
A Pervasive Smart Camera Network Architecture
applied for Multi-Camera Object Classification

Wolfgang Schriebl, Thomas Winkler,
Andreas Starzacher and Bernhard Rinner

Pervasive Computing Group
Institute of Networked and Embedded Systems

Klagenfurt University, AUSTRIA
Email: {firstname.lastname}@uni-klu.ac.at

Abstract—Visual sensor networks are an emerging research
area with the goal of using cameras as pervasive and affordable
sensing and processing devices. This paper presents a pervasive
smart camera platform which is built from off-the-shelf hardware
and software components. The hardware platform is comprised of
an OMAP 3530 processor, 128 MB RAM and various interfaces
for connecting sensors and peripherals. A dual-radio wireless
network allows to trade communication performance for power
consumption. The software architecture is built upon standard
Linux and supports dataflow oriented application development
by dynamically instantiating and connecting functions blocks.
Data is transferred between blocks via shared memory for high
throughput. We present a performance evaluation of our smart
camera platform as well as a multi-camera object classification
system to demonstrate the capabilities and applicability of our
approach.

I. INTRODUCTION AND MOTIVATION

Smart cameras, characterized by performing on-board video
analysis, start to be adopted for real-world applications like
assisted living [1]. Typically these systems rely on fixed infras-
tructure like Ethernet and mains power supply. Visual sensor
networks represent an emerging trend in research, combining
aspects of smart cameras and wireless sensor networks. A
key factor for cameras to become truly pervasive sensors
embedded in our environment, is a reduction of infrastructure
requirements. The less fixed infrastructure is necessary and the
less manual configuration is needed, the easier end users will
be able to deploy such systems.

As power consumption is an important issue, visual sensor
networking platforms often are specifically designed for a
certain purpose, exposing only limited interface options as
well as using low performance components. While those
aspects are important when it comes to actual deployment, they
are problematic when using such a system for research and
development. One approach to overcome this issue is to rely
on simulation during research but we believe it can not fully
replace practical evaluations. For that reason we implemented
a pervasive smart camera prototype based on standard, off-
the-shelf components. While our approach is not as optimized
for low power consumption as specifically designed systems
are, it allows us to easily change parts or extend our system
to evaluate new ideas.

As individual nodes in a visual sensor network only ob-
serve a limited area and are constrained in computational

capabilities, cooperation among cameras is required. Over
time, different software frameworks have been proposed for
distributed applications and wireless sensor networks. Many
frameworks like CORBA, DCOM or RMI are designed to
be used on workstations or other high performance systems
and therefore are heavyweight or too complex for use in
embedded environments. Sensor network middleware [2] [3]
on the other hand, typically is designed for handling small
amounts of data and does not scale well in the context of
smart cameras where large image data has to be processed
on the nodes and occasionally also exchanged between nodes.
As existing middleware systems do not properly fit the domain
of visual sensor networks, we propose in this work a simple
and lightweight framework specifically addressing the needs
of pervasive smart cameras.

The remainder of this paper is organized as follows: Section
II presents selected platforms used in visual sensor networking
as well as middleware systems targeted at smart cameras. In
sections III and IV we present our prototype hardware platform
and our software framework. Section VI presents details of a
sample application we implemented and which is evaluated in
section VII. Section VIII finally concludes the paper.

II. RELATED WORK

Several platforms for visual sensor networks have been
developed. Rinner et al. [4] and Akyildiz et al. [5] present
comprehensive overviews.

Citric [6] represents a more recent platform where a custom
camera module featuring a PXA270 CPU at 624MHz and
64MB RAM is combined with a Telos Sky mote that provides
802.15.4 network connectivity. For application management, a
client/server scheme is implemented where users can logon to
nodes and assign tasks. The user that first logs on to a node
becomes the manager and has full control until logout.

The design of middleware addressing the requirements of
smart cameras has been discussed in [7] where the mobile
agent paradigm is used for application development. An agent
represent a specific task consisting of a low-level computer
vision part executed on a DSP and a high-level part concerned
with reasoning and decisions aspects. The agent paradigm
allows applications to freely move from camera to camera
following e.g. a tracked object. Aside from the split into the

agent logic and the image processing parts, applications are
not further broken down into reusable sub-components. Initial
versions of the agent system implemented in Java have been
replaced by a C version for increased performance.

Doblander et al. [8] focus on the system-level software
required for efficient streaming applications on single smart
cameras as well as on networks of distributed smart cameras.
Their software framework is based on a publisher-subscriber
architecture and provides mechanisms for dynamically loading
and unloading software components as well as for graceful
degradation in case of software- and hardware-related faults.
This framework has been implemented on multi-processor
smart cameras.

The ASAP middleware [9] is a scalable distributed archi-
tecture for a multi-modal sensor network. Features of this
architecture include the generation of prioritization cues that
allow the infrastructure to pay selective attention to data
streams of interest; the virtual sensor abstraction that allows
easy integration of multi-modal sensing capabilities; and the
dynamic redirection of sensor sources to distributed resources.

In [10] the HIVE middleware is presented that supports the
formation of vision processing pipelines. Basic components
or services are called drones which can be composed to
form applications called swarms. Drones are implemented
as processes which communicate with other drones in their
swarm using an event model. Data produced by a drone is
wrapped as an event which then is distributed using TCP/IP to
the drones subscribed to that event. Directly sharing memory
between drones on the same devices seems to be not supported.

Scallop [11] is a framework for distributed vision sen-
sor networks based on peer-to-peer concepts. The system is
implemented using the .NET framework and is intended to
be used on PCs and workstations. System configuration as
well as messaging has been implemented based on XML.
Consequently, binary data such as images is encapsulated in
XML messages for transmission. Messages and events are
delivered to consumer asynchronously using callbacks.

III. THE PSC HARDWARE ARCHITECTURE

Figure 1 shows our pervasive smart camera platform.

Fig. 1. A Pervasive Smart Camera prototype based on an embedded
processing board, a webcam, an 802.11 radio and a mote for 802.15.4 wireless
connectivity.

The platform is based on the Beagleboard1 equipped with

1http://www.beagleboard.org (March 2009)

an OMAP 3530 processor from Texas Instruments. The pro-
cessor is based on an ARM Cortex-A8 clocked at 480MHz
plus an additional TMS320C64x+ digital signal processor
running at 430MHz. The system provides 128MB RAM and
256MB NAND flash. Peripherals can be attached via USB,
I2C, SPI, DVI as well as stereo in/out. In our setup, USB
is used to connect a Logitech QuickCam S5500, an RA-
Link 802.11b/g WiFi adapter as well as a SunSPOT mote
providing 802.15.4 wireless connectivity. For development and
debugging purposes, the nodes additionally are equipped with
USB to Ethernet adapters as there is no Ethernet interface
on-board.

In the field of visual sensor networks, power consumption
is an important aspect. Using WiFi networking allows us to
occasionally transmit video streams which can be useful to
inspect and evaluate events reported by the camera network.
During normal operation however, where only small amounts
of data are exchanged between cameras for control and co-
ordination, WiFi is too power intensive. For that reason, in
[12] we have proposed the approach of equipping our cameras
with an additional 802.15.4 radio. The resulting dual radio
network allows us to trade communication performance for
power consumption based on the actual requirements of the
application. An example of such a dual-radio network is shown
in figure 2. Since achievable communication distances for
802.15.4 networks typically are lower than those of 802.11, the
network is augmented with nodes only equipped with 802.15.4
radios which are used for packet forwarding.

high performance radio link

low performance radio link

camera node with high and
low performance radio

low performance radio
data sink with high and

low performance radio
communication node with

Fig. 2. PSC networking architecture. Camera nodes are equipped with two
radios (high and low performance) while intermediate nodes are equipped
with only a single, low-performance radio.

As an operating system a Debian GNU/Linux distribution
compiled for the ARM platform together with an OMAP
specific kernel is used. Without any optimizations, the system
currently requires 500MB of the 8GB SD card it is stored on.

IV. THE PSC SOFTWARE ARCHITECTURE

To simplify application development and to allow re-use
of components, a software framework has been designed that
supports composition of applications from individual blocks
which are instantiated and interconnected at runtime. The

selected approach for the middleware framework follows the
concept of modeling the dataflow between the individual
components.

Conceptually, every block has an output memory where its
results can be accessed by subsequent blocks. To maintain
consistency of the stored data, access to the memory is
guarded by a lock that is passed between the producing and
consuming block similar to a token. Blocks can form chains
of arbitrary length where each pair of blocks is connected
by a shared memory and a lock. In our implementation,
a block as shown in figure 3, is realized as an individual
operating system process expecting well-defined input data
and generating output consumable by subsequent blocks. The
shared memories are implemented as POSIX shared memory
synchronized by an inter-process locking mechanism.

�������
���������	

������������
�������������

������
����

������
����

����������
�������������

Fig. 3. In the PSC framework, applications are composed of single function
blocks that communicate using shared memory.

Each block is accompanied by a block description file
containing information about the input the block expects,
possible parameters including descriptions of legal values as
well as a description of the format of the output that is
generated by the block. This information is vital when blocks
get instantiated and processing chains are formed. A block
description example is given in figure 4.

Using separate processes instead of threads for the pro-
cessing blocks offers a number of benefits. Blocks can be
implemented in any programming language as long as there
exists shared memory and locking support. This allows to
e.g. use native code in places where performance is critical
such as low-level data processing and to rely on higher level
languages for e.g. statistics generation, system configuration
and networking aspects. Moreover, separate processes allow to
more easily implement watchdog functionality that monitors
individual parts of the processing chain and restarts blocks as
required.

Processing blocks do not directly support multiple con-
sumers for their output memory. To overcome this limitation,
a central entity running on every camera node called the
NodeManager is introduced. Once a block has written its data
to its output memory, it passes the lock to the NodeMan-
ager who in turn gives the lock to all registered consumer
blocks which then can perform parallel read access to the
memory. Once all consumer blocks have returned the lock,
the NodeManager passes the lock for the shared memory to
the producer block which can now fill it with new data. Note
that the producer block does not necessarily have to be idle
while not holding the memory lock but it can continue with

General section with block name and class.
general = {

’serviceName’ : ’CameraCapture’,
’serviceClass’ : blkconf.CLS_IMG_INPUT,
’executable’ : ’camera_capture’,

}

Additional block configuration options
not directly related to input or output.
config = {

’nodeman’ : blkconf.BooleanType
}

Capture block has no further inputs.
inputs = {
}

Data format for output buffer.
outputOptions = {

0 : {
’resolution’ : blkconf.IMG_RES_640_480,
’format’ : blkconf.IMG_FMT_RGB,
’fps_max’ : 10,
’outmem_size’ : 1228800,

},
1 : {
’resolution’ : blkconf.IMG_RES_320_240,
’format’ : blkconf.IMG_FMT_RGB,
’fps_max’ : 20,
’outmem_size’ : 307200,

}
}

outputs = {
Block only supports one output buffer.
0 : outputOptions

}

Fig. 4. A sample description of a block that captures images from a sensor:
Blocks can be looked up and instantiated either by their name or the class
they belong to. Additionally, the block description holds the name of the
executable, configuration options as well as the input requirements and the
output options to choose from upon block creation.

internal processing as required. As shown in figure 5, there
exists exactly one NodeManager per camera. Per definition,
the NodeManager not only is responsible for lock management
but also is the only entity that creates new block instances. This
allows it to keep track of running blocks and their connections.
Additionally, the NodeManager monitors the available system
resources and can decide whether creation of additional blocks
is allowed or not.

In addition to block creation and lock management, the
NodeManager offers the following additional services which
are exposed by means of a remote procedure call interface.

Query Service: A client can query what blocks are currently
running on a node and which other blocks are available
and could be instantiated. The block description includes the
resources required by a block, required inputs and parameters
as well as its outputs.

Resource Monitoring: The NodeManager constantly mon-
itors the available system resources. This information is re-

�����������
	
�������
�
�
��

����

������
��
����

�������
������
�
����

���
�����
�����

���

������
�
����
���
��

����

�������������

����
��
��
����

�������������

Fig. 5. The NodeManager is responsible for creating processing chains
and lock management. The output of individual blocks is stored in a shared
memory that can be accessed by one or more consumer blocks. Final results
of processing chains typically are made available as a subscribable service
which can be consumed by other nodes or client applications.

quired do determine if additional blocks can be instantiated
on the node.

Processing Chain Management: In this framework, an
actual application is composed of multiple blocks forming a
processing chain. These chains are instantiate and managed
by the NodeManager based on an application description con-
taining the required blocks and their appropriate sequence. As
interaction between processing blocks is based on cooperative
behavior, the NodeManager should ensure that blocks e.g. re-
turn locks within a predefined timeframe. Additionally, blocks
are expected to send a periodic life-beat to the NodeManager
used by a watchdog to restart processes if required.

Remote Subscription Service: Typically, output data pro-
duced by blocks is consumed locally on the same node the
block is running. In case of a distributed processing scenario
where intermediate results are required by other hosts or data
can not be processed locally due to resource constraints, output
shared memories can be accessed remotely. If a processing
chain makes use of such remote data, the NodeManager of the
system the producing block is located on, is responsible for
copying the data via the network to a shared memory located
at the host of the consumer block. To maintain synchronicity
of the processing chain, the memory lock is also passed via
the network and returned once the consumer block is finished.
From the consumer blocks perspective, access to a remote
shared memory is not different from accessing a local shared
memory as memory copying is transparently managed by the
involved NodeManagers.

V. FRAMEWORK EVALUATION

In this section we present an evaluation of the proposed
framework. For that purpose, special performance testing
blocks are used which behave as follows: A producer block
acquires the lock for its output shared memory, copies the
specified amount of data to the shared memory and releases
the lock. A consumer block consumes the data of the shared
memory by copying the shared memory to a local buffer and
then returns the lock. As the copied data is not processed
further and therefore no additional computing time is required,
the performance testing blocks are well suited to evaluate the
performance of the framework with respect to shared memory
and lock management. Producer and consumer blocks are
implemented in C using the C standard library and are running
as native processes.

Four scenarios are chosen for evaluating different aspects
of the framework, namely single consumer with and without
NodeManager, multiple consumers and single remote con-
sumer. To get comparative values for the framework perfor-
mance, the measurements were also carried out using a recent
PC platform. Figures 6, 7, 8 and 9 present the measurement
results numerically and graphically.

1) Single Consumer without NodeManager: Figure 6
presents the results for two blocks directly connected to-
gether without intermediate NodeManager. The times involve
acquiring the lock, copying data and releasing the lock for
both blocks. It is dominated by the overhead for locking and
unlocking with about 150µs for small shared memories, and
grows linearly for memory sizes above 50 kB.

2) Single Consumer: Figure 7 presents the results for two
blocks interconnected via NodeManager. Compared to the
scenario without NodeManager, the times also involve lock
transfers to and from the NodeManager as well as admin-
istrative overhead. On the camera platform this leads to an
overhead between 200 and 400µs for the investigated memory
sizes.

3) Multiple Consumers: Figure 8 presents the results for
one producer block and 16 consumer blocks. Compared to
scenario 2, the times involve lock handling and data consump-
tion of 15 additional consumers. On the camera platform this
leads to a runtime increase of factor 9 to 10 for all evaluated
memory sizes.

4) Single Remote Consumer: Figure 9 presents the results
for two blocks connected remotely via wireless network. The
times involve the transfer of lock messages, unlock messages
and shared memory via network. For 802.11, the constant over-
head for locking dominates below 1 kB, with nearly increasing
times above 10 kB. The times for 802.15.4 reflect the lower
bandwidth and higher latency compared to 802.11, resulting in
nearly linear growing transfer times for memory sizes above
100 Bytes. Compared to the local communication scenario,
the overhead for locking and unlocking is about 1.5 ms when
using 802.11, and 17.1 ms when using 802.15.4.

1 Byte 1 kB 10 kB 50 kB 100 kB 1 MB
PSC 0.148 0.153 0.215 0.491 0.928 10.142

Desktop 0.038 0.040 0.042 0.058 0.076 1.356
all values given in [ms]

(a) Times for memory transfer including lock acquisition and release
between two directly connected blocks. The PSC figures were measured on
the camera platform, the Desktop figures on an 1.6 GHz Core2Duo machine.

0 200 400 600 800 1000 1200
[kB]

0

2

4

6

8

10

12

[m
s]

PSC
Desktop

(b) Graphical representation of the times given in table 6(a).

Fig. 6. Direct block to block communication without NodeManagers.

1 Byte 1 kB 10 kB 50 kB 100 kB 1 MB
PSC 0.359 0.368 0.454 0.751 1.258 10.530

Desktop 0.062 0.063 0.068 0.084 0.140 1.390
all values given in [ms]

(a) Times for memory transfer including lock acquisition and release
between two blocks connected by an intermediate NodeManager. The PSC
figures were measured on the camera platform, the Desktop figures on an
1.6 GHz Core2Duo machine.

0 200 400 600 800 1000 1200
[kB]

0

2

4

6

8

10

12

[m
s]

PSC
Desktop

(b) Graphical representation of the times given in table 7(a).

Fig. 7. Block to block communication via NodeManager. Comparing
with figure 6, results show that the overhead introduced by the intermediate
NodeManager are about 1 ms on the camera platform.

1 Byte 1 kB 10 kB 50 kB 100 kB 1 MB
PSC 3.216 3.364 4.215 7.572 11.940 96.599

Desktop 0.458 0.464 0.495 0.655 0.872 13.480
all values given in [ms]

(a) Times for memory transfer including lock acquisition and release
between one producer block and 16 consumer blocks with an intermediate
NodeManager. The PSC figures were measured on the camera platform, the
Desktop figures on an 1.6 GHz Core2Duo machine.

0 200 400 600 800 1000 1200
[kB]

0

20

40

60

80

100

[m
s]

PSC
Desktop

(b) Graphical representation of the times given in table 8(a).

Fig. 8. Communication between one producer and 16 consumers via an
intermediate NodeManager.

1 100 1 kB 10 kB 50 kB 100 kB 1 MB
Byte Bytes

802.11 1.89 1.90 2.13 7.05 27.51 51.42 496.77
802.15.4 17.51 30.42 150.23 1.51 s 7.69 s 15.42 s -

all values given in [ms] if not stated otherwise

(a) Times for memory transfer including lock acquisition and release between
two blocks located on different cameras involving two NodeManagers. Com-
munication performance was evaluated with 802.11b/g and 802.15.4 radios.

100 101 102 103 104 105 106 107

[Bytes]

100

101

102

103

104

105

[m
s]

802.11
802.15.4

(b) Graphical representation of the times given in table 9(a).

Fig. 9. Communication between two blocks over the wireless network.

VI. CASE STUDY: COOPERATIVE CLASSIFICATION

The proposed software architecture is based on processing
blocks which produce and consume data in a distributed
manner. Although abstracting the network, applications must
be designed with low-bandwidth networking in mind, therefore
information should be abstracted in-node to reduce com-
munication overhead inbetween nodes. To demonstrate and
evaluate the in-network processing behavior of the architecture
as well as local capabilities of the camera nodes in a real-
world scenario, we implemented an application for cooperative
person classification using multiple uncalibrated cameras.

The goal of multi-camera person classification is to improve
the detection rate achieved by a single smart camera using
object information from multiple views. The level of abstrac-
tion at which data is distributed among nodes should be high
to keep communication efforts low and processing distributed.
The application for this case study uses decision level as object
abstraction. Decisions about the class of a person are generated
locally by each camera, and these decisions are fused at a
single node to come to a final classification result.

The application shows two aspects typically found in the
area of pervasive smart cameras: (1) In-node image processing
and fusion of local features with high demands in processing
and memory capabilities and (2) in-network processing on
a high level of data abstraction with demands in inter-node
communication capabilities.

Architecture and Implementation

����������	�����
����
��������������

����������	�
�����	�

�������� �������� ��������

����������������

����

���������	�������

����

����	���� ��������

����

����	����	�����
����
!�"�����������

����������������

����

���������	�������

����

����	���� ��������

����

����	����	�����
����
!�"�����������

����������������

����

���������	�������

����

����	���� ��������

����

����������	�
�����	�

����	����	�����
����
!�"�����������

Fig. 10. This figure shows the application structure used in the person
classification evaluation scenario. The setup consists of three cameras each
running a chain of video acquisition, object detection, feature extraction and
soft decision blocks. The camera tasked with the decision fusion is running
an additional block that remotely access the decision output from the other
cameras. To simplify the figure, the NodeManagers have been omitted.

The mapping of functions to building blocks of the software
architecture is not strict, but is a trade-off between good

reusability of blocks running simple functions and overhead
caused by every block. Figure 10 gives an overview of the
application and how the image processing and classification
chain is mapped onto blocks. All blocks are implemented in
C or C++, using the OpenCV [13] image processing library
for image processing and classification.

The video acquisition block grabs images from the video
sensor in YCrCb format and forwards the frames unprocessed
to subsequent blocks.

The object detection block uses frame differencing with
a color and lighting based adaptive background model to
extract pixels of interest. After postprocessing the resulting
foreground segments using median, erode and dilate, blobs
larger than a threshold are labeled as object of interest. Only
the largest object of interest is forwarded as person. The
block does not distinguish between persons and other moving
objects, and does not forward more than one person in the
field-of-view at any given time, as those scenarios are not
considered by the case study.

The feature extraction block extracts features distinctive for
different persons. As an identical classifier should be able to
run on different uncalibrated cameras in the network, the type
of features must be tolerant to perspective and lighting as well
as to scale and orientation of the objects. We have chosen the
color distribution represented by the 2D histogram spanned by
the chrominance channels of the object as features. Choosing a
histogram resolution of 4 for each channel results in a feature
vector of 16, which proved well-suited for our application with
respect to accuracy and complexity.

The feature fusion block classifies a person resulting in a
soft decision, which is the class the object most likely belongs
to. Two different variants of this block, based on different
classifier models are available in the system, namely naive
bayes and artificial neural network. The classifier models
are trained offline using features extracted from one or more
cameras with an overlapping field of view. Assuming the use
of features that do not depend on e.g. lighting conditions
or camera position and calibration, a classifier trained with
samples from a set of cameras can be used as common
classifier for several cameras.

The decision fusion block computes a final hard decision
about the class of an object. The soft decisions generated
by each node are transmitted to this block running on a
predetermined node, and a final hard decision is generated
using majority voting. To further improve this approach, not
only the detected classes but also the likelihoods for the soft
decisions or a confidence weight for the cameras could be
taken into account.

VII. CASE STUDY EVALUATION

At our institute, we have deployed a testbed consisting of
several camera nodes as described in section III. The wall-
mounted cameras are powered via Power-Over-Ethernet from
a central switch. From there the nodes can be individually
turned on and off. The Ethernet is not only used for power

supply but also for control and management to the camera
nodes.

For the person classification application outlined in section
VI, three cameras overlooking a common area have been
selected. The cameras have not been calibrated. The first row
of blocks in figure 11 presents images acquired by each of
the three cameras with the same person present in the field
of view of every camera. The second row of images shows
the result of the object detection performed locally on every
camera. The detected objects are then passed to the feature
extraction blocks with their results shown in the third row
of figure 11. In the last processing step that is performed
locally on each camera, soft decisions are computed. The soft
decisions are then transmitted via 802.15.4 to the designated
node tasked with decision fusion, finally producing a hard
decision as shown in the last row of figure 11. Note that the
data presented in figure 11 corresponds to the outputs of the
processing blocks of figure 10.

As the amount of exchanged data is very small, all inter-
camera communication in this application is performed via
802.15.4. Specifically, the transmitted soft decisions easily fit
into a packet payload of a few bytes containing a node identi-
fier and the class of the detected object. This data can easily be
transmitted in a single radio packet of the SunSpots providing
a maximum payload of 95 bytes per packet. Transmission of
such a single packet including involved memory locks, was
measured to take 19 ms.

Feature Vector
01: 0.000029
02: 0.002296
03: 0.014350

 ...
16: 0.003444

Feature Vector
01: 0.000295
02: 0.000015
03: 0.005603

 ...
16: 0.030816

Feature Vector
01: 0.000034
02: 0.000337
03: 0.017200

 ...
16: 0.028666

Soft Decision:
Class 1

Soft Decision:
Class 1

Soft Decision:
Class 2

Hard Decision:
Class 1

Camera 1 Camera 2 Camera 3

Fig. 11. The output data of the individual processing steps: Image acquisition,
object detection, feature extraction and classification (soft decisions). In the
last step, the soft decisions are transmitted to a predetermined node that fuses
them into a common hard decision. The shown data corresponds to the output
of the processing blocks of figure 10.

For classification, a Naive Bayes Classifier (NBC) and an
Artificial Neural Network (ANN) are used. The classifiers are

trained offline for three classes using a training set of 50
records per class for every camera. As an alternative to using
local classifiers for every camera, a common classifier has
been trained using a training set of 450 feature vectors (50 per
camera per class). As the features used in this application have
been chosen to be independent from lighting, perspective and
scale of the observed objects, the common classifier should
be usable for all cameras. This considerably increases the
flexibility of the system as it allows to add cameras without
requiring training of a specific classifier.

Figure 12 presents the classification results for a test set of
150 records. Local classification on a camera node, producing
a soft decision for an incoming feature vector, takes 396µs
using NBC and 490µs for ANN respectively.

Naive Bayes Neural Network
Camera 1 90.00 % 90.66 %
Camera 2 98.66 % 98.66 %
Camera 3 92.66 % 98.00 %

Fused Result 98.66 % 100.00 %

Fig. 12. Classification rates using a local classifier for each camera. The
fused result represents the classification rate for the final hard decisions.

Figure 13 presents the classification results for the same test
set of 150 records. Contrary to the previous case, a common
classifier is used for all cameras instead of individually trained
classifiers.

Naive Bayes Neural Network
Camera 1 93.33 % 90.66 %
Camera 2 92.66 % 95.33 %
Camera 3 88.66 % 98.00 %

Fused Result 98.00 % 99.33 %

Fig. 13. Classification rates with a common classifier used for all cameras.
The fused result represents the classification rate for the final hard decisions.

To provide an overview of the times required for the
individual steps of the processing chain, table 14 summarizes
the results. Additionally, figures of the memory consumption
for each step are given. These include the output shared
memories of the blocks as well as estimates of the memory
allocated internally by the blocks. Note that those buffers are
allocated only once when the blocks are instantiated. In total,
the propagation of one frame through the processing chain
until a hard decision is reached is below 225 ms.

VIII. CONCLUSION AND FUTURE WORK

In this work we presented a pervasive smart camera sys-
tem built from off-the-shelf components, providing a flexi-
ble and expendable platform for research and development.
Complementary to the hardware platform we designed and
implemented a software framework supporting composition of
applications based on well defined, reusable components. To
demonstrate the feasibility of our approach we implemented
and evaluated a multi-camera person classification application.

Time Memory
Image Acquisition 4.5 ms 545 kB

Object Detection 165.0 ms 5005 kB
Feature Extraction 30.0 ms 250 kB

NBC Feature Fusion 0.4 ms 332 kB
ANN Feature Fusion 0.5 ms 310 kB

802.15.4 Transmission 19.0 ms n/a
Decisions Fusion 0.1 ms 15 kB

Node Manager 5.0 ms 2950 kB
Total <225.0 ms <9500 kB

Fig. 14. The figures show the time consumed by the individual components
running on the camera platform for one frame passing through the processing
pipeline. Within a processing chain either NBC or ANN are performed.
Memory is not allocated for every frame but initially when the blocks are
created. The time consumed by the NodeManager covers all shared memory
and lock management operations. Since the NodeManager is implemented in
Python, its memory footprint also includes the Python runtime environment.

While the system presented in this work forms a solid basis,
there are numerous directions for ongoing research including:

System Autonomy: In the demonstrated application, the
classifiers are trained offline and the node performing decision
fusion is predetermined. Ideally the system should be able to
dynamically determine the roles of the nodes at runtime as
well as provide basic online learning support to be able to
adapt to a changing environment.

Asynchronous Communication: In the proposed framework,
processing chains are designed to work fully synchronous.
While this is a desired feature for many applications, there
are situations where asynchronous behavior is preferred. In
cases where a block e.g. has multiple blocks consuming
its output, the producer can not provide new data until all
consumers have completed their task. The overall performance
is dictated by the slowest block. An asynchronous inter-block
communication mechanism should be added that allows blocks
to communicate without blocking each other.

Power Consumption Evaluation: In this work, the important
issue of power consumption is not addressed. In ongoing work,
the power consumption of the system under different load
conditions as well as the communication power requirements
will be evaluated.

Performance Enhancements: Up to now, all computations
are performed on the ARM core. The presented results could
be improved by taking advantage of the NEON floating point

unit which could considerably improve OpenCV based image
processing which heavily used floating point operations.

Additionally, the DSP core that is part of the Cortex-A8 is
not yet used. One approach would be to move certain tasks
like low level image processing to the DSP. The component
based system architecture should allow to easily incorporate
DSP blocks into the processing chains.

REFERENCES

[1] S. Fleck and W. Strasser, “Smart Camera Based Monitoring System and
Its Application to Assisted Living,” Proc. IEEE, vol. 96, no. 10, pp.
1698–1714, Oct. 2008.

[2] M. Molla and S. Ahamed, “A Survey of Middleware for Sensor Network
and Challenges,” in Proc. of the 35th International Conference on
Parallel Processing Workshops (ICPPW), Columbus, Ohio, USA, Aug.
2006, pp. 1–6.

[3] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, “50 Ways to build
your Application: A Survey of Middleware and Systems for Wireless
Sensor Networks,” in Proc. of the IEEE Conference on Emerging
Technologies & Factory Automation (ETFA), Patras, Greece, Sep. 2007,
pp. 466–473.

[4] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf, “The
Evolution from Single to Pervasive Smart Cameras,” in Proc. of the
2nd ACM/IEEE International Conference on Distributed Smart Cameras
(ICDSC), Stanford, California, USA, Sep. 2008, pp. 1–10.

[5] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless Multimedia
Sensor Networks: Applications and Testbeds,” Proc. IEEE, vol. 96,
no. 10, pp. 1588–1605, Oct. 2008.

[6] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,
M. Meingast, S. Oh, S. Wang, P. Yan, A. Y. Yang, C. Yeo, L.-C. Chang,
J. Tygar, and S. S. Sastry, “CITRIC: A Low-Bandwidth Wireless Camera
Network Platform,” in Proc. of the 2nd ACM/IEEE International Con-
ference on Distributed Smart Cameras (ICDSC), Stanford, California,
USA, Sep. 2008, pp. 1–10.

[7] M. Quaritsch, B. Rinner, and B. Strobl, “Improved Agent-Oriented Mid-
dleware for Distributed Smart Cameras,” in Proc. of the 1st ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC), Vi-
enna, Austria, Sep. 2007, pp. 297–304.

[8] A. Doblander, A. Zoufal, and B. Rinner, “A Novel Software Framwork
for Embedded Multiprocessor Smart Cameras,” ACM Transactions on
Embedded Computing Systems, vol. 8, no. 3, pp. 1–30, Apr. 2009.

[9] J. Shin, R. Kumar, D. Mohapatra, U. Ramachandran, and M. Ammar,
“ASAP: A Camera Sensor Network for Situation Awareness,” in Proc. of
the 11th International Conference on Principles of Distributed Systems
(OPODIS), Guadalupe, French West Indies, Dec. 2007, pp. 31–47.

[10] A. Afrah, G. Miller, D. Parks, M. Finke, and S. Fels, “HIVE: A Dis-
tributed System for Vision Processing,” in Proc. of the 2nd ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC), Stan-
ford, California, USA, Sep. 2008, pp. 1–9.

[11] P. Saastamoinen, S. Huttunen, V. Takala, M. Heikkilae, and J. Heikkilae,
“SCALLOP: An Open Peer-to-Peer Framework for Distributed Sensor
Networks,” in Proc. of the 2nd ACM/IEEE International Conference on
Distributed Smart Cameras (ICDSC), Stanford, California, USA, Sep.
2008, pp. 1–9.

[12] T. Winkler and B. Rinner, “Pervasive Smart Camera Networks exploiting
heterogeneous wireless Channels,” in Proc. of the IEEE International
Conference on Pervasive Computing and Communications (PerCom),
Galveston, Texas, USA, Mar. 2009, pp. 296–299.

[13] G. R. Bradski and A. Kaehler, Learning OpenCV - Computer Vision
with the OpenCV Library, 1st ed. O’Reilly, Oct. 2008.

