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Abstract

Unmanned aerial vehicles (UAVs) have been recently de-
ployed in various civilian applications such as environmen-
tal monitoring, aerial imaging or surveillance. Small-scale
UAVs are of special interest for first responders since they
can rather easily provide bird’s eye view images of disaster
areas. In this paper we present a hybrid approach to mo-
saick an overview image of the area of interest given a set
of individual images captured by UAVs flying at low alti-
tude. Our approach combines metadata-based and image-
based stitching methods in order to overcome the challenges
of low-altitude, small-scale UAV deployment such as non-
nadir view, inaccurate sensor data, non-planar ground sur-
faces and limited computing and communication resources.
For the generation of the overview image we preserve geo-
referencing as much as possible, since this is an important
requirement for disaster management applications. Our
mosaicking method has been implemented on our UAV sys-
tem and evaluated based on a quality metric.

1. Introduction
Unmanned aerial vehicles (UAVs) are widely used in

the military domain. Advances in technology, material
science and control engineering made the development of
small-scale UAVs possible and affordable. Such small-scale
UAVs with a total weight of approximately 1 kg and a diam-
eter of less than 1 m are getting prominent in civilian appli-
cations and pose new research questions. These UAVs are
equipped with sensors such as accelerometers, gyroscopes,
and barometers to stabilize the flight attitude and GPS re-
ceivers to obtain accurate position information. Addition-
ally, UAVs can carry payloads such as cameras, infrared
cameras, or other sensors.

Thus, UAVs enable us to obtain a bird’s eye view of an
area which is helpful in applications such as environmental
monitoring, surveillance and law enforcement, and disaster
assessment and disaster management [15]. Obviously, each
application domain has different requirements. Our goal is

to support first responders in disaster assessment and dis-
aster management since this is—in our opinion—the most
challenging application domain. In disaster situations such
as earthquakes or flooding, first responders can not rely on
a fixed infrastructure and the available information (e.g.,
maps) may no longer be valid. The overall goal, hence, is to
provide the first responders a quick and accurate overview
of the affected area, typically spanning hundreds of thou-
sands of square meters. This overview image is refined
and updated over time and can be augmented with addi-
tional information such as detected objects or the trajectory
of moving objects. When covering large areas at reason-
able resolution from such small-scale UAVs, the overview
image needs to be generated from dozens of individual im-
ages. Moreover, a number of UAVs equipped with cam-
eras is employed instead of a single UAV to cope with the
stringent time constraints and the limited flight time. The
UAVs—flying at low altitudes of up to 100 m—provide im-
ages of the affected area which are stitched to an accurate
overview image.

In this paper we describe different methods and their
trade-offs for generating an overview image in order to
surveil a certain area. We present a hybrid approach which
allows to quickly mosaick the individual images and refine
the alignment over time as more images are available. We
have implemented and tested the hybrid approach in our
UAV system.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related work in the domain of
image mosaicking. In Section 3 we describe the intended
use-case and give a rough overview of the UAV system. In
Section 4 we formulate our main goal and identify the chal-
lenges we face. Section 5 goes into detail on image mo-
saicking, ranging from simple position-based mosaicking
to pure image-based mosaicking. We propose a hybrid ap-
proach for image mosaicking which takes both the position
information and the image data into account. In Section 6
we evaluate the described mosaicking approaches using a
quality metric which is based on a spatial metric and a cor-
relation metric. Section 7 finally concludes the paper.



2. Related work
Much research has been done in the area of mosaicking

of aerial imagery and surveillance over the past years. Many
approaches have been proposed ranging from using low alti-
tude imagery of stationary cameras and UAVs to higher alti-
tudes imagery captured from balloons, airplanes, and satel-
lites. High altitude imagery and on-ground mosaicking such
as panoramic image construction are not in our area of in-
terest since they are dealing with different challenges.

There has been a breakthrough regarding the seam-
less stitching in past years by exploiting robust feature
extraction methods [23, 19, 3], depth-maps [10, 5], 3D-
reconstruction of the scene, image fusion, and many other
approaches (e.g., [20, 17]). Figure 1(a) shows a sample
stitching of five sequential images generated by a SURF
feature-based algorithm [3]. The result looks seamless at
the stitching part but the obvious drawback is that the trans-
formation performed on the images leads to a distortion in
scales and relative distances. Such a traditional feature-
based approach is difficult for our case because the gen-
eration of a geo-referenced image is hardly possible due to
the scale and angle distortions as well as the error propa-
gation over multiple images. The non-planar surface is one
of the main reasons for this distortion, i.e., by using cor-
responding points at different elevation levels for the image
registration. In principle, it is possible to improve the stitch-
ing result by using metadata, global alignment and bundle
adjustment [17, 6, 18], but we need to know either accurate
IMU (inertial measurement unit) data of the UAV’s camera
or accurate corresponding feature pairs.

A challenge of low altitude imagery and mosaicking for
surveillance purposes is finding an appropriate balance be-
tween seamless stitching and geo-referencing under consid-
eration of processing time and other resources. As shown
in Figure 1(b), the scale difference as a result of different
flying altitude resulted in several stitching errors. A similar
error occurred in Figure 1(c) which was caused by inaccu-
rate camera position or rotation.

Many approaches have been proposed to tackle these
problems. Examples include the wavelet-based stitch-
ing [22], image registering in binary domains [7], auto-
matic mosaicking by 3D-reconstruction and epipolar ge-
ometry [12], exploiting known ground reference points for
distortion correction [13], IMU-based multi-spectral image
correction [9], combining GPS, IMU and video sensors for
distortion correction and geo-referencing [4] and perspec-
tive correction by projective transformation [21]. Some of
these approaches differ from ours in a sense that they are
considering higher altitude [4, 7, 12, 13, 21], while oth-
ers are using different types of UAVs such as small fixed-
wing aircrafts [11, 9, 8]. These aircrafts show less geo-
referencing accuracy caused by higher speed and degree of
tilting (higher amount of roll and pitch). Zhu et al. [24]

(a) Mosaicking five images using SURF features. The path borders (red
lines) are supposed to be almost parallel. This type of error accumulates
over multiple images if not compensated.

(b) Significant stitching errors induced by scale differences among images.
Similar objects have different sizes (circles A and B), and there is a disparity
in horizontal and vertical stitching (green rectangles) [2].

(c) Stitching disparities caused by inaccurate camera angle or position (red
circles). [1].

Figure 1. Examples of image stitching errors.

performed an aerial imagery mosaicking without any 3D
reconstruction or complex global registration. The differ-
ence of their approach is that they used the video stream



which was taken from an airplane. Huang et al. [8] per-
formed also a seamless feature based mosaicking using a
small fixed-wing UAV, but no geo-referencing assessment
was conducted.

Roßmann and Rast [16] also used small-scale quadro-
copters. Their mosaicking results are seamless but lacking
geo-referencing. No details about the mosaicking approach
are presented.

3. System overview
The basic idea of our project is to deploy multiple small-

scale UAVs to support first responders in disaster assess-
ment and disaster management. In particular we use com-
mercially available quadrocopters since they are agile, easy
to fly and very stable in the air due to sophisticated on-board
control. Each UAV is equipped with an RGB camera.

The intended use-case can be sketched as follows: The
operator first specifies the areas to be observed on a digital
map and defines the quality parameters for each area [15].
Quality parameters include the spatial and temporal resolu-
tion of the generated overview image, and the minimum and
maximum flight altitude, among others.

Based on the user’s input, the system generates plans for
the individual drones to cover the observation areas [14].
Therefore, the observation areas are partitioned into smaller
areas covered by a single picture taken from a UAV flying
at a certain height. The partitioning has to consider a cer-
tain overlap of neighboring images which is required by the
stitching process. Given a partitioning we can discretize the
continuous areas to be covered to a set of so-called picture-
points. The picture-points are placed in the center of each
partition at the chosen height. The pictures are taken with
the camera pointing downwards (nadir view).

The mission planner component generates routes for in-
dividual UAVs such that each picture-point is visited taking
into account the UAV’s resource limitations. The images
together with metadata (i.e., the position and orientation of
the camera) are transferred to the base-station during flight
where the individual images are stitched to an overview im-
age.

4. Problem definition and challenges
The major goal is to generate an overall image Ires,n of

the target area given a set of n individual images {Ii}. The
overall image can be iterativly constructed as follows:

Ires,0 = O, Ires,i = Merge(Ires,i−1, Ti(Ii)) (1)

where O is an empty background matrix, T is a transforma-
tion function and the Merge function combines the trans-
formed image to the overall image.

This mosaicking can be described as an optimization
problem, in which we need to find Ti in a way that it max-

imizes our quality function λ(Ires,i). This quality function,
based on the system use case, balances the visual appear-
ance and the geo-referencing accuracy. While in some ap-
plications it is more important to have a visually appealing
overview image, other applications may require accurate
geo-referencing in the overview image. We use a quality
function that is a combination of the correlation between
overlapping images and relative distances in the generated
overview image compared to the ground truth (cf. Section 6
for more details).

In the following we summarize the most important chal-
lenges for solving our problem using images from low-
flying, small-scale UAVs:

Low altitude and non-planar surface. When taking
images from a low altitude the assumption of a planar sur-
face is no longer true. Objects such as buildings, trees
and even cars cause high perspective distortions in images.
Without a common ground plane, the matching of overlap-
ping images requires depth information. Image transforma-
tions exploiting correspondences of points at different ele-
vations may result in severe matching errors.

Non-nadir view. Due to their light weight small-scale
UAVs are vulnerable to wind influences requiring high-
dynamic control actions to achieve a stable flight behav-
ior. Even if the onboard camera position is actively com-
pensated, a perfect nadir-view of the images cannot be pro-
vided.

Inaccurate position and orientation information. The
UAV’s auxiliary sensors such as GPS, IMU and altimeter
are used to determine its position and orientation. How-
ever, such auxiliary sensors in small-scale UAVs provide
only limited accuracy which is not comparable with larger
aircrafts. As consequence, we can not rely on accurate and
reliable position, orientation and altitude data of the UAV.
Hence we have to deal with this inaccuracy in the mosaick-
ing process.

Resource limitations. In our application the resources
such as computation power and memory on-board the UAVs
but also on the ground station are very limited. In disaster
situations it is usually not possible to have a huge comput-
ing infrastructure available. The base-station typically will
consist of notebooks and standard desktop PCs. But at the
same time, we want to present the overview image as quick
as possible.

Incremental refinement. The individual images are
taken from multiple UAVs in an arbitrary order. An incre-
mental approach is needed to present the user the available
image data as early as possible while the UAVs are still on
their mission. The more images are taken the better the
overview image gets. This also means that a new image
may require to adjust the position of already processed im-
ages to improve the overall quality.



5. Mosaicking approach
As described in Section 4 we must find the appropriate

transformation Ti for each image Ii captured at a picture-
point in order to solve our mosaicking problem. There are
two basic approaches for computing these transformations:
The metadata approach exploits auxiliary sensor informa-
tion to derive the position and orientation of the camera
which is then used to compute the transformations. In this
case we assume that auxiliary sensor data (i.e., GPS, IMU,
altitude and time) is provided for each captured image. The
image-based approach only exploits image data to com-
pute the transformations. In this section we first present the
basic approaches considering the challenges of small-scale
UAVs and then describe our hybrid approach which en-
hances metadata-based alignment with image-based align-
ment. The presented approaches vary in their resource re-
quirements and their achieved results. Thus, they fit nicely
to our problem domain.

5.1. Position-based alignment

A very simple and naive approach is to align the images
based on the camera’s position. Hence, for image align-
ment the world coordinates of the camera are mapped to
corresponding pixel coordinates in the generated overview
image.

Defining the origin of the overview image of the ob-
served target area as oworld = (lat, lon, alt)T in world co-
ordinates, all image coordinates are related to this origin
on the local tangential plane (LTP) by approximation to the
earth model WGS84.

Given the camera’s position we compute the area cov-
ered by the picture in world coordinates relative to the origin
taking into account the camera’s intrinsic parameters. The
relative world coordinates are directly related to the pixel
coordinates in the generated overview image.

An example of the resulting overview image is depicted
in Figure 2(a) utilizing the placement function (Equation 1)
with transformation T being a just a simple translation for
each image. In this approach we assume reasonably accu-
rate position information and a nadir view but do not take
into account the camera’s orientation. Obviously, effects
introduced by non-planar surfaces can not be compensated
with this approach.

5.2. Position- and orientation-based alignment

A more advanced approach is to extend the naive
position-based alignment by compensating the camera’s
orientation deviation (i.e., roll, pitch, yaw angles). The
placement function of the individual images to generate the
overview image is the same as in Equation 1. But instead of
considering only translation, we use a perspective transfor-
mation T with eight degrees of freedom.

If we assume a nadir view (i.e., neglecting deviation of
roll and pitch angles) the transformation T is reduced to a
similarity transformation.

5.3. Image-based alignment

Image-based alignment can be categorized into (i) pixel-
based, and (ii) feature-based methods. The idea is to find
transformations Ti and consequently the position of each
new image which maximizes the quality function:

λ(Merge(Ires,i−1, Ti(Ii))) (2)

The pixel-based approaches are computationally more
expensive because the quality function is computed from
all pixels in the overlapping parts of two images. Feature-
based approaches try to reduce the computational effort by
first extracting distinctive feature points and then match the
feature points in overlapping parts. Depending on the cho-
sen degree of freedom the resulting transformation ranges
from a similarity transformation to a perspective transfor-
mation.

The benefit of this approach is that the generated
overview image is visually more appealing. But on the other
hand, the major disadvantages are that the search space
grows with the number of images to be stitched and the im-
ages may get distorted (cf. Figure 1(a)).

5.4. Hybrid approach

We propose a combination of metadata-based (cf. Sec-
tions 5.1 and 5.2) and image-based methods (cf. Sec-
tion 5.3).

The idea is to first place the new images based on the
camera’s position and orientation information on the al-
ready generated overview image. In the next step, we use
image-based methods to correct for inaccurate position and
orientation information and at the same time improve the
visual appearance. Since we already know the approximate
position of the image from the camera’s position we can
reduce the search-space significantly. Thus, we split the
transformation Ti from Equation 2 into two transformation
whereas the Ti,pos represents the transformation based on
the camera’s position and orientation and Ti,img represents
the transformation which optimizes the alignment using the
image-based method.

We favor transformations Ti,img and Ti,pos which maxi-
mize the quality function:

λ(Merge(Ires,i−1, Ti,img ◦ Ti,pos(Ii))),
pos ∈ {(u, v)|u ∈ [xmin, xmax], v ∈ [ymin, ymax]}

(3)

We limit the search space to a reduced set of possible posi-
tions based on the expected inaccuracy of position and ori-
entation information (cf. Figure 3).



With this proposed approach we can generate an appeal-
ing overview image without significant perspective distor-
tions and at the same time maintain the relative distances
and geo-references in the overview image. Moreover, this
approach can cope with inaccurate position and orientation
information of the camera and thus avoid stitching dispari-
ties in the overview image.

6. Results

In this section we compare the results of the first three
approaches (Sections 5.1, 5.2 and 5.3) with our hybrid ap-
proach (Section 5.4). This evaluation mainly focuses on
the geospatial accuracy and image correlation which are
specified in our quality metric (Section 6.1). We further
compare the required computation times of all approaches
which have been implemented in Matlab on a standard PC
running at 2.66 GHz.

For the evaluation we used a rectangular round trip mis-
sion for which 40 picture points have been planned (cp. Fig-
ure 4). Images have been captured from a single UAV flying
at an altitude of approximately 30 m. The overlap among
adjacent images is about 60 %. A subset of 8 images is used
to compare the stitching results of the first three mosaicking
approaches (cp. Figure 2).

6.1. Quality evaluation

To evaluate the quality of the different mosaicking ap-
proaches presented in Section 5 the following metric for the
overview image quality λ is defined:

λ(Ires) = α · λspat(Ires) + (1− α) · λcorr(Ires) (4)

where

λspat =
1
m

m∑
i=1

1

1 + |di−d̂i

di
|
,

λcorr =
1
n

n∑
i=1

1 + CC(Overlaps(Ires,i−1, Ti(Ii)))
2

,

CC(X,Y ) =
Covariance(X,Y )

σXσY
,

di is the actual distance measured between two ground
control points, d̂i is the estimated distance extracted from
overview image and m is the number of considered dis-
tances. As it can be deduced from the equations, λ, λspat and
λcorr are all in the range of (0, 1]. The total quality function
λ is a weighted combination of λspat and λcorr (0 ≤ α ≤ 1).
λspat represents the accuracy of spatial distances while λcorr

shows the correlation in areas of overlapping images, which
is a measure for the seamlessness mosaicking. In our eval-
uations we set the weight α = 0.5.

(a) Position-based alignment.

(b) Position- and orientation-based alignment.

(c) Image-based alignment using SIFT features.

Figure 2. Stitching results of basic image mosaicking approaches
using 8 images of the round trip mission. The red triangle depicts
the distances to compute the spatial accuracy. The units are given
in pixels.



Reference Pos Pos + Rot Image Hybrid
|P3P6| [m] 31 31.54 30.53 30.13 31.30
|P6P11| [m] 37.9 38.17 38.07 38.27 38.19
|P3P11| [m] 51.75 50.61 50.76 50.93 52.40
λspat(Ires) [%] 95.3 96.1 94.6 96.9
λcorr(Ires) [%] 69.6 74.5 82.4 86.7
λ(Ires) [%] 82.4 85.3 88.5 91.8

Table 1. Spatial accuracy and quality parameters of the three basic
and the hybrid mosaicking approaches.

6.2. Metadata and image based approaches

The quality of correlation λcorr can easily noticed in the
overview images in Figure 2, that is increasing by the com-
plexity of the approaches.

In our evaluation we chose a triangle, spanning signifi-
cant points (P3, P6, P11) for simplified spatial evaluation in
the reduced set of eight images. In Table 1 the measured
distances (|P3P6|, |P6P11|, |P3P11|), the resulting spatial
quality and the correlation quality are presented and com-
bined according to Equation 4 to a final quality characteris-
tic to compare the presented approaches.

Metadata-based approaches, like the position-based ap-
proach shown in Figure 2(a) and the position-based ap-
proach with rotation presented in Figure 2(b) retain geo-
referencing, if only similarity transformations are used.
Image-based approaches even when restricting the match-
ing function to a similarity transformation, as presented in
Figure 2(c), show a good correlation quality.

The computation time for the whole set of 37 images in
the scaled resolution of 400 by 300 px took tpos = 17.31 s
for position-based, tpos+rot = 18.33 s with rotation, and
increased dramatically to timage = 459.20 s in the image-
based alignment approach.

6.3. Hybrid approach

We used the complete round trip mission to evaluate the
hybrid approach (Figure 4). However, three images were
lost in the real UAV mission (cp. positions B, C and D in
Figure 4) which reduced the overlap in these specific areas
to approximately 20%. As shown the deviation of the last
image to the starting point is not noticeable which implies
that the relative distances are almost kept to a certain ex-
tent. The computation time was thybrid = 136.28 s for the
whole set of images, which is significantly less than the im-
age based approach (cf. Section 5.3). The total error range
in the hybrid approach defines the search space in order to
find the estimated position. By estimating the appropriate
image position we compensate for the total error (GPS and
camera tilting errors). Figure 3 helps to understand this con-
cept better. We search inside this possible error range to
find the best estimated position which maximizes our qual-
ity function best. In fact considering a case without any

Figure 3. The red line shows the GPS error range (the real position
is in this range). The green line shows the tilting error range. The
sum of this two errors give us the total positioning error

GPS error and considering all views completely nadir, the
hybrid algorithm will be reduced to a simple position based
approach. The total error range we have used in Figure 4 is
GPSerror + tan(α)× height ' 7m in real world distance
at the ground level, which is approximately equivalent to 1

4
of the image width. Yet, in a complete nadir view, orthog-
onality will be reduced when getting away from the optical
axis. Somehow it gives us an idea that the middle parts of
an images contain more reliable data. So for more pleasant
result in our mosaicking, we make sure that the central part
of each image under each picture-point is not masked by the
border parts of other images.

In Figure 5 , the upper graph shows the relation between
correlation of the overlapping parts of two adjacent images
in different approaches. As we see the hybrid approach
shows the highest correlation comparing to the others; the
lower graph indicates the relative distance from the esti-
mated position to the corresponding GPS position on each
image in the hybrid approach. By comparing these two
graphs, we see that if the estimated position of an image
is close to its indicated GPS position it results in a higher
correlation and vice versa.

Figure 6 shows a snapshot from our user interface. The
operator defines the target area, then single images are
placed iteratively over background map; the green line
shows the flight path of the UAV. We can use any kind of ex-
isting geo-referenced digital maps (e.g., from Google earth
or Microsoft virtual earth) or we can set an empty back-
ground.

7. Conclusion
In this paper we presented our system for mosaicking

high-resolution overview images of large areas with high
geometric accuracy from a set of images taken from small-
scale UAVs. Although much research has been done on mo-
saicking of aerial imagery, the challenges in our application



Figure 4. Mosaicking result of images taken from a round trip mis-
sion using the hybrid approach.
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Figure 5. The upper graph depicts a comparison between correla-
tion of the overlapping parts of two adjacent images in different
approaches; the lower graph shows the relative distance between
the estimated position and the GPS position

are significantly different since small-scale UAVs flying at
low altitude pose new problems. We propose a hybrid ap-
proach that combines inaccurate information on the cam-
era’s position and orientation, and the image data. Thus,
we can maintain geometric accuracy and at the same time
enhance the visual appearance. The evaluations show that
our approach results in a higher correlation between over-
lapping image regions and retains spatial distances with an
error of less than 30 cm. The computation time for a set of
37 images is reduced by approximately 70 % compared to
an image-based mosaicking.

Future works may include more dynamic and interactive
methods of mosaicking images to increase the quality of the
overview image, i.e., as new images are taken the transfor-

Figure 6. Screen shot of the GUI of our UAV system. The captured
images are incrementally stitched over the—partially outdated—
background image.

mation of already mosaicked images are refined. Moreover,
we want to apply our proposed method also for larger areas
and use images from multiple UAVs.
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