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1. Introduction

Multimedia sensor networks [1] and visual sensor net-
works (VSN) [3] have been increasingly studied in recent
years. However, the aspect of resource-awareness has just
recently moved into the focus of research interests. Espe-
cially energy-aware systems that may be deployed in areas
without fixed infrastructure have only recently achieved at-
tention.

In the SRSnet (Smart Resource-aware Sensor Network)
project1, we consider smart cameras that operate au-
tonomously within a visual sensor network. The cameras
have onboard processing facilities and can execute different
video surveillance tasks [4]. The sensors are connected via
a low-power, wireless channel. The goal is to provide a high
surveillance quality while minimizing energy consumption
to prolong the network lifetime. This includes minimizing
the communication effort and processing load on nodes. We
also aim for selectively switching off sensors and nodes to
save energy. Thus, we must perform sensor selection to find
a minimal set of sensors to perform a certain task as well
as task assignment to find resource-minimal assignments of
tasks to nodes.

2. Problem Modeling

In our work we model the visual sensor network as a
set of static cameras with associated locations and fields of
view as shown in Figure 2. Additionally, we consider a set
of observation points which represent areas of special inter-
est to surveillance. These observation points pose certain
surveillance requirements expressed in terms of pixels on
target, frame rate and surveillance activity. We try to solve
the problem of assigning each observation point to a camera
of the visual sensor network in a way that the requirements
of the observation points are fulfilled while the energy con-
sumption in the network is minimized and the resources of
all cameras are not exceeded. Figure 2 shows an example
of such an assignment.

1http://SRSnet.lakeside-labs.com

Figure 1. A visual sensor network consisting of cameras (S1−S6
and observation points (A − F ). A camera’s FOV is represented
as a segment.

We first developed a centralized solution that uses global
knowledge on the network and the camera’s resources to
find a feasible assignment. This solution is based on an
evolutionary algorithm and is described further in Section
3. To be able to optimize online within an already deployed
network, we are developing a distributed optimization al-
gorithm and an associated communication protocol. Our
approach for this is described in Section 4.

3. Central Task Assignment
In this work we concentrate on the reconfiguration of

resource-limited wireless visual sensor networks. Typically,
the tasks of such a network change over time. External op-
erators may redefine areas of interest and the surveillance
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Figure 2. An example of a visual sensor network and observation
points that must be covered by the cameras. Allocations of obser-
vation points to cameras are depicted by green dashed lines.

operation necessary in those areas. In SRSnet, we addition-
ally use a subsystem for complex event detection which may
trigger a reconfiguration according to certain events (e.g.
tracking certain objects involved in a complex event such as
”Group of persons entering a forbidden area”). The com-
plex event detection component can refocus the attention in
the network to certain objects. The audio/video subsystem
is responsible for orientating the PTZ cameras and feeds
orientation information into the network reconfiguration.

Resource limitations on the nodes are an important con-
straint in our work. The surveillance network is intended
to be deployed in areas with limited infrastructure where
no permanent power supply is available. To reconfigure
our networks we need to i) select a minimal set of cam-
eras which are able to reliably fulfill a certain surveillance
task, ii) configure those cameras with an appropriate resolu-
tion and frame rate and iii) assign the necessary monitoring
tasks to the nodes. Thus, we try to solve a combined sensor
selection and resource allocation problem.

All three steps must be performed with respect to en-
ergy usage and delivered surveillance QoS. We express QoS
as frame rate, pixels on target and surveillance activity for
a certain point in space. Surveillance activities may be
e.g., change detection, object detection, tracking or simi-
lar tasks. Finding a solution within those constraints is a
hard task because the search space of possible solutions is
very large, but the set of feasible solutions is rather small.

Solving a combined sensor selection and resource allo-
cation problem is a challenging task. In contrast to classical
optimization problems, which optimize for a single goal,
this problem has multiple optimization criteria. First, the
sensor coverage must be guaranteed and maximized, sec-
ond, the resource usage on the nodes must be minimized.

Multiobjective optimization problems are often tackled with
evolutionary algorithms (Evolutionary Multiobjective Op-
timization, EMO) [2]. Here, an iterative approach is em-
ployed to find a feasible solution. The problem is described
as a set of properties that can be altered (also called a chro-
mosome). In each step (called an epoch) the algorithm ran-
domly alters one or more of those properties. A fitness func-
tion is then used to determine the quality of the resulting
solution (i.e. the fitness). For most multiobjective optimiza-
tion problems, there is no single optimal solution but rather
a set of feasible solutions which must be regarded as equally
good. This set is called the Pareto front [5]. We have devel-
oped a general framework for evolutionary multiobjective
optimization. This framework has been released as an open
source project2. It allows to quickly encode a single- or
multiobjective problem into an evolutionary algorithm. It
then performs evolutionary optimization

We developed this central algorithm as a benchmark for
our later distributed algorithm in order to compare the dis-
tributed algorithm’s results against the central algorithm’s
solutions.

4. Distributed Task Assignment

In order to perform optimization online in a visual sensor
network we are developing a distributed optimization algo-
rithm. This optimization algorithm must operate in a fast
and resource-saving manner too. An evolutionary approach
would be infeasible since it requires a lot of computation as
well as a huge amount on information from other nodes.

For the distributed algorithm we must accept the fact that
an optimal solution may not be found in all cases. An espe-
cially challenging aspect in our setting are cases when the
network cannot be clearly partitioned. Such scenarios are
very common in visual sensor networks with shared fields
of view and are hard to solve without sharing global knowl-
edge on all cameras (which would require the exchange of
huge amounts of information among nodes).

As an example, Figure 2 shows a network, where the
cameras cannot be clustered according to the observation
points in their field of view. The solution for camera 1 and
observation point A may be computed independently but
for the remaining cameras no clear separation can be found.
The cluster of cameras 2, 3, 4 and observation points B,C
is dependent from the cluster of cameras 5, 6 and observa-
tion points D,E, F . This means that a solution for cluster
2, 3, 4 is dependent from the solution found in cluster 5, 6
and vice versa. In practice this means, that all cameras ex-
cept 1 may need to be be involved for finding a solution
although for example camera 2 and 5 have no common ob-
servation points.

This increases the communication and calculation effort

2http://nemo.codeplex.com
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for finding a solution. Our goal is to find ways to break
those interdependencies to be able to compute solutions
within small clusters. We aim at an algorithm and protocol
with only a small set of commands and messages. For ev-
ery observation point, the cameras iteratively agree on the
assignment of that point to a camera. This is done by se-
lecting the camera that can cover that point with minimal
resource effort. If this is impossible due to a high load,
the cameras will try to hand off the responsibility for other
points in order to free resources to cover the new point. In
the example above (Figure 2), camera 6 may hand off ob-
servation point E to camera 5 in order to free resources for
covering D.

5. Current and Future Work
The algorithms presented above are subject to ongo-

ing work. We have already developed a first prototype of
the central algorithm and are currently developing the dis-
tributed version. This algorithm will be part of the prototype
deployment of SRSnet in the National Park ”Hohe Tauern”
in summer 2011. From this deployment we will gather real
world data on the performance of our optimization algo-
rithm which will be used to further refine our approach.
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