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Abstract. In this approach we estimate the depth
structure of sceneries in aerial images captured by
small-scale UAVs to improve the mosaicking of an
orthographic overview image. Initial image transfor-
mations derived from inaccurate position and orien-
tation data of UAVs are enhanced by the camera pose
obtained using Structure from Motion. Correspond-
ing points are then selected on a common ground
plane to find accurate image transformations. The
resulting mosaick preserves distances and minimizes
distortions. A rough placement is immediately pre-
sented and optimized incrementally if more images
are considered.

1. Introduction

For many applications, such as disaster response,
monitoring accident scenes and building sites, up to
date and spatially accurate overview images are re-
quired. In particular, after severe disasters such as
earthquakes or floodings wide area overviews are of
special interest and importance to guide first-time re-
sponders.

We are investigating an approach to generate a
wide area overview image from single images, pre-
serving spatial distances as seen in orthophotos. To
cover wide areas we favor aerial images from un-
manned aerial vehicles (UAVs), because images from
static cameras are hardly available due to the lack of
infrastructure in typical scenarios.

For taking the essential aerial images small-scale
UAVs, flying autonomously at low altitudes, are pre-
ferred to human operated planes or helicopters be-
cause of their advantages in availability, safety, ro-
bustness, ease of use and cost efficiency. Apply-
ing standard image registration algorithms to images

from low altitudes, often lead to perspective distor-
tions.

We achieve an overview image that can be per-
ceived as orthophoto, if we only consider the planar
ground and neglect objects on the ground. To keep
the uniform scale in an orthophoto we have to opti-
mize the image transformations accordingly. We do
not aim to generate true orthophotos, which would
require dense 3D models. Hence, images are taken
with a nadir view, i.e., orthogonal to the earth’s sur-
face, to reduce the perspective influences of the non-
planar scene and to allow a simplified orthorectifica-
tion.

The ideal solution would be, of course, a full 3D
reconstruction of the scene. But this is not feasible on
small scale UAVs due to limitations of payload, bat-
tery capacity and computational performance. Fur-
thermore, the resulting overview image should be
presented iteratively as quick as possible. Thus, the
images are processed already during flight of our
networked small-scale UAVs and interim results are
transmitted over the wireless channel with limited
bandwidth.

In our approach, rough image transformations
based on the metadata are refined by structure data
from overlapping images. The Structure from Mo-
tion technique is used to compute the scene structure
within overlapping regions to specifically match ar-
eas on the ground plane. For selecting correspond-
ing points only on the ground plane it is necessary to
apply a plane fitting algorithm to the structure data.
With the resulting points an image transformation is
computed that preserves distances while mosaicking.

Furthermore, the position and orientation data
from the UAV’s sensors is merged with the data ex-
tracted from images by Structure from Motion to es-



timate the real camera orientation and position. This
allows a more accurate spatial referencing of points
on the ground plane and refined orthorectification of
single images.

The remainder of this paper is organized as fol-
lows: Section 2 gives a short overview on related
work. Section 3 elaborates challenges and research
questions of mosaicking aerial images incrementally
and leads to Section 4, that proclaims our approach
for mosaicking by means of the scene structure. Sec-
tion 5 presents mosaicking results and finally Sec-
tion 6 concludes the paper and gives some outlook
on future work.

2. Related Work

In many cases single transformations applied to
one image are sufficient to achieve appealing mo-
saicks. Recent works from Xing et al. [12] show
satisfactory results when applying perspective trans-
formations estimated by RANSAC (Random Sample
Consensus) [1] and optimized SIFT (Scale Invariant
Feature Tracker) features, taking images from air-
planes.

Wang et al. combines orthorectified images with
panorama images in [11] for 3D reconstruction of
buildings, where the user has to select lines on the
ground plane in the panorama images. The cam-
era pose is computed from these lines on the ground
plane, which represent footprints of buildings. The
camera is kept at the same position and rotated to
build a panorama image. After processing and man-
ual optimization the ground images are projected on
the proposed 3D model. For a larger area many
panorama images are taken and processed one by one
and are finally combined using bundle adjustment.

When considering hundreds of images with lit-
tle overlaps, the initial image transformation is es-
timated by the metadata as proposed in [13]. The
authors assume an exact nadir view of the camera
onto a planar scene and neglect perspective distor-
tions. Images annotated with metadata, i.e., altitude,
global position and camera pose, are aligned by their
global position. These transformations are refined af-
terwards by processing image correspondences.

In [14] the authors describe an effective method
for combining data from images, taken from an air-
plane, with data from inertial sensors to achieve a
seamless and geo-referenced mosaic. For the mo-
saicking the data from the inertial sensors and posi-
tion sensors are combined with image features with-

out 3D reconstruction or complex global registration.
Aerial images from airplanes are made with tele-
photo lenses and from high distances to objects do
not show perceptible perspective distortions.

Manually selected reference points on the ground
are the base for a mosaicking approach presented
in [9] that first extracts and matches feature points by
Multi-Scale Oriented Patches (MOPs), clusters im-
ages, and finally uses RANSAC-initialized bundle
adjustment to optimize all constraints over the en-
tire image set. A simultaneous optimization balances
the requirements of precise mosaicking and absolute
placement accuracy on an overview image.

In our work we go one step further and introduce a
basic structure and scene reconstruction with Struc-
ture from Motion to improve the metadata and image
based mosaicking to deliver high resolution and fre-
quently updated overview images.

3. Problem Definition

The goal is to mosaick a high resolution overview
image from single aerial images and at the same time
keep the uniform scale in the scenery. In order to
generate this orthographic overview image, high res-
olution images are taken from multiple UAVs. Each
image is annotated with metadata that contains posi-
tion and orientation information, among others, from
the UAV’s sensors.

Creating a mosaick by simple placing images
based on their metadata will lead to bad results, be-
cause this data is associated with uncertainty due to
inaccuracy from the low cost and light weight design
of small-scale UAVs. To cover wide areas from low
altitudes, typically up to 150m above ground, with a
minimum number of images it is obvious to use wide
angle lenses. The tolerance of the image boundaries,
projected on the ground, is in the range of 10 % of
the image size, explored in detail in the work [13].

Hence, the challenge is to compute image trans-
formations in the orthographic mosaick, while the
non-planar scenery induces significant perspective
distortions at individual images compared to aerial
images taken from high altitudes. Moreover, a de-
tailed 3D model of the scenery is not available.

We have to cope with several constraints, most
prominent are the resource limitations. We cannot
compute the whole overview image on the UAV nor
transmit all high resolution images to the ground or
other UAVs. For an online mosaicking a distributed
processing is of interest, considering that high res-



Figure 1. Initial image placement of images Ii by raw
metadata where i ∈ {1, 2, 3}. Mosaicking errors can be
explored on the ground plane. The trajectory of the UAV
is shown in red.

olution images are not available immediately at the
ground station.

To achieve a correct image placement that pre-
serves distances within the overview image we need
to estimate the camera position more accurately.

4. Structure Based Matching for Image Mo-
saicking

Our approach of mosaicking nadir aerial images
annotated with metadata can be split into two main
components:

I For the required online mosaicking the image
transformations can be done with raw metadata
without considering image contents.

II In parallel, these transformations can be refined
as soon as more accurate camera extrinsics (po-
sition and orientation data), are estimated.

To improve the accuracy of the camera extrinsics
from the metadata the Structure from Motion is used.

Hence, we model an optimization problem extend-
ing the two-step approach presented in [13] to find
appropriate image transformations for each image in
the set of aerial images. To avoid the accumulation
of local perspective errors the metadata from cameras
and the structure of the scene is taken into account.

4.1. Refined Estimation of Camera Extrinsics

In parallel to the rough placement, only by exploit-
ing metadata, a refinement of the image transforma-
tion is executed as outlined in the following. Due to

resource limitations the processing pipeline consid-
ers distributed execution; some processing steps can
be executed directly on the UAV.

1. Determine a pair of images with sufficient over-
lap.

2. Match extracted feature points within the over-
lapping areas.

3. Use Structure from Motion to compute camera
position and 3D structure for the matched fea-
ture points.

4. Merge the resulting camera extrinsics with the
raw extrinsics and orthorectify both images.

5. Use plane fitting in the 3D structure to select
feature points on the common ground plane and
estimate the final image transformation.

Find a pair of images with sufficient overlap.

First the overlapping image areas O are determined
by projecting the raw camera extrinsics from the
metadata PIMU, cf. Equation 17, onto the estimated
ground plane. In Figure 1 the projection by the meta-
data and initial state for three images is presented be-
fore computing the refined transformations.

From all available pairs that overlap, a pair of im-
ages {Ii, Ij} is selected to have the maximum over-
lapping area. Furthermore, for each image the fea-
tures are extracted and the feature descriptor vectors
δi and feature coordinates fi are stored. For the fol-
lowing processing steps only the features, a few kilo-
byte in size, are necessary, instead of the whole im-
age of up to 4 megabytes (compressed). This al-
lows the reduction of the communication bandwidth
significantly. In this approach we currently use the
SIFT (Scale Invariant Feature Tracker) features [2],
because it is has been proven to be very powerful [6].

{δi, fi} = SIFTextract (Ii) , {δi, fi} ∈ F i (1)

Match extracted feature points within the over-
lapping areas.

Only features within the overlapping area Oi,j =
Ii∩ Ij are considered for the matching. This reduced
feature set F ′i ⊆ F i for image Ii and F ′j ⊆ F j

for image Ij in the overlapping image area Oi,j are
matched simply by a nearest neighbor search. The



Figure 2. Matched features in the Euclidean scene recon-
struction. Note, only the inliers on the same plane are
plotted for a better visualization.

minimum Euclidean distance for the invariant feature
descriptor vector δ′i of feature f ′i ∈ F ′i is compared
to a descriptor vector δ′j of f ′j ∈ F ′j to find corre-
spondences as suggested by Lowe [5].

{δ′i, f ′i} ∈ F ′i, {δ′j , f ′j} ∈ F ′j (2)

M = {F ′i,F ′j |f ′i , f ′j ∈ Oi,j} (3)

{f̂i, f̂j} = match
(
F ′i,F

′
j

)
(4)

Use Structure from Motion to compute camera
position and 3D structure for the matched feature
points.

From the matched features f̂i, f̂j in the overlapping
image area Oi,j we compute the scene structure of
these points by triangulation. Thus, the 3D struc-
ture, cf. Figure 2, i.e., elevation levels and the cam-
era pose, is reconstructed by an estimation of the
epipolar geometry [4]. The epipolar geometry, de-
fined by the fundamental matrix F , essential matrix
E, and the epipoles e1 and e2 is computed by Struc-
ture from Motion [3, 7]. Since we are using cali-
brated cameras, the camera calibration matrix K is
known, the camera extrinsics PSfMi , cf. Equation 8,
are determined by a singular value decomposition
(SVD) from the essential matrix and epipoles [8].

E = [t̂]×R̂ = U ΣV, F = K−T EK−1 (5)

x̂T
i Ex̂i = xT

i K
−TEK−1f̂i = xT

i F f̂i (6)

The essential matrix is estimated by using
RANSAC within the matched features f̂i and f̂j to
reduce outliers that do not match the approximated
resulting essential matrix, cf. Equation 6.

In Figure 3 the structure inliers for each image are
presented in the image plane. The point coordinates
of selected feature points f̂ in image Ii and Ij are
mapped to 3D point coordinates x = [x, y, z]T ∈
R3. With the estimated camera extrinsics, cf. Equa-
tion 5, the Euclidian coordinates of the scene points
xi ∈Xi and xj ∈Xj are reconstructed.

Merge the resulting camera extrinsics with the
raw extriniscs.

The camera pose PSfM from the image data is merged
with the camera orientation and position PIMU from
the metadata. With the relative coordinates from
Structure from Motion and the scaling from the meta-
data, the resulting camera extrinsics PC are com-
puted, cf. Equation 9. PC describes the projective
view of the camera that is used to transform images
to their nadir view before the mosaicking. This pro-
cess is known as orthorectification.

PIMUi = [RIMUi , TGPSi ]4×3 (7)

PSfMi = [R̂i, t̂i]4×3 (8)

To project and maintain the spatial coordinates and
distances on the ground plane the rotation compo-
nent RCi of camera pose PCi is used. The optimized
camera pose PCi replaces the first estimation from
the raw metadata for image Ii.

PCi = [RCi , TCi ]4×3 (9)

Fitting a ground plane into the 3D structure

A subset of points from the 3D points Xi and Xj

is adjudged as optimum for the final image transfor-
mation computation by the following constraint: All
points on the same elevation level, respectively plane,
preserve spatial relations with the image transforma-
tion Tmatch,i, cf. Equation 15. Hence, it is impor-
tant to find those points that avoid perspective distor-
tions and inaccurate distances in the final mosaicking
stage.

Inliers on the common plane XΠ are determined
from the structure points in Xi and Xj by fitting a
plane to all available points with RANSAC. The fit-
ting function for RANSAC is the plane function for



plane Π in Equation 10, that is further optimized to
be the most perpendicular plane to the camera’s prin-
cipal axis. Therefore, the angle between the plane
normal vector ~n and the principle axis vector ~p, de-
rived from PCi , is minimized, assuming a horizontal
ground plane.

Π = ~n · q arccos(|~n| · |~p|) ≤ ε (10)
~n = (x′2 − x′1)× (x′3 − x′1) (11)

XΠ = {x′1,x′2,x′3} ∈X (12)

At least the three points defining the plane are suffi-
cient to compute the matching transformation Tmatch,i
in the order of a similarity transformation. For an
improved matching function, e.g., by estimation and
fitting again with an approximation approach, addi-
tional points x′i can be selected by their closest dis-
tance d to the plane within a certain threshold γ.

d = |~n · ~v| ~v = x′ − q (13)

x′i ∈XΠ | d ≤ γ (14)

The matching transformation Tmatch applied to the
whole image is computed by the normalised direct
linear transformation algorithm given by Hartley and
Zisserman [3].

x′ = Tmatch x = [sR, t]3×3 x (15)

4.2. Incremental Mosaicking

After refining the image transformations and cam-
era poses with the structure base matching the inac-
curate mosaicking from raw data can be improved as
expressed in the following.

Raw mosaicking with camera extrinsics

Single images Ii are merged with function
⊎

to the
overview image I , cf. Equation 16. Hence, the merg-
ing function

⊎
is an arbitrary image fusion function.

For demonstration we use a simple overlay function
with alpha-blending. Initially images are placed by
transformations derived from PIMU, cf. Equation 17,
based on their annotated GPS and IMU data. The
images are orthorectified by the projective transfor-
mation R̃i and placed on the overview image by the
transformation Tpos,i (cf. Figure 1).

I =

n(t)⊎
i=1

TiIi (16)

PIMUi = [RIMUi , TGPSi ]4×3 ⇒ {R̃i, Tpos,i} (17)

Refine the mosaicking with the output from the
structure based matchting

Next, the refinement of the global mosaicking is
achieved by the structure based matching, as de-
scribed in Section 4.1. The optimized camera ex-
trinsics matrix PCi , now improves the orthorectifica-
tion of each image, opposed to R̃i. Furthermore, the
initial placement by Tpos,i is enhanced to the image
alignment based on the scene structure.

Finally, the images are mosaicked with neighbor-
ing images by the transformation Tmatch,i that is ap-
proximated to optimize the output quality within the
reduced search space in the overlapping image areas.

Hence, omitting perspective distortions that may
propagate over images is one benefit of using projec-
tive transformations only for single images. When
aligning individual images Ii to an overview image I
by Tmatch,i only lower order transformations like the
similarity transformation are allowed.

The resulting optimized image transformation Ti
applied in the final mosaicking stage, cf. Equa-
tion 18, is composed from the raw metadata position
and structure based transformation. The perspective
projection RCi derived from the camera’s intended
pose PCi orthorectifies the image into nadir view,
while the global alignment is applied with the refined
global position TCi .

Ti = RCi · TCi · Tmatch,i (18)

5. Preliminary results

In the current state of evaluations the method of
SIFT feature extraction is used for finding correspon-
dences. However, the used feature extraction and
matching methods are exchangeable, but SIFT shows
sufficiently good results for our approach. The fea-
tures are extracted from a copy of each image Ii, that
is downscaled to 816× 612 pixels.

In Figure 2 the result of the Structure from Mo-
tion point reconstruction in the overlapping area is
presented. Note, only points on the common plane
{x′i,x′j} ∈ XΠ and the two cameras PCi , PCj are
plotted for better visualization. Figure 4 shows the fi-
nally transformed image Ii on the previous overview
image. Image Ii and image Ij of the current test set
I where i = 1, j = 2 are orthorectified by RCi , RCj

derived from PCi , PCj beforehand. The selected fea-
tures on the common plane are marked with red and
blue crosses.
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Figure 3. Image I1 (left) and Image I2 (right) with red markers on the remaining inliers from the Structure from Motion
in the overlapping image region. These points show the input X1 and X2 for the plane fitting.
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Figure 4. Matched features on the same plane in image I1
and I2

In the next iteration with the increased set of im-
ages the image I3 has the maximum overlap with im-
age I2. The overview image presented in Figure 5
shows the previously mosaicked images I1 and I2

and the newly transformed image I3 mosaicked on
top. The red and blue markers show the common
plane points from {x′2,x′3} ∈XΠ again.

Moreover, in Table 1 the evolution of the features
used for the final transformation optimization is pre-
sented where the significant reduction of the plane
inliers to 21 in I1 ∩ I2 and 13 in I2 ∩ I3 can be ex-
plored.

For each image and every pair of images the qual-
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Figure 5. Matched features on the same plane in image I2
and I3 on top of image I1. The correlation on the ground
plane is excellent compared to the distortion effects of ob-
jects in the scene.

ity function Q is evaluated and its result is presented
in Figure 6(a) for I1, I2 and Figure 6(b) for I2, I3.
Figure 6 shows the pixel deviation of the inliers x′i on
the ground plane, which can be directly transformed
to spatial deviations when projecting with the camera
position and pose PCi and PCj . The correlation error
for those ground plane inliers shows excellent results
in a radius r = 5 pixels.



Processing Stage I1 I2 I3

Feature Extraction 1660 1492 1518
Reduced Search Range I1, I2 342 311
Correlation Matching I1, I2 247 247
SfM inliers I1, I2 201 201
Plane Fitting I1, I2 21 21
Reduced Search Range I2, I3 568 602
Correlation Matching I2, I3 548 548
SfM inliers I2, I3 483 483
Plane Fitting I2, I3 13 13

Table 1. The number of feature points can be significantly
reduced from considering only overlapping regions to in-
liers on the same plane.

(a) Spatial distance error in pixels after transformation of image
I2 on image I1

(b) Spatial distance error in pixels after transformation of image
I3 on image I2

Figure 6. Distance deviations of points on the ground
plane in the final mosaick.

Transformation Quality

The quality function Q weights the spatial accuracy
function Gi(Ii, I) and the pixel correlation function
Ci(Ii, I) by α, (0 ≤ α ≤ 1) defined in Equation 19.
The distance function of a projected feature point xi

on the ground plane of image Ii to the correspond-
ing feature point on the overview image I is denoted
by d and c measures the pixel correlation in a small
neighborhood r of the feature point coordinate to the
corresponding area on the overview image I .

Q =
n∑

i=1

(αGi(Ii, I) + (1− α)Ci(Ii, I)) (19)

Gi(Ii, I) =
1

m

m∑
k=1

d(xk ∈ Ii, I) (20)

Ci(Ii, I) =
1

m

m∑
k=1

c(xk ∈ Ii, I, r) (21)

|r = β size(Ii)

6. Conclusion and Future Work

In this approach we have shown that distorted
aerial images from low altitudes and taken with wide
angle lenses can still be used to build an orthographic
overview image that preserves a uniform scale on the
ground plane. We compute the structure of the scene
with Structure from Motion and optimize a rough
mosaicking from annotated metadata of the images,
i.e., GPS and IMU data of the UAV, to an accurate
mosaick with matched correspondences on a com-
mon ground plane.

In this work, the results from Structure from Mo-
tion are only used to find a common plane and to
enhance the estimation of the camera pose. This im-
proves the spatial projection on the ground plane and
delivers more accurate image transformations. We
have experienced that the computational effort is sig-
nificantly reduced when limiting the search range to
structure inliers on the same plane and determining
corresponding images from a large set by their pro-
posed positions.

We will further analyze enhanced Struc-
ture from Motion estimation algorithms and
optimization strategies for fitting common planes
in adjacent images in the 3D domain. The recon-
struction of the 3D structure of the scene can be
further optimized by bundle adjustment [10]. We
will investigate whether this method will get along
with the available resources.

In future steps this additional knowledge about
the scene could be used to generate a detailed depth
model or mark objects in the scene.
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