
The Geobashing Architecture for Location-Based Mobile Massive Multiplayer
Online Games

Bernhard Dieber, Thomas Grassauer, Jakob Mayring, Bernhard Rinner
Institute of Networked and Embedded Systems

Klagenfurt University
Klagenfurt, Austria

{Bernhard.Dieber, Bernhard.Rinner}@uni-klu.ac.at
{Thomas.Grassauer, Jakob.Mayring}@edu.uni-klu.ac.at

Abstract—The current trend towards more mobility will
increasingly affect the gaming market over the next years.
Location-based mobile massive multiplayer online games
(MMMOG) will be a new paradigm in the gaming industry.
Since building a game for a massive amount of mobile players
is a challenging task, we have created a reusable architecture
for location-aware mobile massive multiplayer online games.
In this paper we describe our approach and present the
Geobashing game, a location-based MMMOG implemented
using our architecture. We evaluated our architecture to
show its applicability.

Keywords-Mobile gaming, Mobile Mixed Reality, Client–
Server based services

I. INTRODUCTION

Applications for mobile devices have become a fast
growing market segment. The increasing number of smart-
phones which are GPS-enabled and have high-bandwidth
internet connection is a driving factor for the develop-
ment of location-based multi-user applications. Already
today, massive multiplayer online games (MMOG) are
very successful. Combined with the trend towards more
mobility we expect that mobile massive multiplayer online
games (MMMOG) will be an important part of the mobile
application market in the coming years. Although the indi-
vidual application scenario may be different, many of these
applications will share some common properties. They are
typically client-server based, location-based and enable
user interaction. In this paper we present the Geobashing
architecture which serves as a basis for the development
of location-based MMMOGs. It is a sophisticated server
backend structure to best serve the needs of location-based
mobile games. Developers can use this architecture to
build their individual applications on top of it.

We first present related work in Section II. In Section
III we describe the general requirements for a MMMOG
architecture and present our solution in detail. Section IV
describes a game called Geobashing which was realized
using our architecture. An evaluation of our work is
presented in Section V.

II. STATE OF THE ART

In the field of pervasive and mobile games, several
projects have been proposed which partially include con-
cepts similar to our Geobashing game. The properties
of those games are useful to identify requirements for a
general MMMOG architecture.

The Gopher game combines mobile gaming with user-
generated content and additional Web 2.0 aspects [1].
Players can create tasks for other participants by placing
virtual gophers somewhere in the world. Players nearby
can pick up a gopher and try to fulfill the mission. A
mission is composed of a textual description with optional
additional media content. Once the player considers the
mission complete, a jury (consisting of the other Gopher
players) determines whether or not the goal was reached.
The Gopher game uses the cell ID to determine the
player’s location.

An approach to migrate games to mobile platforms is
a paper chase game developed by Boll et al [2]. This is a
real-life implementation of a classical paper chase game
where the player visits checkpoints and solve a riddle in
order to receive the next waypoint location. This game
uses GPS to locate the player. Riddles and additional
gaming information are fetched from the game server.

Feeding Yoshi [3] tries to integrate playing a mobile
game into the everyday life of the player. The goal is to
find food for a creature named Yoshi. The localization
in the game is performed by exploiting the WLAN in-
frastructures in cities where protected WLANs are Yoshis
and open WLANs are used by the player to collect food.
The WLAN access points are not used for communication
with the game server. The player has to manually upload
the game results.

GPS Mission [4] is already available on the market.
Players create missions that other players must fulfill in
order to earn virtual money and trophies. The GPS Mission
client periodically sends the current user position to the
game server and shows the surrounding map with mission
waypoints and virtual items.

Tourality [5] is a GPS-based game where players can
play alone or in teams. The goal is to reach certain
waypoints as fast as possible. During a game the client
application sends the current position to the game server
and also displays the positions of the other participants.

In [6] a middleware for pervasive games is proposed.
This system focusses on crossmedia games, i.e., classical
computer games in a virtual world that are played with
different client devices. In contrast, our architecture is
designed for massive multiplayer games which are played
in the real world, i.e., where the physical user position is
included in the game state. Thus, it supports crossmedia

games but assumes that the client device has localization
capabilities.

III. THE GEOBASHING MMMOG ARCHITECTURE FOR
LOCATION-BASED GAMES

A reusable architecture for MMMOGs that can already
be deployed to the market today must fulfill certain
requirements.

Client-Server Architecture: We assume a client-server
architecture since a peer-to-peer system is hard to
realize on current mobile devices. Additionally, without
a centralized infrastructure the global game state (e.g.
highscores, player rankings) is hard to determine.
Scalability: In order to support a large number of users,
the server infrastructure (game backend) must be scalable.
This means that the game state can be shared by multiple
application servers to reduce load and latency. Scaling a
system always brings up the need for data synchronization
to prevent inconsistencies.
Optimized for Positional Data: The architecture must
be specialized for the processing of positional data. A
specialized backend structure will greatly reduce latency.
This affects the load balancing strategy as well as data
synchronization. In addition, specialized data structures
should be used at the application server.
Minimum Latency: To provide the maximum gaming
experience to the user, the architecture must provide
means to reduce latency.
Support for Offline Gaming: Games that do not require
Internet connectivity during the whole game must be
supported. For example game parts without interaction
among users often do not need an active connection to
the server. Since an open internet connection on a phone
uses a lot of energy, the architecture must be able to deal
with clients that are not constantly connected.
Use of Standard Technologies: To reduce development
time for a mobile game and to facilitate cross-platform
client development, it should be built upon proven
standard technologies such as HTTP web servers.

Using the requirements stated above as a starting point
we designed and implemented a reusable game architec-
ture that we call the Geobashing MMMOG architecture.

A. The Geobashing MMMOG Architecture

The server infrastructure basically consists of a web
service layer and an application server layer. The web
service layer is only a thin entry point to the application
server layer. The application servers perform all game-
specific tasks. Figure 1 shows the Geobashing MMMOG
architecture.

1) Web Service Layer: Since web services, or—more
particularly—the web server they are running on, repre-
sent a major bottleneck in many web applications, their
functionality is reduced to a minimum in our system. The
main tasks of this component are user authorization and
forwarding of requests to the application server. Due to
this reduced functionality, a transparent load balancing of

Figure 1. From a high level view the Geobashing architecture consists
of a web service and an application server layer.

the web services can be realized easily, using any well–
known load balancing mechanism (e.g. DNS-based load
balancing). In order to support the application server load
balancing described below, web services hold a mapping
between users and responsible application server instances.
This mapping is the only shared state that all web services
have to access and is used to directly address the currently
responsible application server for a user. If a mapping
between a user and an application server cannot be found,
the request is relayed to the root application server. To
make this data available, a distributed hash table (DHT)
is used.

2) Application Server Layer: The application nodes
implement the game logic and manage the game state. We
assume the game state to be a set of static and dynamic
game objects, which have a certain position on a map.
Since heavy load on these nodes has to be expected, a
load balancing technique must be implemented. In our
approach the load on the application server instances is
balanced based on the user’s current position which is
part of every user request. The server topology consists of
multiple application nodes where every node is responsible
for a certain geographical area (which we call the server’s
bounding box).

Since responsibility areas may be nested, we organize
the application servers in a tree where the bounding
boxes of all sub servers are contained in the root server’s
bounding box. To ensure a distinct mapping of user
positions to servers, the bounding boxes of sub servers
must not overlap. Every server knows its sub server but
not its superordinate node. The advantage of this server
infrastructure is that a server only maintains the state of
game objects that are within its responsibility area and
that are not contained in a sub server’s bounding box.
The server hierarchy provides the possibility to deploy
a server infrastructure that addresses areas with a higher
player density. If such an area is identified, the load can
be split by adding more servers to the particular sub tree.

Like in every other application there are also requests
that simply query data. In the context of mobile games
these requests often enable the client application to provide
parts of the game in offline mode (e.g. transfer challenges
to the client). In the presented architecture, non-position-

based requests can be handled by any application node.
3) Game State: To support our architecture, we assume

the game to have a lightweight game state that consists of
only two object types: static and dynamic objects. Static
objects are bound to a non-changing position on the map,
whereas dynamic objects move on the map. Only static
objects are stored in the persistent storage while dynamic
objects are added on the fly.

4) Data Storage: The persistent storage is only ac-
cessed by the application nodes. The storage is used
whenever static game objects need to be stored, modified
or queried. Its main task is to provide the possibility to
query static game objects based on a provided search area,
e.g. whenever a new application server node is initialized.

5) Request Handling: Every application server pro-
cesses a request in two phases (see Figure 2). In the first
phase a sub server that is responsible for the request (i.e.
the user position is contained in the sub server’s bounding
box) is searched. In phase two the request is either
forwarded (if a suitable sub server was found; the sub
server then performs the same query again) or handled by
the current server. After handling the request, the response
is returned through the server tree. This server selection
process ensures that a request is always handled by the
server with the smallest bounding box containing the user
position. Since this lookup is an expensive operation, the
response contains the ID of the server that actually handled
the request. Thus, on the next request, the server can be
queried directly.

The mapping between a user and the responsible appli-
cation server is stored in the previously mentioned DHT
in the web service layer. Since users move while being
logged in, it is possible that the mapping between a user
and a server becomes invalid. In this case the application
server responds with a redirect message (see Figure 2),
indicating that it is no longer responsible for the particular
user. The calling web service then redirects the request to
the root application node, a new responsible application
node can be selected and the user-to-server mapping is
updated.

A special type of request is the so called in-range
request which queries game objects within a certain search
area. In the application server infrastructure there is the
possibility that this search area intersects with the respon-
sibility areas of more than one server. In this case, the
request is performed by the server that completely contains
the search area. This server forwards the requests to all
responsible sub servers and aggregates the data.

6) Latency Reduction: The presented load balancing
mechanism is applied to distribute the load to multiple
application servers within a single data center. By extend-
ing the web service layer, the same strategy can be used
to achieve a distribution to different data centers. This
addresses the need to reduce the latency on the client.
In such a scenario the server infrastructure is present at
multiple sites where every site has a different responsibil-
ity area. For this to work, the web service layer has to
have knowledge of the global distribution and bounding

Figure 2. Selection of the responsible application server (simplified).
WS is the calling web service.

boxes of the different sites. The lightweight game state
supports such a multi-site infrastructure by partitioning the
static objects according to their positions, as all objects are
contained in a well-defined bounding box.

7) Fault Tolerance: The combination of the respon-
sibility areas of servers, the possibility to redirect a re-
quest and the lightweight game state have an additional
advantage. Due to this, a fault tolerant application server
infrastructure can easily be realized. The system supports
the transfer of the game state from one server to another
without the need for a complex synchronization mecha-
nism. If an application node fails, the web service layer
will no longer be able to connect to this particular node.
In this case the request will be forwarded to the root
application node. If—at any point—a server cannot be
reached, this particular server will be deleted from the
parent’s sub server list. Thus, the whole server sub tree
will no longer be reachable. A user who was previously
managed by a server in this particular sub tree will be
assigned to a new server. Thus, all dynamic objects of
the game state are migrated on the fly. The static objects
can be easily added to the game state of the server now
responsible by simply querying the data storage providing
the bounding box of the failed sub tree.

8) Implementation Details: To support fast develop-
ment of client applications, the implementation of the web
service layer solely relies on Restful Web services (based
on HTTP). The web service and the application server are
implemented in .NET. For the communication between
the web service and the application servers or between
different application servers .NET Remoting is used.

To provide an easy way to exchange and extend the
functionality of the application server, it is realized using
the plug-in framework presented in [7], which is avail-
able as an open source project [8]. This enables game
developers to use the Geobashing MMMOG architecture
and build different game concepts on top of it. To support
faster querying of position-related data at runtime, an R-
tree [9] is used to store the game objects at the application
servers. We use the R-tree implementation of Sharpmap
[10]. For the DHT we use Memcached [11].

The default communication pattern in our architecture

is a client-side pull communication. Nevertheless, in some
cases the server may want to explicitly notify the client of
some event (to improve the game flow). For those cases
we use a push communication channel based on SMS
messages.

IV. THE GEOBASHING GAME

As a use-case of our architecture we present the
Geobashing game. Geobashing combines player interac-
tion with mobility aspects, sports and role play elements.
Players in this game can challenge other players with
different tasks. By completing challenges, players earn
experience points and virtual money. This part of Geobash-
ing is called the active part (players have to actively
choose to create or participate in a challenge).

In contrast to other games, Geobashing is meant to be
played all day. Players can leave the application running in
the background while carrying their phones. The applica-
tion periodically sends the current GPS position to a server
(this is called the passive part). The update frequency
is controlled by the server which yields the possibility
for server-controlled energy management based on e.g.
player density. The server also evaluates if other players
are nearby. Like in other role plays, a player can attack if
nearby players are encountered.

A. Game World

The world of Geobashing is a virtual overlay to the real
world. Every game element has a geographical position
attached. A Geobashing player only needs to know the
part of the virtual world that is immediately surrounding
her current position.

B. Game Elements

A character is the virtual representation of the player
and has the attributes attack, defense, stealth, health, a
level and experience points, a purse for money and can
carry items.

Items are static objects, i.e., they are bound to a certain
position and do not move. Players can carry a certain
number of items with them. They consume storage slots
and can alter character attributes (e.g., the mighty sword
of destruction, or the red baby-trike). They can be dropped
or picked up by a player which enables trading between
players.

Traps are similar to items, but additionally, they can be
dropped and activated. If a player approaches a trap, a
corresponding action is triggered (e.g., the player loses a
specific amount of health points).

Money is needed for several tasks and is modeled as an
item with a count.

Every player can define a certain position as home base
for her character (e.g., her home). Within a fixed radius
around the home base the player is not attackable. If a
player is in this zone, she automatically restores health
points. Additionally, she can exchange money and items
with the home base storage or access the global Geobash-
ing item shop. The home base can also be equipped with
items which provide services to its owner or other players

(e.g., a hospital: allows other players to restore health
points for money).

C. Challenges

Players can participate in Challenges. The first time a
player participates in a challenge a starting fee may be paid
as a bet. A challenge consists of at least one position, has
a goal and a reward. We have defined the following types
of challenges so far.

A Race Challenge follows the ”be the fastest” principle.
A track of waypoints must be passed and the player gets
ranked according to her best time. On expiration, the sum
of all starting fees is split among the best participants.
Participants may receive medals, items and/or experience
points as a reward. The creator may place a bet, which gets
added to the rewards and she receives experience points for
every participating player beating the creator’s reference
time. If the participant does not pay the fee, she receives
no monetary reward.

Another type is the Paper Chase Challenge. The idea
is to give the character hints or let her solve riddles
in order to get the next waypoint. Neither is the time
relevant nor is a participation fee needed, but one can
only participate once. A reward is optional. The creator
is rewarded with experience points for every successful
participant. A ranking is not needed for this type.

The Shape Challenge adopts the idea of GPS drawing1.
A player who draws a given shape with the longest
GPS track wins this challenge. Rewards and rankings are
handled in the same way as in the race challenge.

For the most possible freedom players can create an
Open Challenge. The creator only needs to declare a
condition and a reward (e.g., ”Pick me up at noon, drive
me to the next bar, I might have a cool item to give away.”).

The Group Challenge addresses groups of players. A
group challenges is a composition of multiple single player
challenges. Players form a group and find an approach
to solve all challenges as fast as possible. All challenges
must be successfully mastered by the group, whereas every
player must participate in at least one challenge. The
majority of the group must vote for the start of the group
challenge (this starts the timer), it ends when all challenges
have been attended at least once. The experience rewards
are multiplied by a group factor and are distributed to the
members, all other rewards are discarded. The best ranked
players are awarded gold, silver and bronze medals.

D. Fight

Whenever two players are within a given range, they
both are notified of the other (see screenshot in Figure 3).
This range depends on the stealth attribute of each player
character. The player can then decide whether or not to
attack.

In a fight, the attacked player has the chance to escape.
If, within a certain time frame, she can flee from the
attacker (by overcomming a distance), the fight is aborted.
Otherwise, if the attacker chases the attacked player and

1e.g. http://www.gpsdrawing.com

Figure 3. A screenshot of Geobashing showing the players in range.
The three icons at the top right indicate (left to right) that GPS is online,
players are in range and that the player is logged in.

the time frame expires, a fight is started. The fight is
turn-based and the result is based on the individual attack
and defense attributes of the characters. The fight result
is calculated at the server without player interaction.
However, the attacker can cancel the fight at any time. This
also means that the attacked player may try to persuade
the attacker to abort the fight.

E. Player Interaction

Geobashing itself defines no communication or interac-
tion channels between players. This means that there is e.g.
no messaging system. We assume that in a game, where
players play in the real world, they also should interact
like in the real world. To trade, players have to bargain
for good prices for their items. To persuade an attacker to
abort a fight, a player will have to be creative. We consider
this a very essential part of the Geobashing game.

F. Interfaces

Geobashing provides a mobile client and a web applica-
tion. The mobile client enables the player to participate in
challenges. It also periodically reports the current position
to the server and notifies the player of items or other
players in range. Using the web application, a player can
manage her home base, download challenges to the mobile
client, view her statistics and challenge details.

V. EVALUATION AND RESULTS

To evaluate our architecture, we performed several tests
with the Geobashing game. The Geobashing game is not
very sensitive to high latencies, but to preserve a good user
experience, latencies below five seconds have proven to be
acceptable. For games that are more sensitive to latency
it is recommended to either load balance the application
servers (AS) or to bring web services closer to the player.

In a first experiment we tested how latencies change if
a greater load is posed on the server. To achieve this we
simulated varying numbers of players that continuously
perform the status update request. In this request the
client application submits the current location, the server
searches for surrounding players and game objects and
returns this list to the client. In this test we used an Intel
Core i7-920 based server with 8 GB of main memory.
The web service (running on Mono XSP2) as well as the
single AS were running on the same machine. The server

#Simulated Users Avg. client latency[ms] Avg. Processing Time[ms]
0 653 15.8

1,500 704 21
7,500 570 37

Table I
THE LATENCY AT THE CLIENT AND THE PROCESSING TIME PER

REQUEST WRT. VARIOUS USER NUMBERS.

was running Debian with Mono 2.4.4. We implemented
a Geobashing client prototype using the .NET Compact
Framework.

We measured the time required to execute the request on
cell phone clients (Nokia E71 running Redfivelabs Net602

runtime for .NET Compact Framework in the cellular
network of A1 Austria). Additionally, we measured the
request duration at the server to be able to assess the la-
tency of the mobile network. The results of this experiment
are summarized in Table I.

The difference between the time measured at the clients
and the actual processing time at the server shows that
the latency at the client is mostly caused by the mobile
network. In this experiment our server was located in
Germany, the clients were running in Klagenfurt, Austria.
Thus, by bringing the web service closer to the client,
a reduction of latency can be achieved. This experiment
also showed that the processing time per request at the
server increased with the number of users. Since we did
not simulate the full range of requests a typical user would
perform, we expect a higher load with the same number
of real clients. This in return, indicates the possible need
for load balancing the AS at a number of concurrent users
below 10,000.

In a second experiment we evaluated the maximum
number of users that a single AS can handle. We used a lab
environment and split application server and web service
to separate machines. The AS was an Intel Core2Duo 1.86
GHz with 2 GB main memory. All servers were connected
using 100MBit/s Ethernet and ran the Mono 2.6.1 LiveCD
(based on OpenSuse) with Mono XSP2 as web server.
Again, clients were simulated to generate the necessary
load.

The experiments showed that the AS can handle more
than 500 requests per second without significant increase
of latency. This roughly corresponds to 5,000 to 8,000
(simulated) users. Additionally, this experiment showed
that the web service layer has a higher risk of being a
bottleneck.

Finally, we evaluated the presented load balancing
mechanism. We focused on the costs of redirects and
forwards. In both cases the request cannot be posed
directly to the AS but—starting from the root AS—the
responsible server must be found in the application server
tree. In case of a forward, the responsible server could not
be found in the distributed hash table (DHT). In case of a
redirect, the server was found but it denied service because
the user had left the server’s responsibility area. Thus, a

2Unfortunately, the company recently went out of business.

redirect is preceded by one unsuccessful request. If this
cost is very high, players that migrate from one AS to a
neighboring would generate a high overhead. Additionally,
we tested the performance of in-range requests that cannot
be handled by a single server (as described in Section
III-A5).

Using the same lab setup as in our second experiment,
we defined the following setup of application servers:
AS1 is the root AS responsible for the Austria region.
AS2 is responsible for the players in Vienna. AS3 covers
southern Austria (Styria and Carinthia) and AS4 covers
Klagenfurt and the Woerthersee region. Thus, AS2 and
AS3 are contained in AS1 and AS4 is contained in AS3.

Table II shows the time necessary to find the responsible
AS in the application server tree in case the player
was not present in the DHT. The maximum number of
redirects within the application server tree is two in our
setup (for AS4; redirect from AS1 to AS3 to AS4). Zero
requests means that the root application server (AS1) was
responsible for the player. Table III shows the search time
in the application server tree in case of a redirect. Zero
requests means that after the initially failed request to
a sub server (AS2 or AS3), the application server was
responsible for the player.

Requests Avg[ms] Max[ms] Min[ms]
0 3.05 2189 1.3
1 6.13 4124.7 2.7
2 7.14 2351.2 4.1

Table II
THE DURATION TO FIND THE RESPONSIBLE AS IN CASE OF

FORWARDING.

Requests Avg[ms] Max[ms] Min[ms]
0 5.90 1851.5 3.55
1 8.12 1015.25 4.98
2 10.92 509.45 6.31

Table III
THE DURATION TO FIND THE RESPONSIBLE AS IN CASE OF

REDIRECTING.

The results show that forward and redirect differ mainly
in the time for the single initial request of the redirect. A
direct query to an AS takes about two to three milliseconds
in this setup and the search for a suitable server takes linear
time. By keeping the Player-to-AS mapping in the DHT,
in most cases the responsible AS will be queried directly.

To test the performance of the multi-server in-range
requests we simulated users in the border region of AS4.
To find all neighboring players, AS3 had to merge its own
results with the results of AS4.

The average single-server request at AS3 took 0.26ms
while the average time to perform the multi-server request
was 3.5ms. The additional request to AS4 again took
approximately 3ms. To save time, a multi-server request
with a higher number of servers involved is performed in
parallel. In the worst case, four servers must be queried to
perform this request. This shows that the relative cost of a
multi-server request is high but judging from the absolute
value, this will not influence the game flow. Furthermore,
the radius in which Geobashing searches for neighboring

players is only 200m, i.e. this case is unlikely to occur
often in the Geobashing game.

VI. CONCLUSION

In this paper we presented an architecture for MM-
MOGs. This architecture can be used as basis to build
such games. The architecture relies on proven technologies
like HTTP and .NET Remoting. The web service and
application server layers have been decoupled and can
be load balanced as needed. The game-relevant parts can
easily be exchanged to build new games on top of the
architecture.

We also presented the Geobashing game which com-
bines sports with social interaction and contains role play
elements.

We evaluated our architecture with the use-case of the
Geobashing game and showed that the architecture is
suitable for a massive amount of players.

In the current version, the application server tree struc-
ture is preassigned manually. In future work, we will
include mechanisms to dynamically change the applica-
tion server tree for dynamic load balancing and latency
reduction.

REFERENCES

[1] S. Casey, B. Kirman, and D. Rowland, “The gopher game:
a social, mobile, locative game with user generated content
and peer review,” in ACE ’07: Proceedings of the interna-
tional conference on Advances in computer entertainment
technology. New York, NY, USA: ACM, 2007, pp. 9–16.

[2] S. Boll, J. Krösche, and C. Wegener, “Paper chase revisited:
a real world game meets hypermedia,” in HYPERTEXT
’03: Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia. New York, NY, USA: ACM,
2003, pp. 126–127.

[3] M. Bell, M. Chalmers, L. Barkhuus, M. Hall, S. Sher-
wood, P. Tennent, B. Brown, D. Rowland, S. Benford,
M. Capra, and A. Hampshire, “Interweaving mobile games
with everyday life,” in CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems. New
York, NY, USA: ACM, 2006, pp. 417–426.

[4] “GPS Mission,” http://gpsmission.com.

[5] “Tourality,” http://www.tourality.com.

[6] F. Trinta, D. Pedrosa, C. Ferraz, and G. Ramalho, “Eval-
uating a middleware for crossmedia games,” Comput. En-
tertain., vol. 6, no. 3, pp. 1–19, 2008.

[7] B. Dieber, B. Rinner, and N. Viertl, “Flexible Clustering
in Networks of Smart Cameras,” in 2009 IEEE 12th Inter-
national Conference on Computer Vision Workshops, ICCV
Workshops. IEEE, October 2009, pp. 834–839.

[8] “NIPO Framework,” http://nipo.codeplex.com.

[9] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in SIGMOD ’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management of data.
New York, NY, USA: ACM, 1984, pp. 47–57.

[10] “SharpMap,” http://sharpmap.codeplex.com/.

[11] “Memcached,” http://www.memcached.org.

