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Abstract— A novel level of service (LOS) estimation approach
based on the extraction of three local visual features is pre-
sented. The feature set comprises KLT motion vectors and Sobel
edges, and is fed into a Gaussian radial-basis-function (GRBF)
network to classify the prevailing LOS. The whole approach is
designed and implemented to run on smart cameras in real-time
and has been evaluated with a comprehensive set of real-world
training and test video data from a national motorway. The
evaluations in daylight environments have shown an average
accuracy of LOS classification of 86.2% on an Atom-based
smart camera, with a maximum reachable processing frame
rate of 12.5 frames/sec. Incorrect classified samples differed
from the ground truth by only one level. The comparisons are
done with observation data from sensors utilizing a combination
of Doppler radar, ultrasound, and passive infrared technologies.

I. INTRODUCTION

Over the past four decades, growing traffic has lead to the
ubiquitous problem of congested roads. Road operators are
increasingly interested to improve the level of service (LOS)
on their roads by selectively extending the road network and
dynamically controlling the speed and routes of vehicles
in hot spot areas. To accomplish these tasks well, careful
automatic monitoring and analysis of the prevailing traffic is
needed.

Various types of methods and sensors exist for monitoring
the traffic on the roads. On Austrian motorways, triple-
tech traffic detectors, road toll systems, and surveillance
cameras are mainly used for this purpose. The triple-tech
detectors utilize a combination of Doppler radar, ultrasound,
and passive infrared technologies to periodically determine
the individual vehicle speed, class, occupancy time, and
length per road lane. The surveillance cameras are usually
controlled by human operators on demand and do not per-
form automatic measurements. Since the triple-tech sensor
infrastructure is only dense in a few hot spot areas and
rather sparse in other regions, there is increasing demand
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for utilizing cameras as vision-based sensors for estimating
the level of service.

In a case study we address this demand by using new
smart cameras and existing surveillance cameras for LOS
estimation within two defined test areas. For each camera,
the traffic state is computed individually, using the feature-
based LOS classification method discussed in this paper. The
overall goal of utilizing vision-based LOS estimation is to
improve the spatial and temporal accuracy of traffic mes-
sages. In subsequent processing steps, multi-sensor fusion
and traffic flow modeling methods are applied to combine
LOS estimations obtained from cameras with observation
data obtained from other traffic sensors.

This paper presents our LOS estimation approach for smart
cameras performing video analysis in the uncompressed
domain in real-time. In a given analysis area within the FOV
of the camera, it uses the Kanade-Lucas-Tomasi (KLT)[1],
[2], [3] feature tracker for computing motion features, and
Sobel-based edge detection for gathering edge features. The
LOS is then estimated using a Gaussian radial-basis-function
(GRBF) network [4], taking the following three local features
as input:

F1: median KLT vector length (velocity)
F2: average KLT vector length per frame (velocity)
F3: average block-based edge occupancy per frame (den-

sity)

In our implementation we use OpenCV[5] for feature
extraction and the data mining workbench Weka[6] for
LOS estimation. The estimated levels of service are finally
compared to per-minute aggregated observations taken from
triple-tech sensors at the same location. The implementation
of the algorithm was evaluated under real-time constraints on
a smart camera equipped with a low-power Intel Atom pro-
cessor. The evaluations utilized a comprehensive, real-world
data set in daylight conditions without any sight disturbances.
The results have shown that our approach provides a correct
LOS classification rate of 86.2% on average.

The remainder of this work is organized as follows.
Section II discusses related work in the area of vision-based
vehicle speed and density estimation. In section III, our
approach for extracting the three features and classifying
the level of service is presented. Experimental results on a
comprehensive training and test data set are presented in
section IV. Finally, section V concludes this contribution
with some perspectives about our future work.



II. RELATED WORK

Visual speed estimation has been studied by many research
groups. Typically, estimation of traffic speed and density is
based on vehicle tracking which either relies on motion anal-
ysis using background models, feature tracking, or vehicle
detection.

The idea of background modeling is to segment moving
foreground objects from the background. Many background
models have been proposed, such as [7] or [8], that adapt
to changing light and weather conditions. In [9] the authors
combine simple frame differencing with a probability density
function to estimate the segmentation of background and
objects.

Feature-based tracking methods typically use corner fea-
tures for vehicle tracking. The algorithm described in [10]
employs Kalman filtering and correlation testing for tracking
the features. A grouping module groups the features in order
to segment the individual vehicles.

Vehicle detectors [11] are usually based on learning algo-
rithms trained to detect vehicles in an image. In [12], [13],
for instance, the authors use classifier grids with adaptive
online learning for detecting cars. The velocity of vehicles
is calculated using the feature-based KLT algorithm. In [11]
the authors discuss the Principal Component Analysis (PCA)
and Histogram of Gradients (HOG) approaches for vehicle
detection.

Solutions that use background models for motion analysis
usually perform well in free flow situations when there are
not too many vehicles close to each other [9]. The quality
of motion estimation usually degrades if traffic density is
very high. Feature-based tracking algorithms, such as KLT,
use feature matching to compute the optical flow. Clustering
motion vectors to track vehicles is, however, a complex
and error-prone task, since the number of detected features
usually varies depending on contrast and lighting of the
images. Vehicle trackers utilizing vehicle detectors have
shown promising results. However, the detection rate of
car detectors is usually affected by occlusions and difficult
weather conditions. Therefore, in [14], [15] multiple sensor
data is exploited and co-training to improve the classification
rates of vehicle detection is performed. An alternative ap-
proach to sensor fusion for vehicle classification is presented
in [16].

In [17], the authors employ texture features and edge
features for traffic density estimation. Using a 21-dimension
feature, Hidden Markov Models (HMM) are trained to esti-
mate the traffic density state. The method was evaluated for
different weather conditions and shows an average accuracy
of 95.6 %.

In this paper we present a new approach for vision-based
level of service (LOS) estimation on motorways. In contrast
to most other approaches, our method does not require a
background model and does not rely on vehicle tracking.
Instead, we use statistical features, generated from the KLT
motion vectors and edge occupancy in a small analysis area.
Using the extracted features we train a GRBF network for
classification of the LOS.

TABLE I
LOS LEVEL CLASSIFICATION FOR A SINGLE LANE.

Level 1 Lane
Velocity (km/h) Density (v/km)

1 (free flow) [80,∞] [0,20]
2 (heavy) [80,∞] ]20,50]
3 (queuing) [30,80[ [0,50]
4 (stationary) [0,30[ ]50,∞]

III. LOS CLASSIFICATION APPROACH

A. LOS definition and detection

LOS is a qualitative measure that describes the opera-
tional conditions of a segment or traffic stream. In real-
time estimation of LOS, four classes of motorway traffic are
defined: free-flow (level 1), heavy (level 2), queuing (level
3), and stationary traffic (level 4). The levels are computed
in dependence of average vehicle velocity and density on the
individual lanes. Table I illustrates the LOS level criteria for
a single lane on the Austrian motorways. Velocities are given
in km/h, densities in vehicles/km.

(a) Analysis area specification

(b) Binary edge mask and block-based edge occupancy

(c) KLT feature tracking

Fig. 1. Feature extraction using KLT-based optical flow and edges in an
analysis area.

Automatic LOS detection systems typically rely on various
individual or multiple sensor sources such as inductive loops,
magnetic, radar, ultrasound, infrared, or laser sensors. The
triple-tech sensors - taken as reference for our evaluation -
use a combination of Doppler radar, ultrasound, and passive



infrared sensor sources. Using velocity, vehicle count, and
occupancy measurements over a certain observation period
(e.g., one minute), the corresponding LOS level can be
calculated. Vision-based LOS detection systems usually rely
on vehicle tracking to estimate the average speed and den-
sity of the traffic. One of the main advantages of vision-
based LOS detection is the usage of the ubiquitous video
surveillance camera infrastructure which is already available
on motorways.

B. Classification features

In contrast to most vision-based LOS detectors, our
method does not rely on vehicle tracking. Instead it uses
KLT-based feature tracking and edge occupancy statistics for
LOS classification. The method works on a rhomboid-shaped
analysis area as illustrated in Figure 1(a). As shown, the
analysis area is further divided into rhomboid-shaped sub-
blocks of 256 pixel size. Instead of tracking the individual
vehicles within the entire frame, our method applies KLT
feature tracking locally and calculates the motion vectors
within the analysis area.

For a given observation period (e.g., one minute) two
motion-based features are calculated: (1) the median of the
length of all motion vectors, and (2) the average length of the
motion vectors per frame. For most cases, when the number
of motion vectors is high compared to infrequent outliers,
the median motion vector length correlates well with the
average velocity of the vehicles. However, in cases where the
number of motion vectors is low (free or stationary traffic),
the median of vector lengths is disrupted by a small number
of outliers not removed by the outlier detection. In contrast,
the average motion length per frame does not provide an
accurate motion estimation but reliable detection of periods
where the overall amount of motion is very low.

The third feature is the average edge occupancy. Using the
Sobel operator and simple thresholding, a binary edge image
(Figure 1(b)) of the analysis area is calculated for every
frame. Using the binary edge image, our algorithm counts
the number of edge pixels for each block of the analysis
area. If the amount of edge pixels exceeds the empirical
threshold of 15%, a block is considered active. Using the
number of active blocks in each frame, the relative amount
of active blocks is averaged over the observation period.
The edge occupancy feature correlates with the density of
the traffic and is especially useful to distinguish between
free-flow traffic, where edge occupancy is close to 0% and
stationary traffic, where edge occupancy is close to 100%.

Using the statistical features of motion vectors and edges
instead of vehicle tracking for LOS detection has two main
advantages. First, the method is not strongly affected by
occlusions and segmentation problems when traffic density is
high since tracking is only performed on KLT features. And
second, the method is also well suited for embedded devices
such as smart cameras, since analysis is only performed in
a small analysis area.

C. Feature extraction
For computing the described classification features we

developed an OpenCV-based feature extractor. The feature
extractor uses video data from an image sensor or MPEG-
4 stream and outputs the features used for determining the
LOS. For each frame, it performs KLT-based feature tracking
as well as Sobel-based edge detection for a predefined
analysis area. All image processing is performed on 8-bit
grayscale images. Each input frame is masked with the
binary mask of the analysis area. After extracting the KLT-
feature points from the masked input frame, the feature
extractor calculates the motion vectors with respect to the
previous frame. Therefore, a pyramidal implementation of
KLT feature tracker [18] is used to calculate the matching
for the KLT feature points. The matching of feature points
is illustrated in Figure 1(c). Although KLT-based feature
tracking is relatively robust, outliers caused by mismatches
occur. For that reason our algorithm ignores feature points
that lie close to the border of the analysis area to avoid
potential mismatches when a vehicle exits the analysis area.
Furthermore, it performs direction-based outlier detection
that rejects any motion vectors not pointing in the direction of
the traffic flow. To determine the direction of the traffic flow,
a predefined number of vectors is collected to initialize a
direction histogram. For generating the feature set, described
in section IV-A, we used a direction histogram with 10 bins.
Using this histogram, vectors not included in the dominant
bin are rejected as outliers.

As described in section III-B, we use statistical features
calculated over a certain observation period for LOS classifi-
cation. Therefore, our algorithm stores the vector lengths of
the valid motion vectors to a sorted observation buffer. Each
time the observation period expires, the feature extractor
retrieves the median value from the buffer and empties the
buffer. The average length of the motion vectors per frame
is calculated from the average motion vector length in the
analysis area. For each frame it obtains the average motion
vector length and adds it to the aggregated value. When the
observation period expires, the average motion vector length
is obtained by dividing the aggregated value by the number
of frames of the observation period.

To obtain the average edge occupancy, the algorithm
applies the Sobel operator to each masked input frame. After
that, it converts the resulting edge image to a binary image.
For each block of the analysis area, the algorithm counts the
number of edge pixels. If the number of pixels exceeds the
empirical threshold of 15%, a block is considered active. The
algorithm aggregates the percentage of active blocks over
the observation period and calculates the average block oc-
cupancy when the observation period expires. The extracted
features are finally fed into a Gaussian radial-basis-function
(GRBF) network that performs the LOS classification task.

IV. EXPERIMENTAL RESULTS

A. Data set
For training and testing the LOS classification method,

we used a 12 hours (from 7AM to 7PM) MPEG-4 video



TABLE II
TECHNICAL PARAMETERS OF THE SMART CAMERA.

Processor Intel Atom 1.6 GHz
Main Memory 1 GB
Sensor 1280 x 1024 color CCD
System Ubuntu Linux 10.04

TABLE III
NET EXECUTION TIMES OF THE FEATURE EXTRACTOR PER FRAME.

Min. 29 ms
Max. 92 ms
Average 36 ms

stream. The video stream was recorded in February 2011 on
a national motorway and contains multiple occurrences of
all four LOS classes. The analyzed video has a resolution
of 352x288 and a frame rate of 25 frames per second. For
the analysis, the frame rate was downsampled to the half
frame rate to obtain motion vectors with reasonable length.
The reference velocity, vehicle count, and LOS data used
as ground truth were obtained from the national motorway
authority. This ground truth data is derived from triple-
tech traffic detectors mounted at the same location as the
surveillance camera. For determining the LOS, the sensor
data is aggregated over a one minute observation period.

B. Evaluation environment

The proposed approach was evaluated under real-time
constraints on a custom smart camera. Table II illustrates
the main technical data of this camera. It is equipped with
an Intel Atom processor attached to an SXGA capable
color CCD sensor. For evaluating our algorithm with the
predefined analysis area, we used frames with CIF resolution
(352x288 pixels).

Table III shows the execution times of the feature ex-
traction algorithm per frame. On the smart camera, the
algorithm requires 36 ms on average to compute the features
for a single frame. Adding 30 ms approximately needed for
fetching a raw image from the camera sensor results in an
average feature extraction time of 66 ms per frame. With
our target frame rate of 12.5 frames/sec as reference, the
average extraction time per second is 825 ms. This leaves
approximately 175 ms per second for the LOS classification.
Since the LOS classification is only done once per minute,
there are approximately 10 seconds per minute left for
this task, which is feasible for the implementation of the
classifier.

C. Velocity and density estimation

Using the developed feature extractor described in section
III-C, the features were extracted from the video and syn-
chronized with the reference values. For the feature statistics
we chose a one minute time window to ensure consistency
with the reference data. We defined an 3284 pixel (14 blocks)
analysis area on the left lane with rear view on vehicles as
shown in Figure 1(a).

(a) F1: Median vector length

(b) F2: Average vector length per frame

(c) F3: Average edge occupancy

Fig. 2. Extracted feature values from a 12 hours video recording and
corresponding ground truth values. Note the different units on the y-axis.



Fig. 3. Average precision, recall, and accuracy for the GRBF network
trained with 10-folds cross validation

The extracted features and the corresponding reference
values were exported to a file for further analysis and
evaluation by the classifier. Figure 2 shows the extracted
motion-based and edge-based feature values in comparison to
the reference data. Figure 2(a) contains the median motion
vector lengths and Figure 2(b) the average motion vector
lengths per frame, both compared to the reference velocity
values. The figures show that most of the time the median
vector length provides a good estimation for the average
velocity. However, especially in case of congestion when the
average velocity is close to zero, the median vector length
is not stable because of infrequent mismatches of the KLT
tracker not eliminated by the outlier detection. For stationary
traffic, when no motion is present, a small number of wrong
motion vectors can disrupt the median value. Moreover, the
figure indicates a degrading quality of motion-based features
after sunset, i.e., between 6PM and 7PM.

The second motion-based feature, the average motion
vector length per frame, is not only correlated with the
average velocity but also with the traffic density. However,
as shown in Figure 2(b), the average motion vector length
performs only well for indicating periods where the velocity
is very low. The reason is that mismatches of the KLT tracker
occur very infrequently and therefore affect only a small
number of frames.

The third feature, the average edge occupancy, is shown
in Figure 2(c) in comparison to the traffic density that was
calculated from the reference values. For the shown analysis
we used an empirically determined edge threshold of 15%
(17 pixels) for setting a block active. It shows that the
average edge occupancy provides a good estimate for the
actual traffic density during daylight. Also, the figure shows
highly uncorrelated variations of the average edge occupancy
between 6PM and 7PM when no static ambient light was
present. For the chosen analysis the edge occupancy was
biased by 17% (corresponds to three blocks) due to the road
marker on the left side (cf. Figure 1(a)).

(a) LOS values - ground truth

(b) Result of the feature based LOS classification method (output of the GRBF
classifier)

(c) Absolute difference between ground truth and the feature-based LOS
classification method

Fig. 4. Classification result for the one hour test set compared to ground
truth

D. Level of service estimation

The computed features were used to train a normalized
Gaussian radial-basis-function network classifier. The GRBF
network implementation [6] used for our results applies K-
means clustering to estimate the centers and widths of the
Gaussian functions and logistic regression for learning the
classification model.

The feature set, described in section IV-C, was combined
with the reference LOS data. The feature set was split
into a 10-hours training and 1-hour test set. Since our
LOS classifier is only intended to work during daylight, we
removed all feature samples between 6PM and 7PM from
the feature set. Furthermore, we defined a test set from 1PM
to 2PM that contains samples of all four LOS classes to
provide test data for the trained classifier. We used the feature
set to evaluate the classification accuracy of several state-
of-the-art classifiers, such as Bayesian network, decision
tree, neural network and GRBF network. It showed that a
GRBF network with k = 4 Gaussian functions provides
the highest classification accuracy. For training the GRBF
network classifier, we used a 10-folds cross-validation on
the training data.

Figure 3 shows the average precision, recall, and accuracy
for the individual LOS classes of the trained classifier. It
shows that our LOS classifier provides an average precision
of 86.1%, and an average recall and accuracy of 86.2%.



Both, free flow and stationary LOS classes show a high
accuracy, while heavy and queueing LOS are more difficult
to discriminate.

Also, we evaluated the trained GRBF classifier using the
described comprehensive 1-hour test set. Figure 4(a) shows
the classification result in comparison to the ground truth. On
this test set, the classifier achieves an average accuracy of
78.3%. Figure 4(c) shows the absolute difference between
the ground truth and the classification result, which is not
greater than one. Therefore, on the one-hour test set, the
LOS value of incorrect classified samples does never differ
from the reference value by more than one level.

V. CONCLUSIONS AND FUTURE WORK

A vision-based level of service (LOS) classification ap-
proach utilizing a normalized Gaussian radial-basis-function
(GRBF) network with three features based on Kanade-
Lucas-Tomasi (KLT) motion vectors and Sobel edges was
presented. All features are calculated locally in a predefined
section of the frames. The features are fed into the GRBF
network for estimating the four LOS classes free-flow, heavy,
queuing, and stationary traffic in real-time.

Training and evaluation of the classifier were performed
with a comprehensive, real-world data set in daylight con-
ditions (i.e., an 11 hours video stream with corresponding
ground truth from triple-tech traffic detectors) and have
shown promising classification results. With cross-validation
training, the classifier yields an average accuracy of 86.2%.
Classification of free-flow and stationary traffic shows a high
accuracy, while heavy and queuing traffic are more difficult
to distinguish. Further evaluations on a one-hour test set
also approve the quality of the implemented method. The
presented LOS estimation method was evaluated on a smart
camera equipped with an Intel Atom 1.6 GHz processor. For
a target frame rate of 12.5 frames per second, the algorithm
runs significantly faster than real-time.

As part of ongoing project work, we plan to integrate
the proposed LOS classification method into runtime
environments at the motorways. Therefore, we will also
evaluate the accuracy of the presented method for different
weather conditions, such as rain and snow. Moreover, in
order to use the LOS classification method for arbitrary
settings, a function that maps the length of motion vectors
to a trained reference length is required. Such a mapping
can be calculated from the intrinsic and extrinsic camera
parameters. Future work in this field will also include a
feedback loop for the LOS estimation on the smart cameras.

Based on previous work we will investigate online-
learning and co-training methods to further improve the LOS
estimation accuracy.
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