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Using acoustic 

detection and 

classification 

of vehicles, 

the proposed 

autonomous self-

learning framework 

generates scene 

adaptive vehicle 

classifiers without 

the need to hand 

label any video data.

Transport Safety Council (www.etsc.eu), 
approximately 39,000 people were killed in 
road collisions in 2008 in Europe.

Automated traffic monitoring plays an 
important role in increasing safety and 
throughput on the existing road infrastruc-
ture. Numerous road sensors capture traffic 
data that is analyzed to assess the current 
situation. This assessment can then trigger 
various counter actions such as warning  
drivers, reducing speed limits, or rerout-
ing traffic. Given the traffic system’s scale 
and complexity, it is invaluable to automate 
traffic monitoring and control as much as 
possible. Most current traffic-monitoring 
systems, however, only capture data from 
traffic sensors, so assessment requires con-
tinuous human supervision (see the “Intel-
ligent Traffic Monitoring” sidebar for more 
details). Additionally, there is an increasing 
demand for mobile or portable systems that 
can monitor temporary events such as con-
struction sites.

Powerful visual and acoustic classifiers 
exist, but to obtain high accuracy, these  
algorithms require a huge amount of hand- 
labeled data. Collecting this data is a te-
dious and cost-intensive task. The classifi-
ers are usually trained in the lab and later 
applied (without adaptation) to many pos-
sible scenarios and might thus become un-
necessarily complex. Additionally, typical 
appearance-based classifiers are sensitive to 
an object’s orientation,1 making it difficult 
to obtain well-performing general detectors.

In contrast, specialized detectors for spe-
cific scenes promise to perform better in 
terms of both accuracy and efficiency. Be-
cause specialized detectors reduce the task’s 
complexity, they also drastically reduce the 
required amount of labeled training samples. 
In practical applications, these specialized 
detectors must fulfill several requirements: 
First, their training must be as autonomous 
as possible to avoid manual labeling for  
every site. Second, this autonomous learning  

The steady increase of automobiles in operation impacts our lives in several 

ways. Road congestion causes severe economic consequences because 

of delays and energy waste; estimations on the total cost of traffic congestion 

range up to 1 percent of a gross domestic product. According to the European 
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In the near future, we will witness more than a billion 
automobiles in operation worldwide.1 Automated traf-
fic monitoring will therefore play an essential role in 

improving road throughput and safety. Current monitoring 
systems capture—usually vision-based—traffic data from a 
large sensory network, but they require continuous human 
supervision, which is extremely expensive. Future traffic-
monitoring systems must become more intelligent to ana-
lyze and assess traffic situations in real time under virtually 
all weather conditions.

Robustness and adaptivity are key challenges for intel-
ligent traffic monitoring. Numerous sensors are installed 
at various locations (such as on poles, on gantries, or even 
in the pavement) to capture the traffic and estimate dif-
ferent traffic parameters. This diverse setting typically re-
quires tedious sensor calibration and adapting the analysis 
algorithms to the observed scenes. This calibration and 
adaptation should be done with as little human inter-
vention as possible. On the other hand, robustness is a 
precondition for integrating traffic monitoring to various 
applications.

Research on intelligent traffic monitoring has been  
ongoing for many years. Because it is widely recognized 
that image-based systems are flexible and versatile for  
advanced traffic-monitoring applications, most research 
has focused on image and video analysis.2–4 Various 
image-analysis methods are applied to the data from  
individual cameras to estimate traffic parameters. These  
parameters can be related to individual vehicles such as  
detection, classification, and tracking or to the traffic  
behavior over a given time period, such as lane occupancy 
or travel time.

Another stream of research focuses on improving robust-
ness by exploiting data from multiple sensors. Sensor fu-
sion techniques can exploit the different characteristics of 
homogeneous or heterogeneous sensors. Rama Chellappa 
and his colleagues introduced a Markov Chain Monte  
Carlo technique for joint audio-visual vehicle tracking.5 
Acoustic beamforming estimates the direction of arrival, 
which in turn guides the visual tracking. Andreas Klausner 
and his colleagues exploited acoustic and visual sensors  
for vehicle detection and classification by extracting dis-
criminative features from the different sensors and per-
forming sensor fusion at the feature or decision level,  
respectively.6 Manish Kushwaha and his colleagues also 
exploited acoustic and visual information for vehicle track-
ing in urban environments.7 They perform multimodal 
fusion on an embedded sensor network in an urban 
environment.

Recently, several traffic-monitoring systems have been 
deployed on a larger scale to evaluate automated traffic 
analysis under real-world conditions. Tomás Rodríguez  
and his colleagues described a vision-based traffic- 
monitoring system that can detect vehicles in real time.8 
The major objective is to tackle some of the challenges  
in real-world deployments such as shadows, occlusions, 
day-and-night transitions, and slow traffic, which prohibit 
existing monitoring systems from achieving stable accuracy. 

Their proposed system works autonomously for a  
certain period of time without human intervention 
and can adapt automatically to several environmental 
conditions. 

Similarly, an earlier work proposed an example-based al-
gorithm to detect moving vehicles in a vision-based traffic-
monitoring environment under changing conditions.9 The 
algorithm was designed to learn from examples, so it does 
not need to incorporate any prior knowledge (such as a 
prior vehicle model). The algorithm was evaluated under 
several varying environmental conditions and has achieved 
a satisfying performance.

The Visatram real-time vision system for automatic traf-
fic monitoring follows a 2D spatiotemporal image-based 
automatic traffic-monitoring approach.10 It handles vehicle 
counting, vehicle velocity estimation, and classification  
using 3D measurements. Furthermore, Marco Rigolli 
and Michael Brady reinforced the need to improve road 
safety by investigating inferences about driver behavior 
and learning normal behavior driving modes.11 They pro-
posed an agent-based approach for analyzing the drivers’ 
behaviors.
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must be performed continuously to 
allow for varying scenario conditions 
such as weather and illumination 
changes. Finally, these systems must 
be resource-effective to enable wide-
spread use.

With these criteria in mind, in 
this article we focus on autonomous  
visual detection and classification of 
vehicles. We propose a self-learning 
framework with the goal of autono-
mously adapting multisensor classi-
fiers to different sensor settings and 
scenes. Our system consists of a ro-
bust online boosting classifier that 
allows for continuous learning and 
concept drift. The learner is also less 
susceptible to class-label noise, which 
is hard to avoid in real-world self-
learning applications. Furthermore, 
we incorporate an audio sensor as 
an additional, complementary source 
into the training process. This audio 
sensor source acts as teacher for self-
learning of the primary visual clas-
sifier and helps to resolve ambigui-
ties typically present in single-sensor 
settings.

To enable a mobile outdoor appli-
cation, we implemented our system 
on an embedded platform and dem-
onstrated it for vehicle classification 
on highways using audio and image 

data. Our learning framework does 
not require any labeled visual data for 
online training and can significantly 
improve classification performance.

Self-Training Framework
Several traffic-monitoring systems 
exploit data from multiple and/or 
heterogeneous sensors.2–4 Our sys-
tem achieves robustness by first ap-
plying a robust online boosting clas-
sifier that also allows for continuous 
learning in order to train a visual 
appearance-based detector. Second, 
we incorporate an additional comple-
mentary sensor source (audio clas-
sification) into the learning process. 
The audio classifier acts as an au-
tonomous supervisor. It is initially 
trained on a small set of labeled data 
and supports the visual online clas-
sifier in its continuous self-learning 
process. The audio classifier achieves 
sufficient accuracy with little train-
ing data and does not perform self-
training, which ensures stability. This 
generic audio classifier is applicable 
to many scenarios—which justifies 
one-time human labeling—while the  
visual detector is trained autono-
mously for each individual scene. Fur-
thermore, we abstain from complex  
microphone arrays and calibrations, 

which are usually necessary for audio 
classification.

Our system uses a single consumer 
microphone acting as a teacher and 
complementary information source 
for the video classification, to reduce 
costs and allow for easy system de-
ployment and maintenance. Another 
advantage of our approach is that 
we can use the audio classifier to re-
solve typical ambiguities between the 
vehicle classes (such as between cars 
and trucks), which are hard to resolve 
for visual classifiers but are easy for 
acoustic classifiers.

Figure 1 depicts the overall struc-
ture of our autonomous self-learning 
framework. Figure 1a describes the 
online training process using data 
from primary and complementary 
sensor sources, respectively. Figure 1b 
illustrates the collaborative classifica-
tion process.

In the training process, both the au-
dio and video sensors synchronously 
capture scene data. The complemen-
tary sensor acts as a trainer for the 
self-learning of the classifier of the 
primary sensor (trainee). The trainer’s  
classifier is trained by using a small 
amount of hand-labeled audio data. 
For every detected object, the trainer 
performs a classification—using the a  

Figure 1. Self-training framework. (a) During the online training process, the audio sensor helps to select and label training data 
for the visual classifier. (b) The classification process combines the output from both sensors to improve performance.
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priori trained classifier—
and forwards a 2D param-
eter vector Θ1 consisting of 
the decision (class label es-
timate) and its confidence 
value to the trainee. The 
trainee selects data only 
from objects with high 
classification confidence 
for its online training— 
that is, it refuses objects 
and its associated data 
when the trainer’s con-
fidence value is below a 
threshold. For selected 
objects, the trainee uses 
the trainer’s classification 
result as a label.

After the audio- 
supported online training 
of the visual classifier, the 
trainer and trainee can 
operate as independent 
classifiers. To improve 
the overall performance, 
we combine the output of 
both classifiers based on 
their confidences (see Figure 1b).

Our proposed system is similar to 
previous systems based on cotraining,5 
where two classifiers are first trained 
independently on labeled data and 
then they train each other on unla-
beled data. For instance, earlier works 
proposed cotraining a car detector6 
and using an audio-visual cotrain-
ing system for human gesture recog-
nition.7 However, our system differs 
from these approaches in three ways:

• we use continuous online learning,
• we do not need any human labeling 

effort for the visual classifier, and
• our audio classifier never performs 

self-updates, which ensures long-
term system stability.

The latter point is supported by  
previous works that highlighted 
that cotraining’s main assumption  

(conditional independence5) is hard to 
fulfill in practice, and systems where 
an autonomous predictor (acting as 
a classifier) teaches another classifier 
have shown to perform better. For ex-
ample, Peter Roth and his colleagues 
used a generative model to conserva-
tively update an online classifier,8 and 
Bo Wu and Ram Nevatia trained an 
online classifier using an “oracle” for 
pedestrian detection.9 Our system 
differs from these two approaches in 
several aspects. First, we use an audio 
classifier as an autonomous teacher. 
Second, we use robust online boost-
ing as a classifier and incorporate 
the teacher in the final classification 
process to resolve ambiguities among  
vehicle classes.

Acoustic Classification
Figure 2 depicts our acoustic clas-
sification system’s basic structure.  

A microphone captures 
the audio signal of pass-
ing vehicles. In the first 
processing step, we par-
tition the audio sam-
ples into n blocks with a 
configurable block size. 
We then extract several 
acoustic features for each 
block individually. These 
block features are further 
abstracted into a single 
feature vector x by a sta-
tistical merging. The ab-
stracted feature vector  
serves as input for the 
classifier.

The performance of 
the classification process 
strongly depends on the 
features’ characteristics. 
Our goal is to select a set 
of highly discriminative 
features for the consid-
ered classes. In our case, 
we use six acoustic fea-
tures, which are defined 

in the time, spectral, and cepstral  
domain, respectively.10

The short-time energy (ste) is a sim-
ple time-domain feature that is highly 
discriminative between cars and 
trucks and sensitive to noise. Spec-
tral bandwidth (spbw), spectral roll-
off point (spro), and two coefficients 
of band–energy ratio values (ber6 and 
ber7) exploit different characteristics 
of the vehicle’s emitted acoustic spec-
trum. The spectral bandwidth mea-
sures the spread of frequencies around 
the spectral centroid. The spectral 
roll-off point indicates up to what 
frequency level a defined amount of 
percentage of the spectrum is accu-
mulated. A higher roll-off value cor-
responds with more intense or higher 
frequencies. The band energy ratio 
values describe the ratio of energy in 
certain frequency subbands to the to-
tal signal energy. The ratio based on 

Figure 2. Acoustic classification system. In our system, features 
are extracted from blocks of captured audio samples. These 
features serve then as input for the classifier.
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the sixth and seventh subband yields 
more class-discriminative values than 
with the first five subbands. A cepstral 
analysis (cep) is performed as well.

We compute the combined value of 
feature i by statistically merging the 
Featurei,Blockk for all blocks. This task 
is performed for all the different fea-
tures. Thus, we combine the resulting 
features into a 6D feature vector x:

x = (ste, spbw, spro, ber6, ber7, cep)T. (1)

We implemented and evaluated sev-
eral classification algorithms such 
as k-nearest neighbor (KNN), linear 
and quadratic discriminant analysis 
(LDA, QDA), naive Bayes (NBC), a 
support vector machine (SVM), and 
an artificial neural network (ANN).11 
Each algorithm has its advantages and 
disadvantages depending on the data 
set. Therefore, the algorithm choice is 
based on the specific application do-
main. The classification algorithms 
return the estimated class labels with 
their confidence values as output.

Video Classification
A common choice in visual traffic 
analysis is simple background model-
ing (BGM), but this has several disad-
vantages. For instance, BGM is sensi-
tive to shadows, cannot discriminate 
between different vehicle classes, and 
cannot detect vehicles in slow-motion 
scenarios such as traffic jams.

For visual classification, we there-
fore train an appearance-based model 
avoiding such problems. In particu-
lar, we follow previous work that 
showed that cascades of boosted clas-
sifiers and efficient image representa-
tion (integral images) lead to real-time  
appearance-based object detection 
systems.1 However, our object detec-
tor differs in two aspects: First, we use 
online boosting for feature selection 
to allow for continuous learning with-
out storing any training samples.12 

Second, we use more robust loss func-
tions for online boosting.13 Using a 
robust learning algorithm is espe-
cially important in practice because 
label noise is an inherent problem in 
self-learning approaches.

In the training phase, we exploit 
the audio classifier to extract train-
ing data from scene-specific video 
streams captured by a noncalibrated 
consumer camera. To avoid hand  
labeling, we use a simple Gaussian 
background model to extract initial 
motion blobs.14 We use the BGM to 
crop regions of interest for the boost-
ing detector’s training process. Dur-
ing operation mode, we only use the 
appearance-based detector. To ex-
tract proper training blobs, we apply  
different kinds of postprocessing  
such as size verification and position-
ing within the scene. Subsequently, 
we exploit the audio classifier, which 
can separate these samples into sce-
narios containing single vehicles of 
either class and scenarios contain-
ing multiple vehicles or no vehicle at 
all. We can also easily generate nega-
tive training examples from the scene 
with the audio classifier—that is, we 
crop random patches from the scene 
if neither the BGM nor the audio 
classifier are indicating that there are 
vehicles.

Because most traffic applications 
are concerned with both detecting 
vehicles and discerning different ve-
hicle classes, we train two different  
detectors—one for trucks and one for 
cars. To resolve visual ambiguities 
among the different vehicle classes, 
we also incorporate the acoustic clas-
sifier to make the final classification 
between trucks and cars, which is an 
easier task for the audio classifier. We 
abstain from training a single detector 
for both cars and trucks because we 
must cover a high intra-class variance, 
which usually leads to higher model 
complexity and thus slower detectors.  

Furthermore, we would lose the ad-
ditional confidence provided by two  
visual detectors, which can be cou-
pled with the audio classifier.

Collaborative Audio  
and Video Classification
During the classification phase, we 
unify the visual and audio cue by 
linearly combining the confidences 
of both classifier types. To classify 
a scene, we first generate a visual 
classifier by applying our two visual  
detectors for cars and trucks to iden-
tify several candidate regions where 
at least one of the two detectors pro-
vides a positive confidence. Then, we 
combine the visual classifiers’ confi-
dences with the confidences provided 
by the audio classifier. (All confi-
dences are normalized to the range of 
[−1, +1] before fusion.)

To keep our approach simple, we 
use weighting parameters α and β for 
the combination of both confidences 
of the audio fa and the visual fv clas-
sifier. In particular, we use a simple 
arithmetic mean to weight the two 
confidences, both set to 0.5. (We can 
easily set α and β to more “reason-
able” values—for instance, by using 
cross correlation on labeled samples 
or using more sophisticated weighting 
techniques.) Finally, by using a non-
maxima suppression, the highest vote 
is estimated by providing the accord-
ing class for the candidate regions.

Experiments
Our experimental evaluation is based 
on real-world data sets of approxi-
mately 200 vehicles for each class 
(cars and trucks) from multilane free-
way traffic. We partitioned the data 
sets into training and testing sets with 
150 and 50 samples per class, respec-
tively. Thus, we used 150 audio sam-
ples for each class to train the initial 
acoustic classifier. Figure 3 depicts 
our experimental setup. We directed  
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the microphone to the center of the 
outer lane. The audio data was re-
corded at 44.1 kHz in mono format 
with 16-bit resolution. The camera 
captured front-shot images at a frame 
rate of approximately 5 Hz.

Figure 4a shows some exam-
ples of cropped vehicle patches, and  
Figure 4b shows an example of the  
final detection and classification out-
put. Video and audio recording were 
synchronized and started at a (vir-
tual) trigger point. For each vehicle, 
the sensors captured up to four sec-
onds of data—the actual recording  

period depended on the vehicles’ 
speed.

We performed the experiments 
on our MSEBX945 embedded com-
puter board from Digital Logic with 
a SMX945-L7400 CPU module. This 
platform provides interfaces to sev-
eral sensory devices such as audio, 
video, and laser sensors. We attached 
the microphone to a preamplifier 
from M-AUDIO, which was con-
nected to the embedded platform via 
USB. The camera was directly inter-
faced with the platform via FireWire 
over MiniPCI.

Our experimental evaluation had 
two goals. We wanted to show that 
our autonomous framework enables 
online training of classifiers under 
real-world conditions without any 
hand labeling of the visual data. We 
also wanted to demonstrate that a 
collaborative classification of mul-
tiple sensors could gain significant 
performance improvements. For self 
learning, we used the audio sensor as 
a trainer, and we exploited classifica-
tion for both cues.

In a previous work,10 we showed that 
acoustic classifiers based on the feature 
vector given in Equation 1 achieve no-
table classification accuracies of up to 
93.75 percent with quadratic discrimi-
nant analysis (QDA). The other algo-
rithms we mentioned earlier achieved 
about 90 (for ANN, SVM, and LDA), 
86.25 (for KNN) and 85 (for NBC) 
percent. We obtained all these results 
by five-fold cross validation. Thus, we 
use the QDA classifier as a trainer for 
our learning framework.

autonomous Learning  
of Visual Classifiers 
In our first experiment, we trained 
two vehicle detectors—one on car 
samples and the other on truck 
samples. For representation, we 
used simple Haar-like features1 but 
abstained from training cascades  
because the classifiers can be kept sim-
ple due to their scene specificity. For 
all the experiments, we used 100 se-
lectors each with 50 weak classifiers. 
For the online boosting, we applied a  
logistic loss function in the form 
of log(1 + e−yF(x)), which has proven 
more robust than the exponential loss 
usually applied in online boosting.13 
We set the starting shrinkage factor 
sstart to 1, but we decreased it with 
increasing number of selectors in the 
form of st = sstart /(t + 1).

As Figure 5a shows, our system 
can train well-performing car and 

Figure 3. Experimental setup on a freeway with two lanes in both directions. 
The microphone and camera are connected to the embedded multisensor data 
fusion (MSDF) platform. The distance between the sensors and the outer lane is 
approximately 10 meters.

Highway bridgeover

Embedded MSDF platform

Distance to center of
outer lane (trigger point)

Audio-video recording region

Driving direction

Figure 4. Visual vehicle detection and classification. (a) Some examples of automatically 
cropped sample patches and (b) the final detection output including the color-encoded 
classification result.
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truck detectors without hand labeling 
any visual data. To demonstrate the 
practical relevance of our approach, 
we performed a second set of exper-
iments where we degraded the per-
formance of our teachers (audio clas-
sifiers). In particular, we varied the 
noise level from 0 percent (perfect 
teacher without any misclassification) 
to 25 percent (teacher with a 25 per-
cent misclassification rate), which are 
ranges typically occurring in practice.

Tables 1 and 2 show that the re-
call rates hardly change with increas-
ing noise level for both the car and 
truck detectors—that is, the number 
of false positives increases. The pre-
cision also remains constant for the 
truck detector, but the precision de-
creases with increasing noise for the 
car detector. However, we figured 
out in practice that if the recall rate 
stays high, a degraded precision can 
be corrected by applying smarter 
postprocessing in case of multiple  
detections. We did not apply post-
processing in this case and only ap-
plied classifiers to the class they have 
been trained on.

In the next two experiments, 
we tested the car detector only on  

sequences with cars and the truck 
detector only on sequences with 
trucks, respectively (Figure 5a). 
However, as Figure 5b shows, the 
performance degrades dramatically 
if the two detectors have to cope with 
instances of both classes at the same 
time. Training the car detector using 
some truck samples as negatives and 
vice versa leads to a decreased re-
call while the precision only slightly  

increases. The main reason for this 
behavior is that the car detector 
cannot discriminate parts of a truck 
from real cars, leading to many false 
positives.

Collaborative Classification
In the third experiment, we used the 
same settings but focused on a col-
laborative classification of audio and 
video. The idea is that the visual  

Figure 5. Automatically trained car and truck detectors. (a) The detectors achieve high classification performance when applied 
to test scenes only containing their training class. In this case, the detectors only discriminated the trained target class from the 
scene background. (b) When applied to scenes containing both vehicle classes, the performance degrades. The performance 
deteriorates dramatically, especially for the truck detections.
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Table 1. Detector performance depending on different noise levels for cars.

Noise (%) Recall Precision F-measure

  0 0.95 0.78 0.86

  5 0.95 0.48 0.64

10 0.98 0.40 0.57

25 0.98 0.34 0.50

Table 2. Detector performance depending on different noise levels for trucks.

Noise (%) Recall Precision F-measure

  0 0.98 0.17 0.29

  5 0.98 0.16 0.28

10 1.00 0.15 0.27

25 1.00 0.15 0.26
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detector should be applied to locate 
the object in the video. Once an object 
has been detected, the audio classifier 
should support the visual detector to  
resolve ambiguities. In particular,  
after running both visual detectors 
over the video frame, we derived 
the final classification in a postpro-
cessing step by computing a linear 
combination of the video and audio 
classifiers.

Figure 6 and Tables 3 and 4 de-
pict the result of this collaborative 
classification, which leads to signifi-
cantly improved detection results. 
By comparing the F-Measure, which 
gives an impression of the overall  

performance, we can see the improve-
ment of the combined classification.

Because our approach does not 
need any calibration, it can be 

applied in mobile, flexible, low-cost 
traffic surveillance platforms. Poten-
tial future applications include traf-
fic monitoring, free-flow toll collec-
tion, and law enforcement. Although  
we have demonstrated our multi-
sensor method for vehicle classifica-
tion, self-learning is a general concept 
with high potential for many appli-
cations. We are confident that it can 
serve as an important step toward 

versatile, autonomous, and intelligent 
traffic monitoring.
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