
A Reinforcement Learning Framework For Dynamic Power Management of a

Portable, Multi-Camera Traffic Monitoring System

Umair Ali Khan, Bernhard Rinner

Institute of Networked and Embedded Systems

Alpen-Adria Universitat, 9020-Klagenfurt, Austria

umair.khan@aau.at, bernhard.rinner@aau.at

Abstract—Dynamic Power Management (DPM) refers to a
set of strategies that achieves efficient power consumption
by selectively turning off (or reducing the performance of)
a system components when they are idle or are serving light
workloads. This paper presents a Reinforcement Learning (RL)
based DPM technique for a portable, multi-camera traffic
monitoring system. We target the computing hardware of the
sensing platform which is the major contributor to the entire
power consumption. The RL technique used for the DPM of
the sensing platform uses a model-free learning algorithm that
does not require a priori model of the system. In addition,
a robust workload estimator based on an online, Multi-
Layer Artificial Neural Network (ML-ANN) is incorporated
to the learning algorithm to provide partial information about
the workload and to take better decisions according to the
changing workload. Based on the estimated workload and a
selected power-latency tradeoff parameter, the algorithm learns
to use optimal time-out values in sleep and idle modes of
the computing hardware. Our results show that the learning
algorithm learns an optimal DPM policy for the non-stationary
workload, while significantly reducing the power consumption
and keeping the system response to a desired level.

Keywords-Dynamic Power Management; Reinforcement
Learning; Traffic Monitoring;

I. INTRODUCTION

Most of the existing traffic monitoring systems use

no or limited image processing capabilities and exploit

sensors such as induction loops, laser sensors and radars,

etc. Additionally, these systems are based on stationary

installations where the sensor nodes are permanently

mounted at gantries. These fixed-mounted installations are

usually expensive to set-up and decrease the flexibility of

the monitoring system. During the installation, the road

needs to be closed and a substantial calibration effort is

also required.

MobiTrick is a portable and compact traffic monitoring

system that is aimed at temporary installations. The desired

operation of the sensing platform is intended for short-terms

(e.g., a few hours, days) and it can be deployed more flexibly

for various monitoring tasks, e.g., law enforcement and

construction site monitoring. Instead of using large sensors,

MobiTrick uses only image processing operations for traffic

monitoring. Since the system is portable and compact, its

embedded design restricts to use intricate cooling systems

and large batteries. Therefore, it has a strict limitation on

power consumption and apart from its low-power design, it

must use an online power management strategy to minimize

the power consumption during operation. This motivates

the search for an effective DPM technique for MobiTrick

sensing platform.

Relevant literature about DPM demonstrates various

approaches. In the simplest approach, the greedy policy

[9][8], a device transitions to the sleep state as soon as

it is idle. Here, the term device refers to any electronic

equipment that serves a particular purpose and has more

than one modes of power consumption (or performance).

The greedy policy can give the best power optimization

as long as the requests arrive at long time intervals. A

request represents a task generated by an application that

needs processing. Another simple heuristic policy is the

time-out policy [10][1] where a device is shut down after

it has been idle for a certain threshold of time period. The

time-out policy can be static or adaptive [5][20] which

adjusts the time-out threshold based on the previous idle

period history. The main shortcoming of time-out policies

is the power wasted during the time-out period, specially

when the workload (arrival rate of requests) is lower. This

problem is better dealt by the predictive policies [2][14][4]

which work on a system model that is learned from the

history information in order to best adjust themselves

to the dynamic system of a device. The basic idea in

predictive policies is to predict the length of idle periods

and shut down the device when the predicted idle period is

longer than a certain threshold time period. Nevertheless,

predictive policies do share a few limitations. First, they do

not consider the response time of the device. Second, they

do not deal with general system models where multiple

incoming requests can be queued before processing. Third,

they cannot perform well with non-stationary requests

where the workload model is unknown.

Some of these limitations (queuing, power-performance

trade-off) are addressed by stochastic policies

[9][11][16][13]. These approaches make probabilistic

assumptions about the usage patterns of a device and

exploit the nature of the probability distribution to

formulate an optimization problem, the solution of which

derives an optimal DPM strategy. The device states and

queues in stochastic policies are generally modeled as

Markov chains. These policies do provide a flexible way

to control the trade-off between power consumption and

device response depending on the optimization constraints.

However, Markov model is generally assumed to be

stationary and known in advance. Therefore, these policies

no longer remain optimal as workload becomes non-

stationary.

From the above discussion, it is evident that the

performance of any selected policy heavily depends on

the workload. Real workloads are usually non-stationary

and compose a strict limitation on the success of any

single policy. A model-free, machine learning approach can

cope with this issue by interacting with the environment,

implementing certain actions, evaluating the effects of the

implemented actions and adjusting itself according to the

environment. Compared with the existing machine learning

DPM approaches, the RL based DPM approaches can

deal with the non-stationary workloads in a much better

way and can explore the trade-off between a system’s

power consumption and response time. The model-free,

RL based approaches presented in [7][19] use online

learning algorithms that dynamically select the best DPM

policies from a set of pre-selected candidate policies. These

algorithms do lead to optimal DPM policies, but they

heavily rely on and are limited to the pre-selected candidate

policies. In [21], authors propose an enhanced RL algorithm

for system-level DPM. It is also a model-free approach

that does not require prior knowledge of the state-transition

probabilities. However, the number of state-action pairs in

this system is quite large, which may result in increased

computational complexity and slow convergence. Another

similar work [22] uses the merits of [21] and proposes a

RL based DPM algorithm with workload prediction for

the power management of a WLAN card. The workload

prediction in this work is performed with a Bayes classifier

which performs well for this setting due to the regular

traffic. Nevertheless, the same workload prediction can not

render acceptable accuracy with a vehicle traffic data where

the vehicles arrival rates follow a non-stationary pattern.

In a recent work [18], a model-free, RL based DPM

approach was used for non-stationary workload. The

learning agent in this approach receives partial information

about the workload from a workload estimator using a

ML-ANN with backpropagation algorithm. Based on the

estimated workload, this approach evaluates certain time-out

values in idle state and waits for certain number of requests

to be accumulated in the service queue when the system

is in sleep state. Workload estimation using a ML-ANN

achieves higher accuracy with the traffic data and the results

show that the algorithm is capable of exploring the trade-off

in the power-performance design space and converging to

an optimal policy. However, since the algorithm waits for

certain number of requests in the queue, a drawback of this

approach is the high latency in requests processing when

the workload drops abruptly.

Following the merits of [18], we propose a novel RL based

DPM algorithm in this paper for the power management

of our sensing platform. The proposed algorithm uses

time-out values both in sleep and idle states with workload

estimation from a ML-ANN. Apart from this, we use

multiple-states update in both sleep and idle modes and use

a better exploration-exploitation policy to help algorithm

converge fast and explore the design space deeper. As

compared to the algorithm in [18], our results show that

the algorithm proposed in this paper can find a better

pareto-optimal trade-off curve of power-performance and

results in a much lower latency while keeping the power

consumption at an acceptable level.

The remainder of this paper is organized as follows.

Section 2 provides a brief overview of the MobiTrick sensing

platform. Section 3 gives some background on reinforcement

learning. Section 4 explains the implementation of RL

based DPM for MobiTrick. Section 5 presents the overall

learning algorithm and the results. We conclude our work

with some discussion on future work in Section 6.

II. MOBITRICK SENSING PLATFORM

MobiTrick has a heterogeneous setup with different types

of sensors, each having different capabilities. The three

main components of the sensing platform comprise visual

sensors (RGB, grayscale, infrared, D/N), non-visual sensors

(inertial measurement units, GPS receiver) and a computing

board for image processing. The sensing platform is intended

to perform typical traffic monitoring tasks such as vehicle

detection and classification, license plate detection, over-

height estimation, incident detection. The heterogeneous

setup serves many purposes. First, the tasks can be dis-

tributed among different sensors (e.g., license plate detection

with an infrared camera and context image from a color cam-

era). Second, low-level operations can be performed with

less capable and more power-efficient sensors. Third, the

redundant information from multiple sensors helps increase

reliability.

Figure 1 provides a high-level overview of the MobiTrick

sensing platform. The sensing platform has a multi-tier

architecture where the sensors reside at different levels

based on their energy consumption and capabilities. A smart,

low-power, color camera that can run on-board algorithms

operates at the lowest level and triggers other cameras at the

higher levels at the detection of an event. When triggered,

the higher-level cameras send images to the smart camera.

The queued images from all the cameras are then sent

periodically to the computing board for processing.

The contribution of an efficient DPM policy in this scenario

Images sent to

the smart cam

Synchronized images

Event Detection

Tier 3

Tier 2

Tier 1
Triggers for CAM 2 & CAM 3

Input Stream
Position, tilt

Images Queue

CAM1 (smart color CAM)

IMUs & GPS Module

CAM2 (Infrared)

 Triggered Mode

CAM3 (D/N)

 Triggered Mode

COMPUTING

PLATFORM

Figure 1. MobiTrick sensing Platform.

is to determine when it is appropriate to wake-up the board

and process the images stored in the smart camera. In

addition, it must also decide when it is efficient to shutdown

the board, while minimizing the power consumption and

keeping the system performance at an acceptable level.

III. REINFORCEMENT LEARNING

RL is a machine learning approach that is concerned

with mapping situations to actions, in order to minimize

a numerical penalty (or cost). As opposed to other machine

learning approaches, for example supervised learning which

is based on learning from examples provided by an external

supervisor, RL is not dictated which actions to take. Instead,

it must interact with the environment and discover the

actions which yield the most reward (minimum penalty) by

trying them. During the learning process, the agent observes

the environment and issues appropriate actions based on the

system state. As a result, the system changes state and the

new state assigns the agent a penalty (or reward) which

indicates the value (appropriateness) of the state transition.

The overall goal of the learning process is to maximize the

scalar reward (or minimize the penalty) in each state.

RL assumes that the system dynamics follow Markov prop-

erty, i.e., the next state s′ ∈ S and immediate reward r

depend only on the current state s ∈ S and action a ∈ A,

as given by equation 1.

Pr {st+1 = s′, rt+1 = r|st, at} (1)

Where Pr is the probability of reaching state s′ and getting

reward r at time t+1. A policy, π, is a mapping from each

state, s ∈ S, and action, a ∈ A(s) to the probability of

taking action a when in state s. Informally, the value of a

state s under a policy π, denoted by V π(s), is the expected

reward when starting in state s and following the policy π

thereafter. We can define V π(s) as follows [12]:

V π(s) = Eπ {Rt|st = s}

= Eπ

{

∞
∑

k=0

γkrt+k+1|st = s

}

(2)

Where Eπ {.} denotes the expected value given that the

agent follows policy π, and t is any time step, γ ∈ (0, 1)
is a discount factor. Similarly, we define the value of taking

action a in state s under a policy π, denoted by Qπ(s, a),
as the expected reward starting from s, taking action a, and

thereafter following policy π.

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

(3)

In a typical Markovian environment, we use a value-iteration

algorithm with state transition probabilities to take an action

in some state s. However, in a model-free learning, the

agent has no prior information about the state transition

probabilities. Therefore, we need an estimate of the value

function described in equation 3.

A variant of RL, the Q-learning [3] is the simplest form of

RL that can directly approximate the value function V π(s)
independent of the policy being followed. The Q-learning

principle is given in equation 4.

∀(s, a) ∈ S ×A : Q(st, at) = Q(st, at)

+αt(st, at) {rt+1 + γmaxa Q(st+1, a)−Q(st, at)} (4)

Where αt(st, at) ∈ (0, 1) is the learning rate. Qπ(s, a)
for each state-action pair represents the expected long-term

reward if the system starts from state s, takes action a, and

thereafter follows policy π. Based on this value function, the

agent decides which action should be taken in current state

to achieve the maximum long-term reward, without knowing

the state-transition probabilities.

IV. RL BASED DPM FOR MOBITRICK

In the MobiTrick sensing platform, we target the DPM

of the computing board which is the main source of power

consumption. It is an Intel Atom based computing platform

[17] whose power and state-transition delay characteristics

are given in Table I.

Table I
POWER AND DELAYS CHARACTERISTICS OF THE COMPUTING BOARD

Psleep Pidle Pbusy Ptrans ts2i ti2s

3W 25W 32W 15W 6s 4s

Where Psleep, Pidle, Pbusy and Ptrans represent the power

consumption in sleep, idle, busy and transition state. ts2i
and ti2s represent the time taken to switch from sleep to

idle state and vice versa, respectively. Since the model

of the system is pre-characterized, we know how many

power modes the system has and how it switches its power

mode given a power command. Additionally, we also have

partial information about the workload (ML-ANN based

estimation). This information is adequate to design a Q-

learning algorithm to find an optimal DPM policy, based

on a selected power-performance parameter.

In our setup, the RL environment consists of a WorkLoad

estimator (WL), a Service Queue (SQ) to buffer the requests

before processing, the computing board which works as a

Service Provider (SP) and a Power Manager (PM) - the

learning agent that issues appropriate power commands to

SP. The workload estimator, SQ and PM reside on the

smart camera. In this way, the smart camera works as

a controller in the sensing platform that issues control

signals (triggers, power commands, request receive/send) to

other components of the system. We consider three power

states of SP, i.e., sp = {sleep, idle, busy}. Therefore, the

available power commands (actions) selected by PM include

a = {go sleep, go idle, go busy}. At each decision epoch,

PM receives an observation of the system that include the

current state of WL, SQ and SP. Based on this composite

state, S = {WL,SQ, SP}, PM issues a command to SP

from the action set. Figure 2 depicts the high-level view of

the power management setup.

Triggers

Observations

Ack

Wakeup/Sleep

Smart CAM

Power
Manager

Event Detection
Module

Img. Capture
Module

Img.
Queue

Img. Transfer
Module

Handshaking
Module

Img. Receive
Module

Img. Processing
Module

Infrared
CAM

High. Res.
CAM

Workload
Estimator

Img. Transfer

Images

Computing Board

Figure 2. Depiction of the system under power management

The learning algorithm is described below. M represents

the transition matrix which keeps track of the visited states,

actions, corresponding cost and other parameters. In each

decision epoch, the system finds itself either in sleep state

or in idle state. In both the states, the PM selects a time-out

value (Equation 11) and relinquishes the control until the

time-out period expires (or if some requests arrive during

the time-out period in idle state). At the end of the time-out

period (or when the time-out period is forced to terminate by

Algorithm 1 RL based time-out policy

Require: Power-performance parameter λ ∈ (0, 1)
1. Initialize Q, M and probability matrix pr arbitrarily.

while Policy not good enough do

2. Obtain the current workload estimation (Sec. V.B)

3. Get the current observation: (s, a)
4. Calculate action probabilities: pkr (s, ak) (Sec. V.E)

5. Select an action, a, with probability pr (Sec. V.E)

6. Execute the selected action

7. Calculate cost of the last action: ct+1(s, a) (Sec.

V.A)

8. Update the learning rate: αt(s, a) (Sec. V.D)

9. Update M with new state-action pair

10. Update Q-value: Qt+1(s, a) (Sec. V.C)

end while

11. Generate policy: π = minaQ(s, a), ∀s ∈ S, a ∈ A

some requests), the PM regains the control and evaluates the

last action by assigning it a cost (Equation 5) and updating

the Q-value of the last state-action pair (Equation 9). The

PM, then, selects another action in the new state and issues

appropriate signal to the SP.

V. THE LEARNING ELEMENTS

This section describes various elements of the learning,

including the cost function, workload estimation, state-action

pair updating principle, and the action-selection policy.

A. Cost Function

In the learning algorithm, we use cost instead of reward

which can be treated in the similar way. The cost assigned

to an action is a weighted combination of the average power

consumption incurred due to the action and the performance

penalty. We consider the average latency per request as the

performance measure which is equal to the average queuing

time plus the average execution time. The cost function is

given in equation 5.

ct(s, a, λ) = λ
1

(tk+1 − tk)

tk+1
∑

j=tk

Pj + (1− λ)lt(s, a) (5)

In the above expression, tk+1 − tk is the time that the SP

remains in state s, and λ ∈ (0, 1) is power-performance

trade-off parameter. For λ → 0, the learning algorithm gives

more importance to latency, thus resulting in a higher power

consumption. On the other hand, when λ → 1, the learning

algorithm turns to aggressive power savings, resulting in

higher latency. The value of λ can be varied slowly from

0 to 1 to obtain the pareto-optimal trade-off curve.

B. Workload Estimation

In this work, workload (or the request rate) comprises the

rate of images captured by all the cameras at the detection of

events (vehicle detection). Therefore, the workload reflects

the arrival rate of the vehicles. We used a real workload

for the learning algorithm by taking a test recordings on

a highway, where we recorded the inter-arrival times of

vehicles by a vehicle detection algorithm [6] and acquired

11700 requests (events) that served as the data size for the

learning algorithm. The mean inter-arrival times per hour

from the 22-hours (2:00 A.M to 12.00 A.M) recordings are

depicted in Figure 3.

Figure 3. Mean request inter-arrival times per hour

It is evident that the recorded workload exhibits a non-

stationary pattern. For workload estimation, we use a fix-

sized moving window on the history of previous inter-

arrival periods and input these inter-arrival periods to the

ML-ANN. The ML-ANN estimates the length of the next

inter-arrival period. If the length of the next inter-arrival

period is estimated to be longer than a certain threshold

Tthr, the workload is classified as low (or high otherwise).

Figure 4 shows the 3-layer ANN based workload estimator

where vij denotes the weight of the connection between jth

neuron from the input layer and the ith neuron of the hidden

layer. Whereas, wi represents the weight of the connection

between ith neuron from the hidden layer and the neuron of

the output layer.

The outputs of the input layer, hidden layer and output layer,

represented by Ii, h and z are calculated as follows:

Ii =

n
∑

j=1

vijxj , i = 1, ...,m (6a)

yi = f(Ii) (6b)

h =

m
∑

i=1

wiyi (6c)

z = f(s) (6d)

.

.

.

.

.

.

Input Layer Hidden Layer Output LayerS
li

d
in

g
 w

in
d

o
w

 o
n

 p
re

v
io

u
s

in
te

r-
ar

ri
v

al
 p

er
io

d
s

Next arrival

period

k
x

1k
x

1n
x

n
x

ij
v

i
w

0x

1x

.

.

.

.

.

.

.

.

.

1y

2y

1m
y

m
y

z

Figure 4. ML-ANN based workload estimator

Where f is the sigmoid function. The weights are adjusted

according to the following rule [15].

∆vij(t) = η(u− z)wixjf
′

(h)f
′

(Ii) + µ∆vij(t− 1) (7a)

∆wi(t) = η(u− z)yif
′

(h) + µ∆wi(t− 1) (7b)

f
′

= f(1− f) (7c)

Where u is the observed inter-arrival period, η is the learning

rate, and µ is a positive constant which is determined

experimentally. The experimental size of the moving window

was selected to be n = 8. The prediction accuracy of the

online ML-ANN workload estimator, which is defined as the

ratio of correctly predicted intervals to the total number of

predicted intervals, is 81.24%.

C. The Learning Principle

In our case, each system state has a composite form,

i.e., S = {WL,SQ, SP}, where WL = {0, 1} and

SP = {sleep, busy, idle}. We use state aggregation for

limiting the values of SQ to a state having no requests in

the queue and the one having some requests, i.e., ∀sq ∈
SQ, sq = {0, N |N ∈ N}. The action set A for each state

comprises time-out values tkout which depend on Tthr and

are defined as:

tiout = ǫiTthr, ǫi ∈ R
+ (8)

Where ǫi is a positive weight. The learning algorithm in our

case looks for minimizing long-term cost, rather than maxi-

mizing long-term reward. Hence, for the composite state S,

action set A =
{

t1out, t
2
out, ..., t

n
out

}

, and ∀(s, a) ∈ S × A,

equation 4 can be modified as follows:

Q(t+1)(st, at) =Qt(st, at)

+αt(st, at){(1− e−βtout)c(t+1)(s, a, λ)

+e−βtout min
a

Q(t+1)(s(t+1), a)−Qt(st, at)}

(9)

Where Q(t+1)(st, at) is the estimated Q-value of state s

after taking the action a; Qt(st, at) is the Q-value of state

s before taking the action a; and (1−e−βtout)c(t+1)(s, a, λ)
is the sample discounted cost received by executing

a time-out period tout, where β ∈ (0, 1). The term

mina Q
(t+1)(s(t+1), a) refers to the best (minimum) value in

next state s(t+1) corresponding to an action a. The learning

algorithm looks for minimizing the difference between the

current estimate of a state-action pair and the best discounted

value of the next state.

D. Updating Learning Rate

The learning rate αt(s, a) is decreased slowly in such a

way that it reflects the degree to which a state-action pair

has been chosen in the recent past. It is calculated as:

αt(s, a) =
ξ

visited(s, a)
(10)

Where ξ is a positive constant. Every time a state-action

pair (s, a) is visited with this learning rate, the difference

between its estimated Q-value Q(t+1)(s, a) and the current

Q-value Qt(s, a) approaches to zero. Hence, for all state-

action pairs, the algorithm converges to an optimal policy.

E. Exploration-Exploitation Policy

It is necessary for a learning algorithm not only exploring

the state-space deeper, but also exploiting the experience

gained so far. In order to acquire sufficient knowledge about

the dynamics of the system, every state-action pair must be

visited adequate number of times. We use a semi-greedy

policy in this work. This policy starts out with selecting

random actions (exploration), each with equal probabilities.

As the algorithm proceeds and acquires more knowledge

about the system, the probability of actions with minimum

cost begins to increase. Eventually, the policy tends to

become greedy by selecting actions with heighest probability

and minimum cost (exploitation). The action probabilities in

a state is given by Equation.

pkr (s, a) =
eQ

t(s,ak)/T

∑n
k=1 e

Qt(s,ak)/T
, ∀a ∈ A, n = |A| (11)

Where T is called a temperature coefficient. It is initialized

with a high value which gives equal weights (probabilities)

to all the actions and hence the policy tends to explore the

state-space, giving less importance to exploitation. T is then

decayed over time and as the learning progresses the distri-

bution becomes more tight on low-cost actions (equivalent

to greedy decisions), and the exploration tendency of the

agent reduces.

F. Multiple States Update

Selecting time-out values as actions enables multiple

updates in both sleep and idle states in order to accelerate

the convergence speed of the algorithm. Consider a case

where the SP is in sleep state and the PM selects an action

corresponding to a specific time-out value. If no request

comes before the time-out expires, all the actions (time-

out values) corresponding to smaller time-out values can

be evalualted using Equation 9. This is because all the

actions with smaller time-out values, if taken, would result

in the same cost and the same next state Q-value estimate.

Likewise, if the PM selects a time-out value in idle state and

a request comes before the time-out expires, all the actions

with higher time-out values can be evaluated.

VI. EXPERIMENTAL RESULTS

We varied the power-performance trade-off parameter, λ,

between 0 and 1 to produce a pareto-optimal trade-off

curve shown in Figure 5. We compared our modified RL

based DPM algorithm (Timeout/Timeout model) with the

algorithm presented in [18] which uses time-out values in

idle state and waits for N number of requests in sleep state

(Timeout/N model).

Figure 5. Power-performance pareto optimal trade-off curve

Figure 5 shows that RL based Timeout/Timeout model

achieves aggresive power saving and produces a much

deeper trade-off curve, while significantly reducing the av-

erage latency per request as compared to Timeout/N model.

Selecting time-out values in sleep state has a direct impact

on the time-out values in idle state. The optimal selection

of time-out values in sleep state helps selecting optimal

time-out values in idle state as well (and vice versa), thus

avoiding the algorithm to waste energy by executing higher

time-out values in idle state when the workload is lower. In

Timeout/Timeout model, we can ensure the range of latency

for the requests, which is given as follows:

[lmin, lmax] = [tp, (ti2s, tsleep, ts2i, tp)] (12)

Where the minimum latency, lmin, can be as small as the

processing time, tp, of the request. On the other hand,

suppose that PM issues a sleep command to the SP and

a request arrives at the same time. The maximum latency,

lmax, in this case can be as high as the sum of transition time

from idle to sleep, ti2s, time-out period in sleep state, tsleep,

transition time from sleep to idle, ts2i, and the processing

time of the request.

The probability distribution of the actions (time-out values)

in each state is shown in Figure 6. The two modes SP =
{0, 1} represent the sleep and idle state respectively. The

actions sleep → busy and busy → idle are assumed to be

autonomous and hence can be excluded from the action set.

Figure 6 shows the probability distribution of action set for

small value of the power-performance parameter (λ = 0.01),

where the learning algorithm is very sensitive to the average

latency per request and hence the probability of smaller time-

out values (based on the estimated workload) in sleep state is

high. In contrast, the probabilities of larger time-out values

(based on the estimated workload) in idle state are high.

The grayed cells shows the best actions with the highest

probablities in each state that will be consistently selected

when the policy becomes greedy.

(0,0,0) (0,N,0) (1,0,0) (1,N,0) (0,0,1) (1,0,1)

tout
1

0.30456 0.39329 0 0.50833 0.02705 0.02684

tout
2

0.32312 0.28466 0 0.19102 0.05229 0.04396

tout
3

0.18683 0.10155 0 0.14059 0.07385 0.06309

tout
4

0.12798 0.10831 0 0.14471 0.09599 0.08582

tout
5

0.03588 0.10548 0 0.01383 0.10749 0.12285

tout
6

0.01972 0.00269 0 0.00115 0.11379 0.11291

tout
7

0.00175 0.00358 0 0.00027 0.13275 0.13867

tout
8

0.00016 0.00041 0 0 0.13392 0.13894

tout
9

0 0 0 0 0.12609 0.12986

tout
10

0 0 0 0 0.13677 0.13706

Time-out values

 (Increasing order)

States S=(WL, SQ, SP)

Figure 6. Probability distribution of actions in each state

From the above figure, it is also evident that the state (1, 0, 0)
is never visited. This can be explained as follows. Suppose

that the workload is estimated to be high and the SP has

just entered idle state after processing all the requests in the

queue. This represents a composite state s = (1, 0, 1). The

PM now selects and execute a time-out period based on the

workload estimation. Since the workload is estimated to be

high and the time-out period is selected accordingly, it is

highly likely that some requests will arrive before the time-

out period expires. Even if no requests arrive during the

time-out period and the PM issues sleep command to SP,

it is highly likely that some requests will arrive during the

transition period, leaving the SP either in state s = (1, N, 0)
or in state s = (0, N, 0). Likewise, if the SP is in state

s = (0, 0, 0) and the workload becomes high, the queue can

no longer be empty, again leading to state s = (1, N, 0).

This also ensures the reliability of the workload estimator.

However, it is still safe to keep the state (1, 0, 0) in state-

space, lest it may be visited due to some random action or

in a different workload dataset.

We also analyzed the impact of using different threshold

periods Tthr on the learning algorithm. This also changes

the action set of time-out values which are function of Tthr.

Figure 7 shows a comparison of power-performance curves

for different values of Tthr. This comparison shows that the

power-performance curve does not change significantly by

changing the threshold period Tthr and hence the learning

algorithm can adopt to different threshold periods. This is

because selecting a smaller value of Tthr does allow the

algorithm choosing (relatively) smaller time-out values in

the sleep state resulting in decreasing the average latency.

However, it also compels the algorithm to select (relatively)

smaller time-out values in idle state as well in order to

compensate the (increased) power consumption. As a result,

the average latency and the power consumption do not vary

drastically for different values of Tthr. Instead of using a

static value of Tthr, it may be adjusted over time by the

mean of last n inter-arrival periods.

Figure 7. Comparison of power-performance curves for different threshold
periods

It is worth mentioning that the value of Tthr must be

bounded for a given set of weights ǫi to avoid divergence

of the algorithm or to prevent a local minima. Moreover,

selecting very small values of weights-threshold combina-

tion results in smaller time-out values in action set and

hence increases the average power consumption due to

frequent transitions among the states. Likewise, selecting

very high values of weights-threshold combination can also

mitigate the power saving achieved in sleep state (with

higher time-out values) by spending more time in idle state,

executing higher time-out values and hence wasting energy.

For a given set of weights ǫi, the boundary values for

Tthr can be determined experimentally based on a specific

workload. For our experimental workload, the acceptable

range of Tthr is between 5 and 20 for the set of weights

ǫi = {0.1, 0.2, ..., 1, 1.1, ...}.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a RL based DPM approach

for our stereo-vision based, multi-camera traffic monitoring

system. The presented approach does not require a priori

model of the system (the transition probabilities of indi-

vidual components), as against to the existing stochastic

DPM approaches. The algorithm learns the dynamics of the

system by interacting with it, implementing certain actions

during learning and evaluating their effects. Additionally,

our proposed approach augments the good features of the

traditional DPM approaches, i.e., time-out, greedy, predictive

and stochastic, into a single learning scheme. The algorithm

finds the optimal time-out values both in sleep and idle

mode and tries to shutdown the computing board as soon as

possible (greedy). Likewise, the algorithm also uses a predic-

tive approach for workload prediction. Besides, the learning

algorithm uses the same elements as used in stochastic

approaches (queuing model, etc). Our results show that the

proposed Timeout/Timeout algorithm provides a decent and

much deeper power-latency trade-off curve as compared to

Timeout/N algorithm.

In future, we aim to formulate the DPM optimization

problem as a dual problem, i.e., minimizing power con-

sumption (or latency) for a given performance (or power)

constraint. The RL based learning algorithm can then be im-

plemented to find the right value of the power-performance

constraint (λ) that exactly meets the power (or performance)

constraint.

ACKNOWLEDGEMENT

This work has been sponsored in part by the Austrian

Research Promotion Agency under grant 825840.

REFERENCES

[1] A. Karlin, M. Manasse, L. McGeoch and S. Owickim. Com-
petitive randomized algorithms for non-uniform problems.
Algorithmica, 11(6):542–571, 1994.

[2] C. H. Hwang, A. C. Wu. A predictive system shutdown
method for energy saving of event-driven computation. In
International Conerence on Computer Aided Design, 1997.

[3] C. Watkins. Learning From Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, 1989.

[4] E. -Y. Chung, L. Benini, G. De Micheli. Dynamic power
management using adaptive learning tree. In International
Conference on Computer Aided Design, pages 274–279, 1999.

[5] F. Douglis, P. Krishnan, B. Bershad. Adaptive disk spin-down
policies for mobile computers. Computing Systems, 8:381–
413, 1995.

[6] F. Pletzer, R. Tusch, B. Rinner, L. Böszörmenyi. Robust
traffic state estimation for smart cameras. In Proceedings of
9th IEEE International Conference on Advanced Video and
Signal-Based Surveillance (AVSS), Beijing, China, 2012.

[7] G. Dhiman, T. Rosing. Dynamic power management using
machine learning. In IEEE/ACM International Conference on
Computer-Aided Design, 2006.

[8] J. M. Pedram. Power Aware Design Methodologies. Kluwer
Academic, 2002.

[9] L. Benini, A. Bogliolo, G. A. Paleolog, G. de Micheli. Policy
optimization for dynamic power management. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 18:813–833, 1999.

[10] P. Greenawalt. Modeling power management for hard disks.
In International Workshop on Modeling, Analysis, and Sim-
ulation for Computer and Telecomm. Systems, pages 62–65,
1994.

[11] Q. Qiu, M. Pedram. Dynamic power management based
on continuous-time markov decision process. In Design
Automation Conference, pages 555–561, 1999.

[12] R. S. Sutton, A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[13] S. Shukla, R. Gupta. A model checking approach to evalu-
ating system level dynamic power management policies for
embedded systems. In High-Level Design Validation and Test
Workshop, pages 53–57, 2001.

[14] Srivasta et al. Predictive system shutdown and other archi-
tecture techniques for energy efficient programmable compu-
tation. IEEE Transactions on VLSI Systems, 4:42–55, 1996.

[15] T. Phit, K. Abe. Packet inter-arrival time estimation using
neural network models. In Internet Conference, 2006.

[16] T. Simunic, L. Benini, G. De Micheli. Event-driven power
management of portable systems. In International Symp. on
System Synthesis, pages 18–23, 1999.

[17] U. A. Khan, M. Quaritsch, B. Rinner. Design of a heteroge-
neous, energy-aware, stereo-vision based sensing platform for
traffic surveillance. In 9th Workshop on Intelligent Solutions
in Embedded Systems, 2011.

[18] U. Khan, B. Rinner. Dynamic power management for
portable, multi-camera traffic monitoring. In 18th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium, 2012.

[19] V. Lakshmi, E. Monie. Hardware architecture of reinforce-
ment learning scheme for dynamic power management in
embedded systems. EURASIP Journal on Embedded Systems,
2007:645–650, 2007.

[20] Y. -H. Lu, G. De Micheli. Adaptive hard disk power man-
agement on personal computers. In Great Lakes Symp. VLSI,
pages 50–53, 1999.

[21] Y. Tan, W. Liu, Q. Qiu. Adaptive power management
using reinforcement learning. In EEE/ACM International
Conference on Computer-Aided Design, 2009.

[22] Y. Wang, Q. Xie, A. Ammari, M. Pedram. Deriving a
near-optimal power management policy using model-free
reinforcement learning and bayesian classification. In 48th
Design Automation Conference, pages 41–46, 2011.

