
Bernhard Rinner ∗ Markus Quaritsch

Klagenfurt University, Pervasive Computing Group
Lakeside B02

9020 Klagenfurt, Austria

Embedded Middleware for Smart Camera

Networks and Sensor Fusion

Abstract

Smart cameras are an interesting research field that has evolved over the last decade.
In this chapter we focus on the integration of multiple, potentially heterogeneous,
smart cameras into a distributed system for computer vision and sensor fusion.
An important aspect for every distributed system is the system-level software, also
called middleware. Hence, we discuss the requirements on middleware for distributed
smart cameras and the services such a middleware has to provide. In our opinion
a middleware following the agent-oriented paradigm allows to build flexible and
self-organizing applications that encourage a modular design.

Key words: distributed smart cameras, smart camera middleware, agent-oriented
middleware, sensor fusion

1 Introduction

Smart cameras have been the subject of study in research and industry for
quite some time. While in the ”early days” sensing and processing capabilities
were very limited, we have seen a dramatic progress in smart camera research
and development in the last few years [1,2,3]. Recently, much effort has been
put in the development of networks of smart cameras. These distributed smart
cameras (DSC) [4,5,6] are real-time distributed embedded systems that per-
form computer vision using multiple cameras. This new approach is emerging
thanks to a confluence of demanding applications and the huge computational
and communications abilities predicted by Moore’s Law.

∗ Corresponding author.
Email addresses: Bernhard.Rinner@uni-klu.ac.at (Bernhard Rinner),

Markus.Quaritsch@uni-klu.ac.at (Markus Quaritsch).

Preprint submitted to Elsevier 7 October 2008



While sensing, processing and communication technology is progressing at
high pace, we unfortunately do not experience such a rapid development on
the system-level software side. Designing, implementing and deploying appli-
cations for distributed smart cameras typically is a complex and challenging
endeavor. So we would like to get as much support as possible from system-
level software on the DSC network. Such a system-level software or middleware
system abstracts the network and provides services for the application. As we
will see later in this chapter a DSC network has a significantly different char-
acteristic compared to other well-known network types such as computer net-
works [7] or sensor networks [8]. Thus, we can not directly adopt middleware
systems available for these networks.

From the application’s point of view, the major services a middleware system
should provide are for the distribution of data and control. However, DSC
networks are mostly deployed to perform distributed signal processing appli-
cations. Thus, middleware systems for DSCs should also provide dedicated
services for these applications. Our focus lies on support for distributed image
processing and sensor fusion.

In this chapter we introduce our approach towards a middleware system for
distributed smart cameras. We first present a brief overview of smart camera
architectures and distributed smart camera networks. In Section 4 we focus
on embedded middleware systems where we start with an introduction of a
generic middleware architecture and middleware systems for general-purpose
networks. Middleware systems for embedded platforms as well as the differ-
ences for DSC networks are also covered in this section. Section 5 presents our
agent-based middleware approach for distributed smart cameras. In Section 6
we describe the implementation of our middleware system and present two
cases studies, i.e., a decentralized multi-camera tracking application and sen-
sor fusion case study. Section 7 concludes this chapter with a brief discussion.

2 Smart Cameras

A generic architecture of a smart camera comprised of a sensing, processing
and communication unit is depicted in Figure 1. The image sensor, which is
implemented either in CMOS or CCD technology, represents the data source
of the processing pipeline in a smart camera. The sensing unit reads the raw
data from the image sensor and often performs some preprocessing such as
white balance and color transformations. This unit also controls important
parameters of the sensor, e.g., capture rate, gain, or exposure, via a dedicated
interface. The main image processing tasks take place at the processing unit
which receives the captured images from the sensing unit, performs real-time
image analysis and transfers the abstracted data to the communication unit.

2



C
M

O
S

, C
C

D

preprocessing
image analysis,

video compression
external interfaces:,

USB, Ethernet, WLAN, Firewire

Abstracted
DataSensing Unit Processing Unit Communication Unit

S
en

so
r

sensor control,

Fig. 1. A generic architecture of a smart camera

The communication unit controls the whole processing pipeline and provides
various external interfaces such as USB, Ethernet or Firewire.

These generic units are implemented on various architectures ranging from
system-on-chip (SoC) platforms over single processor platforms to heteroge-
neous multi-processor systems. Field programmable gate arrays (FPGAs), dig-
ital signal processors and/or microprocessors are popular computing platforms
for smart camera implementations. The main design issues for building smart
cameras are to provide sufficient processing power and fast memory for pro-
cessing the images in real-time while keeping the power consumption low.

Smart cameras deliver some abstracted data of the observed scene. It is nat-
ural that the delivered abstraction depends on the camera’s architecture and
application and almost every smart camera currently delivers a different out-
put. Smart cameras perform a variety of image processing algorithms such as
motion detection, segmentation, tracking, object recognition and so on. They
typically deliver color and geometric features, segmented objects or rather
high-level decisions such as wrong way drivers or suspect objects. The ab-
stracted results may either be transferred within the video stream, e.g., by
color-coding, or as a separate data stream. Note that the onboard computing
infrastructure of smart cameras is often exploited to perform high-level video
compression and only transfer the compressed video stream.

3 Distributed Smart Cameras

Visual sensors provide a huge amount of data on a single scene. However, in
many cases a single view is not sufficient to cover a certain region of inter-
est. Parts of a scene may be occluded due to some spatial constraints and
the area covered by a single camera is also very limited. Therefore, multiple
camera installations are required to observe a certain region of interest. By
having different views, distributed vision has the potential to realize many
more complex and challenging applications than single camera systems.

Most installations today follow a centralized architecture where huge amounts
of processing power is provided in the back office for image processing and
scene analysis (e.g. [9,10]). But processing the images of multiple sensors on a
central host has several drawbacks. First of all, the communication costs are

3



very high. Using analog CCTV cameras requires dedicated high-bandwidth
wiring from each camera to the back office and digitalization of the analog im-
ages. But also digital cameras connected via standard Ethernet and commu-
nicating via the Internet protocol (IP) require plenty of bandwidth to transfer
the raw images. Encoding the video data is often not an option because of the
loss in quality and added artifacts which renders the decoded images useless
for further analysis. Another issue of centralized systems is scalability. The
main limiting factors are (1) communication bandwidth that can be handled
in the back office, and (2) processing power required for analyzing the images
of dozens of cameras.

Smart cameras are key components for future distributed vision systems and
promise to overcome the limitations of centralized systems. Distributed com-
puting offers greater flexibility and scalability than centralized systems. In-
stead of processing the accumulated data on a dedicated host, scene analysis
is done in a distributed manner within the smart camera network. Individual
cameras, therefore, have to collaborate on certain high-level tasks (e.g. scene
understanding, behavior analysis). Low-level image processing is done on each
camera. Collaboration among cameras is founded on abstract descriptions of
the scenes provided by individual cameras.

Fault tolerance is another aspect in favor of a distributed architecture. Since
the reliability of a centralized system depends on a single or a few components
in the back office, the whole system may break due to a failure in a single
component. Distributed smart cameras, in contrast, may degrade gracefully.
If a single camera fails, a certain view of the scene is not available; but the
other cameras may compensate failures of single components.

The distributed architecture also influences the communication infrastructure.
Centralized systems demand high-bandwidth links from the cameras to the
central processing host. Smart camera networks, in contrast, communicate
in a peer-to-peer manner and the bandwidth requirements are also signif-
icantly lower because instead of raw image data only abstract information
is exchanged. This further allows to incorporate cameras that are connected
wirelessly. However, in some application domains, e.g. video surveillance, it is
still required to archive the acquired video footage which is typically done on
a central storage server. But this demands significantly less bandwidth com-
pared to systems based on centralized processing since the archived video is
usually of lower resolution and lower frame-rate. Moreover, archiving is done
only in case of certain events for a short period of time.

4



3.1 Challenges of Distributed Smart Cameras

The development of distributed smart cameras poses several new challenges.
Each camera observes and processes the images of a very limited area. High-
level computer vision algorithms, however, require information from a larger
context. Hence, the important part is to partition the algorithms so that in-
termediate results can be exchanged with other cameras in order to work
collaboratively on certain tasks. Lin et al. [11] describe the partitioning of
their algorithm for gesture recognition to be used in a peer-to-peer camera
network. Either the segmented image, contour points, or ellipse parameters
after an ellipse fitting step can be used to recognize the gesture when a person
is observed by two cameras. Collaboration can also be done at lower levels.
Dantu and Joglekar [12] investigated in collaborative low-level image process-
ing, like smoothing, edge detection and histogram generation. Each sensor first
processes its local image region and the results are then merged hierarchically.

Most computer vision algorithms need to know the parameters of the cam-
era. In a smart camera network the cameras also need to know the position
and orientation of the other cameras—at least of cameras in the immediate
vicinity or cameras observing the same scene—in order to do collaborative im-
age analysis. Calibrating each camera manually is possible (c.f. [13,14]), but
this requires a lot of time and effort. Adding a new camera or changing the
position or orientation of a camera necessitates to update the calibration. In
an autonomous distributed system it would be much more appropriate if the
smart cameras are able to obtain their position—at least relative to neighbor-
ing cameras—and orientation by observing their environment and the objects
moving within the scene (e.g. [15,16,17,18]).

In a smart camera network which consists of dozens to hundreds of cameras
it is tedious, if not impossible, to assign each camera certain tasks manually.
Often it is necessary to adapt a given allocation of tasks due to changes in the
network (e.g. adding or removing cameras) or changes in the environment. It
would be more appropriate to assign tasks to the smart camera network as a
whole, possibly with some constraints, and the cameras then organize them-
selves, i.e., form groups for collaboration and assign tasks to certain cameras
or groups of cameras. Reconfiguration due to changes in the environment can
also be done in a self-organizing manner.

Smart camera networks are basically heterogeneous distributed systems. Each
camera comprises different types of processors, and also within the whole net-
work various smart cameras may be deployed. This makes the development
of applications for distributed smart cameras very challenging. A substan-
tial system-level software, therefore, would strongly support the implementa-
tion [19]. On the one hand, the system-level software has to provide a high-level

5



programming interface for applications executed on the smart cameras. The
most important part of the application programming interface is a suitable ab-
straction of the image processing unit. An application has to be able to interact
with the image processing algorithm in a uniform way, regardless of the un-
derlying smart camera platform. On the other hand, the system-level software
should simplify the development of distributed applications for smart camera
networks. Implementing the networking functionality as part of the system
level software is the foundation for collaboration of various applications on
different smart cameras.

3.2 Application Development for Distributed Smart Cameras

Developing applications for a network of distributed smart cameras requires
profound knowledge in several disciplines. First, algorithms for analyzing im-
age data have to be developed or adapted to specific needs. This requires
good knowledge in the domain of computer vision as well as algorithmic un-
derstanding.

The next step is to bring these algorithms onto the embedded smart camera
platform, often with real-time constraints in mind (e.g., operating at 25 fps),
which demands deep knowledge about the underlying hardware and its ca-
pabilities as well as the available resources in order to optimize the imple-
mentation. A set of algorithms is then selected and encapsulated within the
application logic to put together a specific application.

From this description it is obvious, that there are at least three different roles
involved during application development. They are: (1) algorithm developer,
(2) framework developer (platform expert), and (3) application developer (sys-
tem integrator).

A solid middleware with well defined interfaces between the application de-
veloper and algorithm developer would, therefore, greatly enhance the process
of application development for smart camera networks. Reducing the time-to-
market and improved software quality are also beneficial consequences.

4 Embedded Middleware for Smart Camera Networks

A middleware is a system-level software that resides between the applications
and the underlying operating systems, network protocol stacks, and hardware.
Its primary role is to functionally bridge the gap between application programs
and the lower-level hardware and software infrastructure in order to make it

6



Hardware device

Operating system and protocols

Host infrastructure layer

Distribution layer

Common middleware services

Domain-specific middleware services

Applications

Fig. 2. Layers of a general purpose middleware [21].

easier and more cost effective to develop distributed systems [20]. Originally,
middleware implementations were targeted for general purpose applications
with the primary goal to simplify distributed application development; real-
time considerations or resource limitations were not an issue. But nowadays
embedded systems make also use of middleware implementations which poses
additional constraints and requirements on the design and implementation of
the middleware.

4.1 Middleware Architecture

Middleware implementations are usually very comprehensive. They have to
run on different hardware platforms, support various communication channels
and protocols and also bridge applications running on different platforms, pos-
sibly in different programming languages, into a common distributed system.
In order to support flexibility of software on different levels, a layered archi-
tecture is often used. This is also the case for middleware implementations.
A very general partitioning into different layers of abstraction is given by
Schmidt [21] (c.f. Fig. 2).

The operating system along with its hardware drivers, concurrency mecha-
nisms and communication channels builds the basis of each middleware. It con-
tains drivers for the underlying hardware platform and provides basic mech-
anisms for accessing the devices as well as concurrency, process and thread
management, and inter-process communication.

The host infrastructure layer encapsulates the low-level system calls in reusable
modules and enhances communication and concurrency mechanisms. More-

7



over, this layer hides non-portable aspects of the operating system and is the
first step towards a portable and platform independent middleware. The in-
terface provided to higher layers is usually object-oriented. Examples for this
layer are the Java virtual machine or .NET’s common language run-time.

The distribution layer integrates multiple hosts in a network to a distributed
system and defines higher-level models for distributed programming. The dis-
tribution layer enables developers to program distributed applications much
like standalone applications. This layer is comparable to Sun’s Remote Method
Invocation (RMI) in Java or CORBA.

The common middleware services layer augments the subjacent distribution
layer by defining domain independent components and services which can be
reused in applications and thus simplify development. Such components pro-
vide, for example, database connection pooling, threading and fault tolerance
but also services common for distributed applications, e.g. logging or managing
global resources.

The domain specific layer provides services for applications of a particular
domain, e.g. e-commerce or automation. Services provided by this layer are
also intended to simplify application development.

The highest layer of this architecture finally is the application layer. Individual
applications for a distributed system are implemented using services provided
by the lower layers, especially the domain specific layer and the common mid-
dleware services layer

4.2 General Purpose Middleware

In general purpose computing, different middleware implementations have
evolved during the last decades. Probably the most prominent middleware
standard is OMG’s Common Object Request Broker Architecture (CORBA) [22].
CORBA is a distributed object system which allows objects on different hosts
to interoperate across the network. CORBA is designed to be platform inde-
pendent and not constrained to a certain programming language. An object’s
interface is described in a more general language, the interface description
language (IDL), which is then mapped to the native data-types of a program-
ming language. While the CORBA specification is very comprehensive and
heavy-weighted, Real-Time CORBA (RT-CORBA) and Minimum CORBA
have been specified [23,24] for resource constrained real-time systems. Schmidt
et al. implemented with ”TAO” [25] the RT-CORBA specification.

Another middleware for networked system is Microsoft’s Distributed Com-
ponent Object Model (DCOM) [26,27]. DCOM allows software components

8



to communicate over a network via remote instantiation and method invoca-
tions. Unlike CORBA, which is designed for platform and operating system
independence, DCOM is implemented primarily on the Windows platform.

Java Remote Method Invocation (RMI) [28] promoted by Sun follows a simi-
lar approach. RMI allows to invoke a method of an object in a different Java
Virtual Machine, possibly on a different host, and thus simplifies the devel-
opment of distributed Java applications. Java’s integrated object serialization
and marshaling mechanism allows to use even complex objects for remote
method invocations. Although RMI is limited to the Java programming lan-
guage, it is more flexible than DCOM because Java is available for several
platforms.

4.3 Middleware for Embedded Systems

Embedded systems are becoming more and more distributed. Hence, some
form of middleware would greatly support application development for net-
worked embedded devices. Wireless sensor networks are an inherently dis-
tributed system where individual sensors have to collaborate. But the resources
and capabilities of the individual sensors are very limited; typically only a cou-
ple of scalar values are sensed.

The requirements on a middleware for wireless sensor networks are also sig-
nificantly different compared to those in general purpose computing. These
middleware systems focus on reliable services for ad-hoc networks and energy
awareness [29].

Molla and Ahmed [30] survey recent research on middleware for wireless sen-
sor networks. Most implementations are based on TinyOS [31], a component-
oriented, event-driven operating system for sensor nodes (motes). Several in-
teresting approaches have been implemented and evaluated. The spectrum
ranges from a virtual machine on top of TinyOS, hiding platform and op-
erating system details, to more data-centric middleware approaches for data
aggregation (shared tuplespace) and data query. Agilla [32] and In-Motes [33],
for example,use an agent-oriented approach. Agents are used to implement
the application logic in a modular and extensible way and agents can migrate
from one mote to another. Cougar [34] or TinyDB [35] follow the data-centric
approach, integrating all nodes of the sensor network into a virtual database
system where the data is stored distributed among several nodes.

9



4.4 Differences for Distributed Smart Cameras

Compared to the middleware systems described up to now, a middleware for
distributed smart cameras has to fulfill significantly different requirements.
This is merely due to different resource constraints but also a consequence of
the application domain of smart camera networks.

In general purpose computing, platform independence is a major issue. Hence,
several layers of indirection encapsulate these platform dependencies and pro-
vide high-level interfaces. General purpose middleware implementations are,
therefore, rather resource consuming and introduce a noticeable overhead.
Wireless sensor networks, on the other hand, have very tight resource limita-
tions in terms of processing power and available memory and middleware im-
plementations have to cope with this circumstances. Typical embedded smart
camera platforms, as presented in Section 2, lie in-between general purpose
computers and wireless sensor nodes when considering the available resources.
Hence, a middleware for smart camera networks has to find a trade-off be-
tween platform independence, programming language independence and the
the overhead introduced by the middleware.

Distributed smart cameras are intended for processing the captured images
close to the sensor which requires sophisticated image processing algorithms.
Support from the middleware is necessary in order to simplify application
development and integration of image processing tasks into the application .
Moreover, monitoring the resources used by the individual image processing
algorithms is required.

Communication in wireless sensor networks is relatively expensive compared
to processing and thus only used sparingly, e.g., in case of certain events or
to send aggregated sensor data to a base station. Collaboration of individual
nodes is typically inherent to the application. Smart camera networks demand
higher communication bandwidth for sending regions of interest, exchanging
abstract features extracted from the images, or even streaming the video data.

Typical surveillance applications of camera systems comprise several hundreds
up to thousands of cameras (e.g. on airports or train stations) and a plethora
of different tasks have to be executed. Assigning those tasks manually to the
cameras is almost impossible. Hence, the idea is that a user simply defines a
set of tasks that have to be fulfilled (e.g. motion detection, tracking of certain
persons) together with some restrictions and rules what to do in case of an
event. The camera system then allocates the tasks to cameras itself, taking
into account the restrictions imposed by the user. In some cases a task can not
be fulfilled by a single camera. Individual cameras, therefore, have to organize
themselves and collaborate on a certain task. Having a single point of control

10



in such a self-organizing system is discouraged, striving for a distributed and
decentralized control.

According to the discussion of the different requirements it is obvious that
a different kind of middleware is necessary. Middleware for wireless sensor
networks is not intended to cope with advanced image processing tasks and
sending large amounts of data. Adapting general purpose middleware, on the
other hand, would be feasible and able to fulfill the given requirements, but
the introduced overhead would not yield in an efficient resource utilization.

5 The Agent-oriented Approach

Agent oriented programming (AOP) has become more and more prominent in
software development during the last years. The agent oriented programming
paradigm extends the well known object oriented programming paradigm and
introduces active entities, so called agents.

This section gives a short introduction of mobile agent systems. Furthermore,
the use of mobile agents in embedded devices and especially distributed smart
cameras is discussed.

5.1 From Objects to Agents

Agent systems are a common technology for developing general purpose dis-
tributed applications. The agent-oriented paradigm is used in many appli-
cation domains such as electronic commerce [36,37], information manage-
ment [38] or network management [39,40] to name just a few. Although agents
are used in various domains, there exists no common definition of the term
agent. Possibly, the widespread use of agent-oriented programming makes
a definition difficult. Agents are ascribed different properties, depending on
their use. However, for the further considerations, a rather general definition,
adopted from [41], is used:

An agent is a software entity that is situated in some environment and that
is capable of autonomous actions in this environment in order to meet its
design objectives.

The most important property of an agent, and this is common for all uses
of agents, is autonomy. This is also the fundamental distinction from the
object-oriented programming (OOP) paradigm. Agent-oriented programming
can be seen as an extension of object-oriented programming. In object-oriented
programming, the main entity is an object. Objects are used to represent

11



logical entities or a real-world object. An object consists of an internal state,
stored in member-variables, and corresponding methods to manipulate the
internal state. Hence, objects are passive entities as their actions have to be
triggered from outside. Agents extend objects as they are capable to perform
autonomous actions. In other words, agents can be described as pro-active
objects.

As stated in the definition above, agents are situated in an environment. This
environment is usually called agency. The agency provides the required infras-
tructure for the agents. This includes communication and a naming service,
for example. Some requirements for an agency are discussed in [42]. Using
a well-defined agency guarantees that agents are able to interact with their
outside world as well as other agents in a uniform manner. A minimal set of
services is, therefore, defined in the MASIF standard [43,44] and the FIPA
ACL [45] standard. When an agency conforms to one of these standards it
ensures interoperability with other agencies also complying to the same stan-
dard.

Practical applications of agent systems consist of a couple of agents, possibly
up to several dozens, distributed among several environments in a network.
The agents can communicate with each other, regardless of the environment
they inhabit and they may collaborate on a certain task. Agent systems are
thus perfectly qualified for distributed computing. The data as well as the
computation is distributed among the network by using agents. Moreover, if
it is not desired nor feasible to have a central point of control in a system,
agents can also be used to realize decentralized systems where control is spread
among several hosts in a network.

5.2 Mobile Agents

Agents, as described up to now, reside on the same agency during their life-
time. But enhancing the agent-oriented approach with mobility makes this
paradigm much more powerful and also more flexible since they are able to
move from one agency to another. Making agents mobile allows in certain
situations to significantly reduce the network communication. Furthermore,
the execution time of certain tasks can be reduced by exploiting the mobil-
ity of agents. If, for example, an agent requires a specific resource that is
not available on its current host, the agent has two options: either the agent
uses remote communication to access the resource or the agent migrates to
the host on which the resource is available. Which option to choose depends
on whether accessing a resource remotely is possible and also on the costs of
remote interaction versus local interaction.

12



Prominent representatives of mobile agent systems are D’Agents [46], Grasshop-
per [47], Voyager [48], and Diet-Agents [49,50], among others.

5.3 Code Mobility and Programming Languages

Concerning the implementation of mobile agent systems, the agent’s mobil-
ity property incurs some requirements on the programming language. Agent
systems are typically used on a variety of hardware platforms and operating
systems; even within a single network different kinds of hosts may be present.
Mobile agents, however, must be able to migrate to any host within the system
which means that the agent’s code has to be executable on all these hosts.
Therefore, early mobile agent systems were implemented using scripting lan-
guages while in the last couple of years languages based on intermediate code,
i.e. Java and .NET, are preferred. Programming languages that are compiled
to native code such as C or C++ are hardly used for implementing mobile
agent systems.

Scripting languages allow to execute the same code on different platforms
without the need of recompilation. Platform independency is realized by pro-
viding an interpreter or an execution environment which executes the code.
As a consequence, the performance of interpreted code is not convincing. Java
and .NET overcome these limitations by exploiting just-in-time compilers that
generate native code before execution which brings a significant performance
shift.

Another aspect of mobile agents is the migration of agents from one agency
to another. This basically requires the following steps:

• Suspend the agent and save its current internal state and data
• Serialize the agent (data, internal state and possibly code)
• Transfer the serialized agent and its data to the new host
• Create the agent from its serialized form
• Resume agent execution on the new host

Suspending an agent and resuming it on another host is not trivial without
the cooperation of the agent. Hence, two types of migration are distinguished:
(1) weak migration, and (2) strong migration [51].

Strong migration, also called transparent migration, denotes the ability to
migrate both the code and current execution state to a different host. Strong
migration is supported by just a few programming languages and thus agent
platforms (e.g. Telescript [52]); Java and .NET are not among these.

Weak migration, or non-transparent migration, in contrast, requires the coop-

13



eration of the agent. The agent has to make sure to save its execution state
before migrating to another host and resume the execution from its previ-
ously saved state after the migration. Weak migration is supported by all
mobile agent systems.

5.4 Mobile agents for Embedded Smart Cameras

Although agent-oriented programming is widely used in general-purpose com-
puting for modeling autonomy and goal-oriented behavior, it is rather un-
common for embedded systems. The reasons therefore are the significantly
different requirements of software for embedded devices. Resources such as
memory and computing power are very limited; and often embedded systems
have to fulfill real-time requirements. The basically non-deterministic behavior
of autonomous agents further hinders their use in embedded systems.

Nevertheless, research has shown that the agent-oriented programming paradigm
can also enhance software development for embedded systems. Applications
include, among others, process control, real-time control, and robotic (c.f.
[53,54,55]). Stationary agents are used to represent individual tasks within
the system. The communication structure of agents (i.e. which agents com-
municate with one another) is typically fixed according to the physical cir-
cumstances they are used to model and does not change over time.

Smart cameras are also embedded systems and mobile agents are perfectly
suited to manage whole networks of smart cameras. The ultimate goal is that
smart camera networks operate completely autonomously with no or only
minimal human interaction. For example, a smart camera network controls
access to a building and identifies all persons entering the building. When
an unknown person enters the building, the position of the person is tracked
and security staff gets informed. The agent-oriented paradigm can be used
to model individual tasks within the whole system, e.g. face recognition or
tracking. By agent communication tasks on different cameras can collaborate
in order to work jointly on a certain mission.

However, one aspect against using mobile agent systems on embedded smart
cameras is the overhead introduced by commonly used programming lan-
guages, i.e. Java and .NET (c.f. Section 5.3). But this does not necessarily
mean that it is not possible to implement mobile agent systems more effi-
ciently and more resource-aware and thus also applicable on embedded sys-
tems. Mobile-C [56], for example, is a mobile agent system implemented in
C/C++. The development of Mobile-C is motivated by applications that re-
quire direct low-level hardware access. Moreover, this agent system conforms
to the FIPA agent standard and further extends this standard to support the

14



IP Network

Mobile Agent

Fig. 3. Architecture of a smart camera network with a mobile agent system.

mobility of agents. Although the chosen programming language is C/C++,
the agent code is interpreted using the Ch C/C++ interpreter [57]. The task
of an agent is divided into multiple sub-tasks which are organized in a task
list. Upon migration, the next task in the list will be executed.

6 An Agent-System for Distributed Smart Cameras and its Appli-
cation

The feasibility and applicability of the agent-oriented approach on embedded
smart cameras, is presented on two case studies, namely autonomous and
decentralized multi-camera tracking, and sensor fusion. In both case-studies
we focus on the middleware services that simplify application development.
But first of all, a description of our agent system, DSCAgents, is given.

6.1 DSCAgents

DSCAgents is an agent system designed for smart camera networks and basi-
cally suited for different hardware architectures. The design is founded on the
general architecture as described in Section 2, which consists of a communi-
cation unit and a processing unit as well as one or more image sensors. The
operating system on the smart cameras is assumed to be an embedded Linux
but other POSIX-compliant operating systems are also feasible. For efficiency
reasons, the chosen programming language is C++, which also influences the
design to some degree. The concrete implementation targets the SmartCam
platform developed by Bramberger et al. [3].

The overall architecture of a smart camera network and the mobile agent
system is depicted in Figure 3. The smart cameras are connected via wired (or
possibly wireless) Ethernet whereas each camera hosts an agency, the actual

15



PCI

System Agents

DSC Agents

Network Layer

DSPLibACE

DSP Driver
Linux

Application

Host Processor

(a) Host processor
PCI

Processing Unit

DSP BIOS
PCI Messaging
Dynamic Loading

Optional Drivers

. . .Manager
Resource

DSP Framework

. . .

Algorithms
MPEG

Encoding
Video

Analysis

(b) Processing unit

Fig. 4. Software Architecture.

run-time environment for the mobile agents. The agency is situated on the
general purpose processor of the communication unit. Mobile agents represent
the image processing tasks that have to be executed on the smart camera
network.

6.1.1 Software Architecture

Since the underlying hardware architecture is in general a multi-processor
platform, the software architecture has to reflect this. The host processor
handles the communication tasks and thus executes the agent system while the
processing unit is devoted to image processing. Figure 4 depicts the software
architecture of our middleware.

The software architecture on the communication unit can be partitioned into
layers as described in Section 4.1. On the processing unit the Linux kernel
is used as operating system. It already comprises device drivers for a great
number of hardware components, most important networking and busses con-
necting further components. A custom device driver is used to manage the
digital signal processors (DSPs) on the processing unit and exchange mes-
sages between the processors.

The host abstraction layer basically consists of the Adaptive Component En-
vironment (ACE), and the SmartCam framework. ACE [58] is a reusable
C++ framework that provides a portable and light-weight encapsulation of
several communication mechanisms, network communication as well as inter-
and intra-process communication. The DSPLib provides an object-oriented
interface to the processing unit which allows to load and unload executables
on the processing unit as well as exchanging messages between algorithms on

16



the processing unit and applications on the host processor.

The network layer is based on the ACE framework and basically provides
mechanisms to establish network connections between hosts and asynchronous
message-oriented communication. Different low-level protocols are supported.
DSCAgents finally matches the common middleware layer. It provides a run-
time environment for the agents, manages the agent’s life-cycle, and allows
agents on different agencies to communicate with each other.

A number of stationary system agents provide additional services required
for building an application. The NodeManagementAgent is concerned with all
management tasks on a smart camera. This agent is available under a well-
known name and can also be accessed remotely. Services provided by this agent
are agent creation (local as well as remote), monitoring available resources,
and get information about agents in an agency, among others. The SceneInfor-
mationAgent manages all information regarding the vision system. Depending
on the actual deployment this may include camera calibration properties, po-
sition and orientation of the camera, list of neighboring cameras, and visual
properties (e.g. image resolution, color-depth). The ImageProcessingAgent is
the central instance for interacting with the camera’s processing unit. This
agent is only locally accessible, preventing remote execution of image pro-
cessing tasks. The main functionality includes loading an unloading image
processing algorithms, messaging between agents and algorithms, as well as
providing information on the available resources.

On the processing unit, the DSPFramework [59,3] is the foundation for the
algorithms running on the DSPs. The operating system used is DSPBios,
provided by Texas Instruments, which is enhanced with dynamic loading ca-
pabilities and inter-processor messaging. Additional modules, such as optional
drivers or the resource manager, can be loaded dynamically during runtime.
Also the algorithms executed on the DSPs can be loaded and unloaded dy-
namically during operation without interrupting the other algorithms.

6.1.2 Mobility of Agents

DSCAgents supports mobility of agents, i.e., agents can move from one cam-
era to another. Unfortunately, transparent migration is hard to implement in
C++, so we chose weak migration based on remote cloning. Agent migration,
thus, involves the following steps:

(1) The originating agent saves its internal state in a serializable form.
(2) A new agent is created on the destination agency.
(3) The new agent initializes itself with the initial state from the originating

agent.
(4) The originating agent is destroyed.

17



The steps (1) and (3) require the cooperation of the agent, i.e., have to be
implemented by the application developer. The other steps, (2) and (4), are
handled by the agent system. It is not mandatory that the agent’s code is
available on the destination agency. In case it is not available the agent code
can be loaded as a dynamic library which is provided in an agent repository
in the network. This allows to deploy new types of agent during operation of
the camera network.

An agent comprises the image processing algorithms in form of a dynamic
executable which is loaded and unloaded onto the image processing unit as
needed. Hence, the image processing algorithms are also flexible and can be
modified during runtime; even new image processing algorithms can be added
to the system after deployment.

6.1.3 Evaluation

DSCAgents’ implementation targets embedded systems and thus has to use
the scarce resources such as memory and processing power sparingly. Table 1
lists the code-size of DSCAgents and its modules (stripped, cross-compiled bi-
naries). The total consumption of permanent memory, including all libraries,
is less than 3.5 MB. Compared to other agent systems, such as DietAgents,
Grasshopper or Voyager, which require 20 MB and more (this includes the Java
virtual machine and the classpath), DSCAgents is fairly lightweight. A large
portion of the codesize is contributed by the ACE library which not only ab-
stracts networking functionality but contains several other components. When
only the networking capabilities are required, an optimized version of this li-
brary may be compiled without the unnecessary components which further
decrease the codesize.

DSCAgents requires approximately 2.5 MB of RAM after startup. When cre-
ating additional agents, the memory consumption increases: an agency com-
prises 50 agents—which is a fairly large number when thinking of smart cam-
era networks—the memory consumption goes up to 3.3 MB. Of course, this
heavily depends on how much memory the agent itself allocates. But for the
purpose of this evaluation an agent was used that allocates no additional mem-
ory. Note that in this case each agent has its own thread of execution which
accounts for the greater part of the allocated memory.

Table 2 summarizes the execution times for agent creation, agent migration
and loading an image processing algorithm. Creating a new agent on our
camera takes about 4.5 ms and 10.1 ms creating the agent locally and on a
remote agency, respectively. Regarding mobility of agents it is interesting to
know, how long it takes to move an agent from one camera to another. Since
DSCAgents uses remote cloning, the time for agent migration is the same as

18



Libraries 2680 MB

ACE 2060 kB

Boost 442 kB

SmartCam Framework 178 kB

DSCAgents 885 kB

Total 3565 kB
Table 1
Memory consumption.

Time

Creating an agent (local) 4.49 ms

(remote) 10.11 ms

Loading image processing algorithm 17.86 ms
Table 2
Execution times for frequent operations measured on the embedded smart camera.

for remote agent creation. Loading an image processing algorithm from an
agent takes approximately 18 ms. This includes also the time required to send
the executable through the DSPAgent to one of the DSPs.

Figure 5 investigates in agent communication and shows the average trans-
mission time against the message size. Note the logarithmic scale of the x-
and y-axis. The presented values are the average of 20 runs. Messaging be-
tween agents on the same camera can be done very fast and is independent of
the message size because this does not require to send the message over the
network. Messaging between agents on different hosts is somewhat higher and
also depends on the message size. For small messages (about 1000 Byte, the
interface’s MTU) the messaging times are nearly constant. As the message
size increases, it also takes longer until the sending agent receives an acknowl-
edgment. The time required for larger messages goes linear with the message
size.

6.2 Decentralized Multi-camera Tracking

We have implemented an autonomous decentralized tracking method that fol-
lows the so-called tag-and-track approach. This means that not all moving
objects within the monitored area are tracked but only a certain object of
interest. Furthermore, the tracking task is only executed on the camera that
currently sees the target while all other cameras are not affected. The basic
idea is to virtually attach a tracking instance to the object of interest. The

19



 1

 10

 100

 1000

 10000

 100  1000  10000  100000  1e+06  1e+07

Ti
m

e 
(m

s)

Message Size (bytes)

local remote

Fig. 5. Average messaging time.

t t   > t t   > t0 01 12

Fig. 6. Basic idea of decentralized object tracking.

tracking instance (i.e. the agent) then follows its target in the camera network
from one camera to another. Mobility of agents inherently supports this highly
dynamic tracking approach and furthermore allows to use different tracking
and handoff strategies as well as different tracking algorithms, even after de-
ployment of the whole system. Figure 6 illustrates the position of the target
together with its tracking instance over time. A more elaborate discussion is
given in [60]

6.2.1 Tracking Application

Following the target from one camera to the next is done without a central
control instance. Moreover, the camera topology is stored in a distributed

20



manner on the camera’s SceneInformationAgent. Neighborhood relations are
represented by so-called migration regions. A migration region is basically
a polygon in 2D image coordinates that has assigned a list of neighboring
cameras and a motion vector for distinguishing different directions. Hence,
the migration regions define a directed graph representing the neighborhood
relations among cameras.

The tracking instance is made up of a tracking algorithm for following the
position of a moving object in a single view and a mobile agent containing the
application logic. A strict separation between tracking algorithm and applica-
tion logic allows on the one hand to equip an agent with different algorithms
for object tracking, depending on the application or environmental conditions.
On the other hand, different strategies for following an object within the smart
camera network can be implemented using the same tracking algorithm.

6.2.2 Target Handoff

The most crucial part in our multi-camera tracking approach is the target
handoff from one camera to the next. The handoff requires the following basic
steps:

(1) Select the “next” cameras where the target may appear next
(2) Migrate the tracking instance to the next cameras
(3) Re-initialize the tracking task
(4) Re-detect the object of interest
(5) Continue tracking

Identifying the potential next cameras for the handoff uses the neighborhood
relations as discussed previously. The next two steps of the handoff procedure
are managed by the mobile agent system. Object re-detection and tracking
are then continued on the new camera.

The tracking agent may use different strategies for the target handoff [61]. We
use the master/slave approach which has the major benefit that the target is
observed as long as possible. During handoff, there exist two or more track-
ing instances dedicated to one object of interest. The tracking instance that
currently has the target in its field of view is called master. When the target
enters a migration region, the master initiates the creation of the slaves on
all neighboring cameras. The slaves in turn re-initalize the tracking algorithm
with the information passed from the master and wait for the target to appear.
When the target enters the slave’s field of view, it becomes the new master
while the old master and all other slaves terminate. A sophisticated handoff
protocol is used to create the slaves on the neighboring cameras, elect the
new master and terminate all other tracking instances after successful target
handoff. The handoff protocol minimizes the time to create the slaves and also

21



handles undesired situations (e.g. the target does not appear on a neighboring
camera, or more than one slaves claim to have the target detected).

The presented tracking approach has been implemented and tested on track-
ing a person in our laboratory. Figure 7 illustrates target handoff from one
camera to another, showing the view of both cameras in the upper part of the
screenshots and the agents residing on the camera in the lower part. Note that
the views of both cameras overlap which is not mandatory. The highlighted
square in the camera’s view denotes the position of the tracked person and the
rectangles on the left and right illustrate the migration regions of camera A
and B, respectively. Tracking the person is started on camera A (cf. Figure 7a).
During handoff (Figure 7b) two tracking instances are present, one on each
camera (the highlighted rectangle in the lower part of the screenshot repre-
sents the tracking agent). After the handoff, camera B continues tracking the
person (cf. Figure 7c).

6.2.3 Evaluation

When following an object in a smart camera network, the migration times of
the tracking agent are very critical. If the handoff is too slow, it may occur
that the tracker is not able to find the target any more or that the target
has already left the destination camera’s field of view. Hence, the duration for
target handoff is subject of evaluation.

During target handoff, three time intervals can be identified. These time in-
tervals have been quantified and summarized in Table 3a. When the tracked
object enters the migration region, it takes about 18 ms to create the slave
agent on the next camera. Starting the tracking algorithm on the DSP requires
24 ms. This includes loading the dynamic executable to the DSP, starting the
tracking algorithm and reporting the agent that the tracking algorithm is
ready to run. Initializing the tracking algorithm by the slave agent using the
information obtained from the master agent takes 40 ms. Hence, the total
migration time is about 80 ms.

In case a migration region points to more than one neighboring cameras, a slave
has to be created on each neighboring camera. The master creates all its slaves
almost in parallel exploiting asynchronous communication. Nevertheless, the
number of slaves slightly increases the handoff times (cf. Table 3b).

6.2.4 Middleware Support

For the multi-camera tracking application the following middleware services
are helpful and necessary:

22



(a) Tracker on camera A

(b) Handover to camera B: the person is in
the migration region (highlighted square)

(c) Tracker on camera B

Fig. 7. Visualizing tracking a person among two cameras. Note that he acquired
image of a camera and the current position of the person are updated at different
rates. Hence, in image (b) the highlighted position is correct while the background
image is inaccurate.

Mobility. Tracking agents are, due to their mission, inherently highly mobile.
They follow their target from one camera to the next. Hence, the middle-
ware has to support this mobility and providing agents a fast and reliable
migration mechanism. DSCAgents supports mobility of agents as general
service by means of remote cloning (cf. Section 6.1.2).

Dynamic task loading. A consequence of the chosen tag-and-track approach
is that only the camera which currently observes the object has to execute
the tracking algorithm and the agent decides which tracking algorithm to
use. Hence, the tracking algorithm is loaded by the agent on the camera

23



Creating slave on neighboring camera: 18 ms

Loading dynamic executable: 24 ms

Reinitializing tracking algorithm on slave camera: 40 ms

Total 82 ms

(a) Handoff to a single camera

Number of neighbors Time

1 82 ms

2 98 ms

3 105 ms

4 126 ms

(b) Handoff to multiple neighbors
Table 3
Evaluation of the handoff times

when the agent arrives and unloaded on agent departure. Object tracking
has tight timing constraints, even during target handoff. Hence, loading
image processing tasks has to be considerably fast.

Dynamic task loading is considered as domain-specific service that is pro-
vided by the ImageProcessingAgent. This agent handles the whole com-
munication with the image processing part and also supports to load dy-
namic executables together with the framework on the image processing
unit (cf. Figure 4).

Neighborhood relations. In order to follow an object over the camera net-
work, it is crucial to know the position and orientation of the cameras within
the network. The middleware, therefore, has to manage and update informa-
tion on the camera topology, preferably autonomously and in a distributed
manner to keep the whole system fault tolerant.

Neighborhood relations are also a domain-specific service which is pro-
vided by the SceneInformationAgent. For our evaluation, the agent reads
the configuration from a file. But in a real-world deployment this agent
should observe the activities in the scene and learn the camera parameters
automatically.

6.3 Sensor Fusion

The next step in distributed smart cameras is to use not only visual sensors
but also integrate other kinds of sensors like infrared cameras, audio sensors
or induction loops, among others. The intention is to get more reliable and
more robust data while reducing ambiguity and uncertainty. But in order to

24



make advantage of these different sensors it is necessary to correlate the data
somehow, i.e. fuse the information from individual sensors.

A lot of research has been conducted over the last decades in sensor fusion.
Several data fusion algorithms have been developed and applied, individually
and in combination, providing users with various levels of informational de-
tails. The key scientific problems, which are discussed in the literature [62,63],
can also be addressed to the three fusion levels:

Raw-data Fusion: The key problems, which have to be solved at this level
of data abstraction, can be referred to as (i) data association and (ii) po-
sitional estimation [64]. Data association is a general method of combining
multi-sensor data by correlating one sensor observations set with another set
of observations. Common techniques for solving the positional estimation
problem are focused on Kalman filtering and Bayesian methods.

Feature Fusion: These approaches are typically addressed by (i) Bayesian
Theory and (ii) Dempster-Shafer Theory. Bayesian Theory is used to gener-
ate a probabilistic model of uncertain system states by consolidating and in-
terpreting overlapping data provided by several sensors [65]. Bayesian theory
is limited in its ability to handle uncertainty in sensor data. Dempster-Shafer
theory is a generalization of Bayes reasoning that offers a way to combine
uncertain information from disparate sensor sources. Recently, methods for
statistical learning theory, i.e., support vector machines [66] have been suc-
cessfully applied to feature-level fusion

Decision Fusion: Fusion at the decision level combines the decisions of in-
dependent sensor detection/classification paths by Boolean operators or by
a heuristic score (e.g., M-of-N, maximum vote or weighted sum). The two
basic methods for making classification decisions are hard decisions (single,
optimum choice) and soft decision in which decision uncertainty in each
sensor chain is maintained and combined with a composite measure of un-
certainty. There are a few investigations undertaken on level three data
fusion in the literature.

6.3.1 The Fusion Model

In the I-SENSE project [67] we investigated in distributed sensor fusion per-
formed in a network of embedded sensor nodes. Our fusion model supports
fusion at multiple levels, i.e., raw-data fusion, feature-based fusion, and deci-
sion fusion. Moreover, the fusion model considers the data flow in the sensor
network as well as the resource restrictions on the embedded sensor nodes.

The fusion model describes the functionality of the distributed fusion applica-
tion and consists basically of a set of communicating tasks located on different
nodes within the network. A directed acyclic graph G is used to represent the

25



 

Fig. 8. Example of a simple fusion model.

fusion tasks (nodes) as well as the data flow between those tasks (edges). Each
node has some properties describing the resource requirements of the task and
the edges also indicate the required communication bandwidth between two
tasks.

Figure 8 depicts a simple example of a fusion model. The sensor tasks (e.g.
V1, . . . ,V4, A1, A2 in Figure 8) always build the bottom layer of the fusion
tree. These tasks acquire the data from the environment, independent from
other tasks. Fusion tasks (e.g. F1 and F2 in Figure 8) and filter tasks (e.g. F3,
F4, F5 in Figure 8) form the higher layers in the fusion tree. Fusion tasks fully
depend on data from other fusion tasks or sensor tasks to produce an output.
Upon new input data, the fusion task has to ensure the temporal alignment
and calculate the output vector. Filter tasks are similar to fusion tasks except
they have only one input channel.

Raw data fusion is done in the lower layers of the fusion graph (e.g. F1 or F2)
since the input for these fusion tasks is the raw data of the sensor tasks. Feature
fusion takes place in the middle layers of the fusion graph; features from other
fusion tasks are fused to an overall feature vector. Decision fusion is done in
the upper layers of the fusion graph. Either features from a previous fusion
stage are used to generate a decision (e.g. classification) or multiple weak
decisions are used to calculate more reliable decisions. The border between
feature fusion and decision fusion in the fusion graph is not strict but depends
on the current application.

We have evaluated the presented fusion model on vehicle classification, exploit-
ing visual and acoustic data. Therefore, we collected a database consisting of
about 4100 vehicles which are either large trucks, small trucks and cars.

The vision-only classifier predicts cars very well (95.19%) but it has problems

26



in distinguishing between small trucks and large trucks. Quite similar results
are obtained when using acoustic features only. However, fusing data from both
sensors increases the classification performance for all three vehicle classes [67].

6.3.2 Middleware Support

In our fusing approach, the individual fusion tasks are distributed among the
nodes and can be reallocated from one node to another. Also the communica-
tion structure between individual fusion tasks may change over time. Hence,
implementing such a general sensor fusion approach benefits from having a
substantial middleware which provides the fundamental services.

Sensor interfaces. Each platform is equipped with a different set of sensors.
Although the sensing tasks have to know how to interpret the data from
the according sensors, the middleware has to provide a general interface for
each class of sensors (i.e. visual sensors, audio sensors). Hence, the sensing
tasks do not have to cope with low level sensor interaction but can use
the according interface provided by the middleware. This also makes the
integration of new sensors easier because it is not required to modify each
sensing task but only include the device driver into the middleware. The
sensor interfaces are part of the framework on the processing unit and are
provided by optional drivers. These drivers are loaded by the middleware
from the host processor according to the platform’s capabilities. Connect-
ing the sensors and the algorithms follows the publisher/subscriber design
pattern [68].

Dynamic task loading. In order to build a flexible framework for sensor
fusion, it is possible to reallocate a task executed on one node to another.
Hence, it is necessary to load and start task dynamically during runtime
on the embedded platform without interrupting other tasks but also stop
certain fusion tasks. This domain-specific service is provided by the Im-
ageProcessingAgent together with the framework on the image processing
unit.

Resource monitoring. The resource monitoring has to keep track of all re-
sources consumed by the image processing tasks, in particular memory,
processing power, DMA channels, communication bandwidth, among oth-
ers. Fusion tasks can only be allocated to a certain node if there are sufficient
resources available.

Time synchronization. Distributed sensor data fusion implies a uniform
time-base for all nodes. Without a system wide synchronized clock it would
be impossible to combine results from different sensors. Therefore, the mid-
dleware has to provide a service that keeps all the nodes synchronized and
also the individual processors on a single platform. A dedicated agent is
responsible to provide this service. For our evaluation the network time

27



protocol 1 (ntp) was sufficient, but one may also implement other synchro-
nization mechanisms.

7 Conclusion

In this chapter we investigated in middleware for distributed smart cam-
eras. Smart cameras combine image sensing, considerable processing power
and high-performance communication in a single embedded device. Recent
research focuses on the integration of several smart cameras into a network
and thus building a distributed system devoted to image processing. Middle-
ware services for distributed systems are used in many application domains,
ranging from general purpose computing to tiny embedded systems such as
wireless sensor networks. But as discussed in this chapter, the requirements on
a middleware for distributed smart cameras are considerably different. Hence,
a more specialized kind of middleware is required, taking into account the
special needs of distributed smart cameras.

We have proposed to use the agent-oriented approach for managing distributed
smart cameras and building applications. Mobile agents are autonomous en-
tities that “live” within the network. The autonomous and goal-oriented be-
havior of agents allows to create self-organizing distributed smart cameras. In
two case-studies we demonstrate the agent-oriented approach on decentralized
multi-camera tracking and sensor fusion, respectively. Moreover, we discuss
important services a middleware has to provide in the application domains of
distributed computer vision and sensor fusion.

From our experience, this middleware eases the development of DSC applica-
tions in the several ways: First, it provides a clear separation between algo-
rithm implementation and coordination of these algorithms among different
cameras. Second, it strongly supports scalability, i.e., to develop applications
for a variable number of cameras. Finally, the available resources can be better
utilized by dynamic loading and dynamic reconfiguration services which are
usually not available on embedded platforms.

However, there are still a lot of open questions for middleware systems for
distributed embedded platforms in general. Topics for further research in-
clude (i) support for the application development process (development, op-
eration, maintenance, etc.), (ii) resource awareness as well as (iii) scalability
and interoperability—just to name a few.

1 http://www.ntp.org/

28

http://www.ntp.org/


References

[1] R. Kleihorst, B. Schueler, A. Danilin, Architecture and Applications of
wireless Smart Cameras (Networks), in: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007),
Honolulu, Hawaii, USA, 2007.

[2] W. Wolf, B. Ozer, T. Lv, Smart Cameras as Embedded Systems, Computer
35 (9) (2002) 48–53.

[3] M. Bramberger, A. Doblander, A. Maier, B. Rinner, H. Schwabach, Distributed
embedded smart cameras for surveillance applications, IEEE Computer 39 (2)
(2006) 68–75.

[4] H. Aghajan, R. Kleihorst (Eds.), Proceedings of the ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC 07), Vienna, Austria, 2007.

[5] R. Kleihorst, R. Radke (Eds.), Proceedings of the ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC 08), Stanford, CA, USA,
2007.

[6] B. Rinner, W. Wolf, Introduction to Distributed Smart Cameras, Proceedings
of the IEEE 96 (10), to appear.

[7] A. S. Tanenbaum, M. van Steen, Distributed Systems: Principles and
Paradigms, Prentice Hall, 2006.

[8] I. F. Akyildiz, T. Melodia, K. R. Chowdhury, A survey on wireless multimedia
sensor networks, Computer Networks 51 (2007) 921–960.

[9] R. Collins, A. Lipton, T. Kanade, A System for Video Surveillance and
Monitoring, in: American Nuclear Society 8th Internal Topical Meeting on
Robotics and Remote Systems, 1999.

[10] C.-F. Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior, Y. Tian,
Ibm smart surveillance system (s3): a open and extensible framework for event
based surveillance, in: Proceedings of the IEEE Conference on Advanced Video
and Signal Based Surveillance,, 2005, pp. 318–323.

[11] C. H. Lin, T. Lv, W. Wolf, I. B. Ozer, A Peer-to-Peer Architecture for
Distributed Real-Time Gesture Recognition, in: Multimedia and Expo, 2004.
ICME ’04. 2004 IEEE International Conference on, Vol. 1, 2004, pp. 57–60
Vol.1.

[12] R. Dantu, S. P. Joglekar, Collaborative vision using networked sensors, in:
Information Technology: Coding and Computing, 2004. Proceedings. ITCC
2004. International Conference on, Vol. 2, 2004, pp. 395–399 Vol.2.

[13] Q. Cai, J. K. Aggarwal, Tracking human motion in structured environments
using a distributed-camera system, Pattern Analysis and Machine Intelligence,
IEEE Transactions on 21 (11) (1999) 1241–1247.

29



[14] R. Collins, A. Lipton, H.Fujiyoshi, T. Kanade, Algorithms for cooperative
multisensor surveillance, in: Proceedings of the IEEE, Vol. 89, 2001, pp. 1456–
1477.

[15] J. Košecká, W. Zhang, Video Compass, in: Proceedings of the 7th European
Conference on Computer Vision, Vol. 2353, 2002, p. 476.

[16] B. Bose, E. Grimson, Ground Plane Rectification by Tracking Moving
Objects, in: Proceedings of the Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance (VS-
PETS), 2003.

[17] S. Khan, M. Shah, Consistent labeling of tracked objects in multiple cameras
with overlapping fields of view, Transactions on Pattern Analysis and Machine
Intelligence 25 (10) (2003) 1355–1360.

[18] R. Pflugfelder, H. Bischof, Online Auto-Calibration in Man-Made Worlds, in:
Digital Image Computing: Technqiues and Applications, 2005. DICTA ’ 05.
Proceedings, 2005, pp. 519–526.

[19] B. Rinner, M. Jovanovic, M. Quaritsch, Embedded Middleware on Distributed
Smart Cameras, in: International Conference on Acoustics, Speech, and Signal
Processing, No. 4, 2007, pp. 1381–1384.

[20] R. E. Schantz, D. C. Schmidt, Research advances in middleware for distributed
systems, in: Proceedings of the IFIP 17th World Computer Congress - TC6
Stream on Communication Systems: The State of the Art, Kluwer, B.V.,
Deventer, The Netherlands, The Netherlands, 2002, pp. 1–36.

[21] D. C. Schmidt, Middleware for Real-Time and Embedded Systems,
Communications of the ACM 45 (6) (2002) 43–48.

[22] A. Pope, The CORBA Reference Guide: Understanding the Common Object
Request Broker Architecture, Addison Wesley, 1998.

[23] D. G. Schmidt, F. Kuhns, An overview of the real-time corba specification,
Computer 33 (6) (2000) 56–63.

[24] Minimum CORBA Specification, http://www.omg.org/
technology/documents/formal/minimum_CORBA.htm, last visited: Jun. 2008
(2008).

[25] D. C. Schmidt, D. L. Levine, S. Mungee, The design of the tao real-time object
request broker, Computer Communications 21 (4).

[26] D. Box, Essential COM, Addison Wesley, 2007.

[27] R. Sessions, COM and DCOM: Microsoft’s Vision for Distributed Objects, John
Wiley & Sons, 1997.

[28] E. Pitt, K. McNiff, Java.rmi: The Remote Method Invocation Guide, Addison
Wesley, 2001.

30

http://www.omg.org/technology/documents/formal/minimum_CORBA.htm
http://www.omg.org/technology/documents/formal/minimum_CORBA.htm


[29] Y. Yu, B. Krishnamachari, V. K. Prasanna, Issues in designing middleware for
wireless sensor networks, Network, IEEE 18 (1) (2004) 15–21.

[30] M. M. Molla, S. I. Ahamed, A survey of middleware for sensor network and
challenges, in: Parallel Processing Workshops, 2006. ICPP 2006 Workshops.
2006 International Conference on, 2006, p. 6 pp.

[31] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, D. Culler, Tinyos: An operating system for sensor
networks, in: Ambient Intelligence, Springer Berlin / Heidelberg, 2005, pp. 115–
148.

[32] C.-L. Fok, G. C. Roman, C. Lu, Rapid Development and Flexible Deployment
of Adaptive Wireless Sensor Network Applications, in: Distributed Computing
Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference
on, 2005, pp. 653–662.

[33] D. Georgoulas, K. Blow, Making Motes Intelligent: An Agent-Based Approach
to Wireless Sensor Networks, WSEAS on Communications Journal 5 (3) (2006)
525–522.

[34] P. Bonnet, J. Gehrke, P. Seshadri, Towards Sensor Database Systems, in:
Mobile Data Management, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2001, pp. 3–14.

[35] S. R. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, Tinydb: an
acquisitional query processing system for sensor networks, ACM Trans.
Database Syst. 30 (1) (2005) 122–173.

[36] M. Yokoo, S. Fujita, Trends of Internet auctions and agent-mediated Web
commerce, New Gen. Comput. 19 (4) (2001) 369–388.

[37] T. Sandholm, eMediator A next generation electronic commerce server,
Computational Intelligence 18 (4) (2002) 656–676.

[38] K. Stathis, O. de Bruijn, S. Macedo, Living memory: agent-based information
management for connected local communities, Interacting with Computers
14 (6) (2002) 663–688.

[39] W.-S. E. Chen, C.-L. Hu, A mobile agent-based active network architecture for
intelligent network control, Information Sciences 141 (1-2) (2002) 3–35.

[40] L.-D. Chou, K.-C. Shen, K.-C. Tang, C.-C. Kao, Implementation of
Mobile-Agent-Based Network Management Systems for National Broadband
Experimental Networks in Taiwan, in: Holonic and Multi-Agent Systems for
Manufacturing, Springer Berlin / Heidelberg, 2003, pp. 280–289.

[41] M. Wooldridge, Intelligent Agents: The Key Concepts, Vol. 2322 of Lecture
Notes in Computer Science, Springer-Verlag GmbH, 2002.

[42] Y. Aridor, M. Oshima, Infrastructure for mobile agents: Requirements and
design, in: Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
1998, pp. 38–49.

31



[43] MASIF Standard, ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf, last
visited: Jun. 2008 (1998).

[44] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
J. White, MASIF: The OMG Mobile Agent System Interoperability Facility,
in: F. H. K. Rothermel (Ed.), Lecture Notes in Computer Scienc, Vol. 1477,
Springer-Verlag GmbH, 1998, pp. 50–67.

[45] Foundation for Intelligent Physical Agents, Agent Communication Language,
http://www.fipa.org/repository/aclspecs.html, last visited: Jun. 2008
(2007).

[46] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, D. Rus, D’Agents:
applications and performance of a mobile-agent system, Softw. Pract. Exper.
32 (6) (2002) 543–573.

[47] C. Bäumer, T. Magedanz, Grasshopper — A Mobile Agent Platform for Active
Telecommunication Networks, in: Intelligent Agents for Telecommunication
Applications, Springer Berlin / Heidelberg, 1999, pp. 690–690.

[48] T. Wheeler, Voyager Architecture Best Practices, Tech. rep., Recursion
Software, Inc. (March 2007).

[49] P. Marrow, M. Koubarakis, R.-H. van Lengen, F. J. Valverde-Albacete,
E. Bonsma, J. Cid-Suerio, A. R. Figueiras-Vidal, A. Gallardo-Antoĺın,
C. Hoile, T. Koutris, H. Y. Molina-Bulla, A. Navia-Vázquez, P. Raftopoulou,
N. Skarmeas, C. Tryfonopoulos, F. Wang, C. Xiruhaki, Agents in Decentralised
Information Ecosystems: the DIET Approach, in: Proceedings of the Artificial
Intelligence and Simulation Behaviour Convention 2001 (AISB01), Symposium
on Information Agents for Electronic Commerce, 2001, pp. 109–117.

[50] C. Hoile, F. Wang, E. Bonsma, P. Marrow, Core Specification and Experiments
in DIET: A Decentralised Ecosystem-inspired Mobile Agent System, in:
Proceedings 1st Int. Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS2002), pp. 623-630, July 2002, Bologna, Italy, 2002, pp. 623–630.

[51] A. Fugetta, G. P. Picco, G. Vigna, Understanding Code Mobility, in: IEEE
Transactions on Software Engineering, Vol. 24, IEEE Press, 1998, pp. 324–362.

[52] J. E. White, Telescript technology: mobile agents, Mobility: Processes,
Computers, and Agents (1999) 460–493.

[53] A. J. N. Van Breemen, T. De Vries, An Agent based framework for designing
Multi-controller Systems, in: J. Bradshaw, G. Arnold (Eds.), Proceedings of
the 5th International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM 2000), The Practical Application
Company Ltd., Manchester, UK, 2000, pp. 219–236.

[54] N. R. Jennings, S. Bussmann, Agent-based control systems: Why are they
suited to engineering complex systems?, Control Systems Magazine, IEEE 23 (3)
(2003) 61–73.

32

ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf
http://www.fipa.org/repository/aclspecs.html


[55] C. E. Pereira, L. Carro, Distributed real-time embedded systems: Recent
advances, future trends and their impact on manufacturing plant control,
Annual Reviews in Control 31 (1) (2007) 81–92.

[56] B. Chen, H. H. Cheng, J. Palen, Mobile-C: a mobile agent platform for mobile
C-C++ agents, Softw. Pract. Exper. 36 (15) (2006) 1711–1733.

[57] H. H. Cheng, Ch: A C/C++ Interpreter for Script Computing, C/C++ User’s
Journal 24 (1) (2006) 6–12.

[58] D. C. Schmidt, An Architectural Overview of the ACE Framework, in: USENIX
login, 1998.

[59] A. Doblander, A. Maier, B. Rinner, H. Schwabach, A Novel Software
Framework for Power-Aware Service Reconfiguration in Multi-Reconfiguration
in Distributed Embedded Smart Cameras, in: Proceedings of the 12th IEEE
International Conference on Parallel and Distributed Systems (ICPADS’06),
Minneapolis, Minnesota, USA, 2006, pp. 281–288.

[60] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, B. Strobl, Autonomous
Multi-Camera Tracking on Embedded Smart Cameras, EURASIP Journal on
Embedded Systems 2007 (2007) 10.

[61] M. Bramberger, M. Quaritsch, T. Winkler, B. Rinner, H. Schwabach,
Integrating Multi-Camera Tracking into a Dynamic Task Allocation System
for Smart Cameras, in: Proceedings of the IEEE International Conference on
Advanced Video and Signal Based Surveillance, 2005.

[62] J. Llinas, D. L. Hall, An Introduction to Multi-Sensor Data Fusion, in:
Proceedings of the 1998 IEEE International Symposium on Circuits and
Systems, Vol. 6, 1998, pp. 537–540.

[63] D. L. Hall, J. Llinas, Handbook of Multisensor Data Fusion, CRC Press, 2001.

[64] B. V. Dasarathy, Information Fusion - what, where, why, when, and how?, in:
Proceedings of the 4th International Conference on Information Fusion, Vol. 2,
2001, pp. 75–76.

[65] B. Moshiri, M. R. Asharif, R. H. Nezhad, Pseudo Information Measure: A New
Concept for extension of Bayesian Fusion in Robotic Map Building, Journal of
Information Fusion 3 (2002) 51–68.

[66] V. Vapnik, Statistical Learning Theory, Wiley, New York, US, 1998.

[67] A. Klausner, A. Tengg, B. Rinner, Distributed multi-level Data Fusion for
Networked Embedded Systems, IEEE Journal on Selected Topics in Signal
Processing 2 (4) (2008) 536–555.

[68] A. Doblander, A. Zoufal, B. Rinner, A novel software framwork for embedded
multiprocessor smart cameras, ACM Transactions on Embedded Computing
Systems. Accepted for publication.

33


	Introduction
	Smart Cameras
	Distributed Smart Cameras
	Challenges of Distributed Smart Cameras
	Application Development for Distributed Smart Cameras

	Embedded Middleware for Smart Camera Networks
	Middleware Architecture
	General Purpose Middleware
	Middleware for Embedded Systems
	Differences for Distributed Smart Cameras

	The Agent-oriented Approach
	From Objects to Agents
	Mobile Agents
	Code Mobility and Programming Languages
	Mobile agents for Embedded Smart Cameras

	An Agent-System for Distributed Smart Cameras and its Application
	DSCAgents
	Decentralized Multi-camera Tracking
	Sensor Fusion

	Conclusion
	References

