. Middleware for real-time and embedded systems. Comm. ACM 45, 6, 43–48.
SESSIONS, R. 1997. COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley &

Sons, New York, NY.
SYSTEMS, M. C. AND THALES. 2003. Light Weight CORBA Component Model. Tech. rep., Object

Management Group.
TEXAS INSTRUMENTS. 2002. TMS320 Algorithm Standard—Rules and Guidelines. Literature Num-

ber: SPRU352E.
WOLF, W., OZER, B., AND LV, T. 2002. Smart cameras as embedded systems. Computer 35, 9, 48–53.

Received May 2007; revised January 2008; accepted September 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 24, Publication date: April 2009.

