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Abstract—In this paper we survey thoroughly the problem of
orthorectified and incremental image mosaicking of a sequence
of aerial images taken from low-altitude micro aerial vehicles.
Most of existing approaches have been exploiting the global
optimization (in presence of a loop in the image sequences) to
distribute and/or metadata to mitigate the accumulating stitching
error. However, the resulting mosaic can be improved if the
errors are diminished by studying their sources. Mostly the
UAV aerial image mosaicking is affected by the following three
important sources of error: i) a weak homography as a result
of using unleveled ground control points (GCPs) for image
registration, ii) a poor camera calibration and image rectification,
and iii) deficiency of a well-defined projection model (cylindrical,
planar, etc) and consequently an inappropriate transformation
model. We investigate the influences of using a depth map to
find the features from the same plane, geometric distortion cor-
rection and combining the appropriate choice of projection and
transformation model for the mosaicking. We further quantify
the improvement of orthorectification in mosaics by mitigating
those errors and demonstrate the improvement on real-world
mosaics.

I. INTRODUCTION

Using unmanned aerial vehicles (UAVs) is growing rapidly
for surveillance purposes. These UAVs are equipped with
imaging sensors and they can easily provide aerial images
taken from the target scene (see Figure 1). Image mosaicking
is a noteworthy application of aerial imaging which could be
used for further information retrieval from the target area. Note
that in sensitive cases of surveillance each image might have
critical details which need to be retained even after the image
is placed in a mosaic. In cases where UAVs are supposed to fly
and take images without any loop in their route (e.g., boarder
control, road construction and object following) the problem
of mosaicking and orthorectification gets more challenging.

In this paper we evaluate quantitatively the different param-
eters that affect these types of image mosaicking and we then
find their potential to improve the outcome. In other words,
we try to reduce the sources of errors which cause to lose the
relative distances. To fulfil that we need to step back from
visually appealing and non-rigid image blending methods and
concentrate more on the origin of errors which accumulate
over time.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of related work in the domain of
image mosaicking. In Section III we summarize the typical
mosaicking procedure and define our problem. In Section IV

(a) AscTec Pelican drone with an (b) MD4-200 drone with an RGB
FLIR Photon 640 thermal camera. camera.

Figure 1. Two drones used for acquiring thermal and visible-light images.

we show the major sources of errors in mosaicking. Section V
presents some practical results of mosaicked images taken by
a UAV. Section VI finally concludes the paper.

II. RELATED WORK

UAVs are being used ubiquitously in many fields of aerial
imaging. A huge number of aerial image mosaicking ap-
proaches rely on medium to large UAVs. These UAVs have
more capabilities in aspects of their computational power, data
transmission rate, payload capacity, accuracy of measurement
devices and flight time. Based on these parameters a variety of
approaches are proposed for mosaicking of images taken from
UAVs. Automatic mosaicking by 3D-reconstruction and epipo-
lar geometry [8], [14], combining global positioning system
(GPS), inertial measurement unit (IMU) and video sensors for
external distortion correction and geo-referencing [3], wavelet-
based stitching [17], triangulated irregular network registration
and perspective correction [13] and high altitude imaging and
mosaicking [19], [5], [10], [13] are some of those examples.
Schultz et al. [11] use a digital elevation model to mosaic
images taken from an airplane. Hruska et al. [7] introduce an
appropriate platform for small UAVs to be able to provide high
resolution and georeferenced images by exploiting GPS and
IMU. Afterwards they perform change detection by comparing
different temporal images of a target area. In their work
they remark the importance of internal geometric distortion
correction but do not explain how it is used in mosaicking.
Zhou [18] uses the video stream from a UAV (weight 10 kg)
equipped with differential GPS, with an error range of a
few centimeters, and real-time transmitter of video for further



mosaicking purposes on the base-station. Xiang and Tian [15]
also mention the role of high precision internal geometric
distortion correction in georeferenced mosaic construction in
addition to exploiting GPS and IMU. When flying with UAVs
at a relatively low altitude (below 50 m), non-planar objects on
the ground make the feature matching and image registration
more difficult. As explained by Yahyanejad et al. [16], some
limitations force UAVs to just take images at individual
predefined picture points. This causes different angles of view
looking to the same scene and this intensifies the problem
of non-planar objects. In this paper we closely refer to the
same scenario of surveillance in which we use UAVs that
fly at a low altitude where images are taken at predefined
picture points and the goal is to provide an orthorectified
overview mosaic of a target area. Agarwala et al. [ 1] cope with
a similar problem of producing multi-viewpoint panoramas of
long, roughly planar scenes but on the ground (e.g. the facades
of buildings along a city street). They use Markov Random
Field optimization to construct a composite from arbitrarily
shaped regions of the source images, rather than building the
panorama from strips of the source images. They also consider
a higher pairwise overlap (with approximately 1m distance
between two picture-points) and the dominant plane of the
photographed scene is defined by the user input.

In this paper we focus on the sources of error in mosaicking
from a sparse set of aerial images. Our approach does not
exploit GPS and IMU data, because these meta-data are
typically unreliable for micro UAVs.

III. TYPICAL PAIRWISE MOSAICKING AND PROBLEM
DEFINITION

Pairwise image mosaicking is typically performed with the

following steps:

1) Correcting the internal geometric distortion. Brown’s
distortion model [4] can tackle the radial and tangential
distortion including the principal point estimation. Let
P = (z,y) be a normalized point in image reference
system, the undistorted point P,, using a 6th order radial
and 2nd order tangential model can be acquired by:
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where point (2,,y,) is in a coordinate considering the
principal point (PP) as its origin (z,, = * — PP,,y, =
y — PPy), r = \/z2 + y2 represents the distance from
principal point, ki, k3 and k3 are the radial distortion
coefficients and k4 and k5 are the tangential distortion
coefficients.

2) Feature extraction and matching. Different methods
can be used to extract features which later will be used for
image registration (e.g., by using SIFT [9], SURF[2], or
Harris Corner[6]). Features extracted from the new unreg-
istered image are matched with the previously registered

image. Traditionally correspondences are determined by
computing the similarity between descriptor vectors as-
sociated to each point.

3) Defining the projection model. For simplicity we as-
sume a planar model, since we mostly fly over areas with
a dominating ground plane. Of course there might be non-
planar objects on the ground which we will discuss in
Section IV-A.

4) Defining the transformation for homography. Based
on different scenarios we can choose between different
existing models such as translation, similarity or projec-
tive.

5) Removing outliers and calculating the transforma-
tion function. Performing RANdom SAmple Consensus
(RANSAC) and least median of squares (LMS) are usu-
ally used to remove the outliers. Based on inliers, each
iteration of RANSAC uses its own estimated transforma-
tion while trying to find the maximum set of matched
pair-points. This set of matched pair-points should min-
imize a sum of squared distances among all estimated
transformations:

Minimize = Z | Tax; — x| 2)

where x; are the points from unregistered image,
are the points from the previously registered image and
T is the optimized transformation matrix to change the
coordinate between these two sets of points (all points and
transformation matrices are in homogenous coordinates).

6) Registration. Transform the new unregistered image to
the coordinate of previously registered image and perform
the resampling (use an interpolation method).

7) Mosaic construction. Merging the transformed image
with the mosaic constructed so far, in order to build the
incremental mosaic.

Now imagine a case where we want to generate an incre-
mental mosaic of consecutive images taken by UAVs without
any loop. The challenge is how to preserve the orthorectifica-
tion as much as possible without exploiting any metadata (e.g.,
GPS or IMU). Consider O,, as the overall image of the target
area given a set of n consecutive images {I;|i = 1...n}. The
overall image can be iteratively constructed as follows:

O; = Merge(O;_1,T;(1;)) 3)

where Qg is an empty image, T; are transformation functions
(constructed from pairwise transformation matrices in Equa-
tion 2 ) and the Merge function combines each transformed
image with the overall image. This mosaicking can be de-
scribed as an optimization problem, in which we need to set
the parameters in a way that it maximizes our orthorectification
quality function p. One way of constructing such a quality
function is using a metric which evaluates the deformation
of an image in different directions (horizontal, vertical and
diagonal) compared to a reference image:
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where [; are the length of width, height and two diagonals of
each target image, and [ are the length of width, height and
two diagonals of the reference image. In fact, by this metric
we calculate the harmonic mean of horizontal, vertical and
two diagonal deviation ratios.

In our work we combine different existing pairwise stitching
methods and compare the resulting mosaics in terms of relative
distances. Hence, we decide how to set the parameters to
obtain the optimal result. Note that although we narrowed
down the scope of our scenario, it is possible to simply merge
the result with other approaches such as using metadata or
bundle adjustment. Though the bundle adjustment methods are
more efficient when either there are more than two viewpoints
for most of the regions or in existence of a loop in the image
sequences [12].

IV. MAJOR SOURCES OF ERROR IN PAIRWISE MOSAICKING

In order to use our metric and compare different mosaics we
need a known and well-defined ground truth. For illustration
we lined up a set of printed chess-board patterns plus some
non-planar objects we put over and around those patterns
along the scene. Then we use a camera with fixed custom
settings (e.g., in our case focal length= 28 mm, exposure
time= 1/500s) and take consecutive images manually from
top view with approximately 70% of overlap. By setting a
low focal length and consequently a wider angle of view we
increase the overlap ratio which leads to more matched feature
and inliers. But note that in this case we also encounter a
higher geometric distortion. In this way we can simulate the
imaging from UAVs to a good extent.

We tested different existing algorithms and parameters that
are used for image mosaicking such as internal geometric
distortion correction algorithms, feature extraction methods
(SIFT, SURF and Harris corner) with different parameters,
projection and transformations models and manual GCP se-
lection. Among all, there are three main parameters that will
affect the pairwise aerial image mosaicking more than the
others namely i) using unleveled GCPs for image registration,
ii) internal geometric distortion, and iii) choice of projection
and transformation model.

In the following we discuss these parameters and quantify
them based on our simulation data-set. In an ideal mosaic all
chess-boards should have the same size and shape (@ = 1).

A. Using unleveled features (GCPs) for image registration

Most of the existing mosaicking algorithms are built for
panoramic imaging which consider all images are taken almost
from the same spot. In this case the depth variation of the scene
is not a problem (except small motions of camera or failure
to rotate the camera around its optical center, which is usually
handled by a parallax removal algorithm [12]). But in our
aerial imaging scenario we take the images from significantly
different points of view. As a result, non-planar features will
produce a disparity when matching features from correspond-
ing images. The disparity vector d of each transformed feature

(a) Disparity vectors shows the displacement of transformed feature points
from their expected positions.

(b) A rough depth map is depicted by interpolating the disparity vectors.

Figure 2. Depth information from stereo vision.

implies the vector from the expected feature point toward the
—_—
estimated feature point (d = Tx; — 7).

These disparities will impact the transformation estimation
procedure as explained in Equation 2. To reduce this effect
we need to extract the depth information to extract only the
features from the same elevation level which later will be
used for image homography. Some depth map construction
algorithms use the whole image information (pixels), but
we just use the displacement of feature points to speed up
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(a) Mosaic of raw (distorted) images.

p= 1 0.92

(d) Mosaic after 4th order radial plus tangential distortion correction.

0.92 0.79

p=1

(e) Mosaic after 6th order radial plus tangential distortion correction.

0.56

(f) Mosaic after 6th order radial plus tangential distortion correction but no
depth consideration.

Figure 3. Resulting mosaic of 21 sequential images with different distortion
correction and depth consideration parameters. Note that the p values under
the first, middle and last chess-board show the corresponding rectification
quality.

the process. Sample disparity vectors from a set of stereo
images taken by a UAV are shown in Figure 2(a). In order to
visualize the corresponding information from these disparity
vectors we depict a rough depth map in Figure 2(b). This
false color depth map is constructed as follows:

Red component = x component of the displacement vector

Green component = magnitude of the displacement vector

Blue component = y component of the displacement vector

We remove features with magnitude of disparity vector
larger than a threshold (varies based on height variation of
the objects on the ground and flying altitude). Note that at

the first glance it might look similar to setting the RANSAC
threshold small, but in that case we might also reject some
inliers just because of their small displacement which will slow
down or even fail the convergence of RANSAC, especially
in cases with low amount of overlap. Figure 3(f) shows a
resulting mosaic of our test model without considering the
depth information while in Figure 3(e) we see the result with
taking the depth into account.

B. Internal geometric distortion

In this section we present the influence of different orders
of geometric distortion correction (c.f. Equation 1) over the re-
sulting mosaic of 21 consecutive images obtained as described
for our test scenario. Figures 3(a) to 3(e) depicts the results
under various distortion correction parameters (the depth infor-
mation mentioned in IV-A is already considered). The pairwise
stitching is performed from left to right. This will give us
a visual understanding how much the polynomial orders in
distortion correction procedure will affect the mosaicking.

C. Projection and transformation model

As we mentioned earlier, the planar projection model is
an appropriate model for UAV imaging over a plane ground.
Choosing the planar model demands a projective transfor-
mation to correct the perspective distortion of images taken
while the camera was tilted. On the other hand, the projective
transformation is quite susceptible to errors and a small devi-
ation will spread after a number of images. Substituting the
projective transformation with similarity transformation might
help significantly to produce a more orthorectified mosaic,
especially in cases in which the steps in Sections IV-A and
IV-B did not manage to restrain the error propagation. The
only drawback of using similarity transformation is that it
might lead to small seams in pairwise mosaicking which can
be ignored if UAV has almost a nadir view. In Figure 4(b)
every other image is considered for mosaicking which reduces
the overlap ratio. As p values in Figures 4(a) and 4(c) show,
using similarity transformation leads to a less deformation.

D. Summary

In calculation of p values for all mosaics, I; are the length
of width, height and two diagonals of each chess-board which
is measured within each mosaic image, and [} are the length of
width, height and two diagonals of the first (leftmost) chess-
board which is considered as our reference. In Figure 5 we
used this metric to show how much each previously discussed
approach or parameter will affect the mosaic integrity. As
you see, using higher orders for radial distortion correction,
tangential distortion correction, considering the depth infor-
mation and using similarity transformation, all are the factors
which can hep us to persist the correct size and preserve the
relative distances along the incremental mosaicking process.
This affect might not be sensed while using just a couple of
images. As shown in this chart, the difference between the 4th
order and the 6th order radial distortion correction is not so
obvious until the middle of the mosaic, but at the end we
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(a) Using similarity in Figure 3(e).
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(c) Taking every other image in Figure 3(e) and using similarity.

Figure 4. Resulting mosaic of 21 sequential images with different transfor-
mation model. p is the rectification quality.

can see that 6th order leads to a slightly better quality. It
also implies that similarity transformation significantly helps
to mitigate the deformation error, since it does not produce
and propagate any projective deformation.

V. PRACTICAL RESULT

Here we show resulting mosaics of images taken by a UAV.
In this scenario we took 27 images with approximately 60%
of pairwise overlap. Figure 6(a) depicts the mosaicking result
after 2nd order radial distortion correction without consider-
ing the depth information. Figures 6(b) and 6(c) show the
corresponding mosaic considering the optimizations from the

Comparison of orthorectification in different mosaics, built with different methods.

previous section with projective and similarity transformations,
respectively. The existing mosaicking approaches mainly aim
for visual appealing rather than preserving the integrity and
relative distances. As we expected and as shown in Figure 6,
mitigating the mentioned errors will noticeably improve the
orthorectification.

VI. CONCLUSION

Note that in this paper we are not demonstrating a new
mosaicking algorithm, alternately we quantify the influence
of different parameters such as sensor distortion model, depth
information of the scene and the choice of projection and
transformation models over sequential, pairwise and loop-
free image mosaicking. Understanding and comparing the
sources of errors enables us to minimize those errors in
a way that increases the orthorectification in aerial image
mosaicking. Using higher polynomial orders in geometric
distortion correction might not be noticeable in a pair of
images, but at some point in incremental image mosaicking it
will show its affect. To retain the relative distances, similarity
transformation, despite its lower degree of freedom, is a good
substitution for projective transformation if we have almost a
nadir view of the camera. It is also shown how a simple depth
map help us to choose the appropriate ground control points
for an accurate mosaicking.
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(a) Images are mosaicked with 2nd order radial distortion correc-
tion and without depth consideration.

(c) Our approach with similarity transformation.

Figure 6. Resulting mosaic of 27 images taken from UAV.
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