
19th ITS World Congress, Vienna, Austria, 22/26 October 2012                                                       1 

MobiTrick – Mobile Traffic Checker 
 

Umair Ali Khan*1, Martin Godec2, Markus Quaritsch1, 
Marcus Hennecke3, Horst Bischof2 and Bernhard Rinner1 

1. Institute of Networked and Embedded Systems, Klagenfurt University, Austria 
2. Institute for Computer Vision and Graphics, Graz University of Technology, Austria 

3. EFKON AG, Graz, Austria 
 

Abstract  
MobiTrick is a portable and compact traffic monitoring system that utilizes image processing 
capabilities to perform typical traffic monitoring tasks. It is based on a heterogeneous-sensors 
architecture using infrared and visible-light cameras. This setup allows utilizing the 
advantages of both sensors and additionally enables heterogeneous stereo reconstruction for 
3D monitoring of vehicles. Due to the mobility factor, MobiTrick sensing platform is battery 
operated and hence imposes a strict limitation on power consumption. Therefore, it needs an 
efficient power management technique that optimizes the overall power consumption of the 
system. This paper presents MobiTrick’s design architecture, novel vision-based techniques to 
perform the monitoring tasks, and the current work on an online Dynamic Power Management 
(DPM) strategy to minimize the sensing platform’s power consumption. 
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Introduction  

Most of the current traffic monitoring systems are large, expensive and are based on fixed 
installations and hence difficult to deploy and maintain. During the deployment or 
maintenance, not only the road needs to be closed, but a re-calibration of the sensors is also 
required. In contrast, MobiTrick is designed as a compact, autonomous and portable system 
and therefore supports a flexible deployment for various monitoring tasks, e.g., law 
enforcement and construction site monitoring. The system is based on an application-specific, 
mobile infrastructure and is intended for short-term installations (hours or days). In addition, 
it uses a few, small form-factor sensors to perform all the required tasks with stereo-vision, 
hence eliminating the need of expensive sensors (e.g., laser, radar). Apart from this, the 
sensing platform also has auto-calibration capabilities, so it can adapt the calibration 
parameters just by the information readily available in the scene. Although it has a low-power 
design [1], in order to increase the system’s lifetime, a power reduction technique is also 
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required that minimizes the system’s energy consumption during battery-powered operation.   
The following sections of the paper include a brief description of MobiTrick’s sensing 
platform, the stereo-vision based building-blocks for capturing, monitoring, and analysis of 
traffic statistics, the current work on MobiTrick’s DPM using a machine learning approach; 
the Reinforcement Learning (RL), and the conclusion with future work.  
 

 
Figure 1: MobiTrick sensing platform 

 
MobiTrick Sensing Platform 
The MobiTrick sensing platform is configured with a multi-tier, heterogeneous setup where it 
uses different types of visual and non-visual sensors. A multi-tier, heterogeneous sensing 
environment serves many purposes. Not only it distributes tasks among different sensors, but 
several low-level operations can also be performed with less capable (and more power 
efficient) sensors at lower tiers where they can trigger the sensors at higher levels at the 
detection of some events. In addition, the redundant information from multiple sensors can be 
exploited to increase reliability. Lastly, it helps avoiding the use of additional sensors, such as 
laser or radar. A low-power Intel Atom based computing board is used in the sensing platform 
to perform required image processing operations. Figure 1 depicts a high-level overview of 
MobiTrick sensing platform.  
 
Visual Object Detection & Classification 
Traditional surveillance systems use a single camera to observe objects, such as cars or 
pedestrians. However, this simple setup has some drawbacks: (a) using a single camera 
restricts to a single light spectrum. If different lighting conditions occur, infra-red cameras 
may help while colour-cameras usually give better detection results; (b) cast-shadows, which 
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are present in traffic surveillance very often, bring major difficulties to single-camera 
solutions. Therefore we propose to use a heterogeneous stereo setup using an infrared camera 
beside a colour camera. While combining the advantages of the different cameras for difficult 
lighting conditions, this setup enables full 3D reconstruction of images. Thereby we get rid of 
cast-shadows and can perform measurements on our objects under surveillance. In addition to 
the different light spectra the cameras also differ in their focal length, which means that one 
camera gives an overview of the scene while the second delivers an enlarged view of the 
object. 
 
Scene adaption 
Especially for mobile out-door surveillance tasks, adaption to the deployment site and 
changing conditions (lighting, weather) are very important. We address this issue using 
several different techniques according the requirements of the different tasks: (a) while the 
intrinsic parameters of our cameras will not change, the extrinsic parameters (distance and 
rotation between cameras) may change due to changes in temperature or vibrations. 
Therefore, we perform recalibration of extrinsic parameters during runtime. We model the 
parameter set using a Kalman Filter and measure the quality of the current configuration using 
overall matching costs for stereo reconstruction; (b) we use an adaptive robust block-based 
background-model [8] do determine regions of interest within each camera. Instead of 
modelling complex statistics for each pixel, simple intensity averaging within small 
overlapping blocks is performed. Due to the larger extent of the modelled regions, this 
background model can cope with waving leaves and camera shake which are often present in 
outdoor scenarios. To adapt the background-model to changing lighting conditions (moving 
cast-shadows during day, clouds) we continuously update the statistics. Due to the rectangular 
shape of the used blocks, the background model can be computed very efficiently using 
integral images. We use our background model for both visual triggering of the whole camera 
system and detection of the region of interest for the reconstruction; and (c) we perform online 
bootstrapping to increase the performance of our classifier, an Online Random Forest (ORF) 
[9]. Similar to common Random Forests, this classifier uses tree-like structures and is robust 
to a large amount of noise within training data. The classifier can be trained using streaming 
data (e.g. training data that arrives sequentially), but the classifier is available for evaluation at 
any time, even if only a small amount of training data has been processed. 
If a certain amount of samples has reached a leaf node of the tree, it chooses a proper test that 
best separates the processed training data. The node changes its operation mode from “leaf” to 
“split” and initializes left and right leaf nodes beneath it. This procedure is repeated 
recursively until a maximum depth has been reached or the leaf node is monolithic (i.e. does 
only contain samples from a single class). 
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Figure 2: Block-based Background Model used as visual “induction loop” 

 
3D Reconstruction 
The proposed stereo setup allows reconstructing the object in 3D. However, heterogeneous 
stereo matching is not a standard task in computer vision. Therefore we evaluated a vast 
amount of different feature descriptors and matching techniques to optimize the reconstruction 
result of our setup [10]. Finally, respecting our limited hardware resources, we use a 
simplified version of Histograms of Oriented Gradients (HOG) features, which performed 
best for the heterogeneous data present in our system. Disparity optimization is performed 
using Semi-Global Matching [11], a recent approach that delivers state-of-the-art results. 
Figure 3 shows a sample output of the disparity calculation performed on our platform. Beside 
the full 3D reconstruction, which would exhaust the computing power of our embedded 
system and increase the power consumption, we are able to only use the “region of interest” 
depicted by our background model. As an alternative, we can compute a rough height 
estimation of the passing vehicle by calibrating several “virtual ground-planes” determining 
different height levels above the ground. However, this requires exactly the same mounting as 
used for calibration or a more time-consuming calibration at the deployment site has to be 
done. 
 

       



MobiTrick – Mobile Traffic Checker                             5
      
   

5 

Figure 3: Visual input (visible spectrum camera) and corresponding disparity map. While the disparity 

map is by far not perfect, it clearly shows a height difference of the vehicle to the common street level. 

 

Reinforcement Learning based DPM for MobiTrick 
Among the existing DPM approaches, greedy policy [2], time-out policy [3] and predictive 
policies [4] perform well only when the system’s workload has long intervals between the 
successive requests or when the requests are correlated. In road traffic situation, this is not 
always true. On the other hand, stochastic policies [5] require a priori model of the system 
components and have limited adaptability.  
The model-free RL-based DPM approaches [6] [7] have received increasing attention 
recently. Although, the existing work on these approaches is focused on small devices, its 
application to more complex systems is also promising. RL allows a learning agent to 
automatically determine the ideal behaviour within a specific context, in order to maximize its 
performance. A simple pay-off (or reward) feedback is required for the agent to learn its 
behaviour. The overall goal of the learning agent is to minimize (or maximize respectively) 
the long-term cost or reward that it receives from the environment as a consequence of 
performing some actions. In a DPM problem, the pay-off/cost can be the immediate power 
consumption and a performance/latency penality resulted after taking an action. While 
observing the successive cost values, the agent learns to take optimal actions that can 
minimize the cost function. Since the cost function includes both the immediate power 
consumption and the performance latency, the agent finds a policy that achieves the best 
possible trade-off between the power consumption and the performance. We use a type of RL 
technique, the Q-learning, that works efficiently for such a problem. Q-learning works by 
learning an action-value function that gives the expected cost of taking a given action in a 
given state and following a fixed policy thereafter. One of the strengths of Q-learning is that it 
is able to compare the expected cost of the available actions without requiring a model of the 
environment.  
For MobiTrick DPM, we targeted the computing board which is the major source of power 
consumption in the sensing platform and works as a Service Provider (SP) in the RL 
environment. The power model of the SP is shown in Table-1.  
 

Psleep Pidle Pbusy Ptrans Ttrans 
4 W 25 W 32 W 15 W 4 Sec 

Table 1 – Power model of SP (computing board) 

 
The other components of the RL environment, namely the Service Requestor (SR) that 
generates requests and the Service Queue (SQ) where the requests are buffered before being 
processed, reside on the smart camera. The SQ holds the synchronized images from all 
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cameras present in the system. In this way, the smart camera serves as a Power Manager (PM) 
and issues commands to other components of the system. These commands include the 
available actions to change the power state of the SP. Based on an action taken, the RL 
environment assigns a scalar cost to the PM which is a weighted sum of the immediate power 
consumption and a performance/latency penalty caused by that action. The relative weighting 
between the power consumption and the performance factor works as a trade-off parameter. 
The overall aim of the RL algorithm is to minimize the cost function and hence to reach an 
optimal DPM policy.  The relative weight between power and performance can be changed to 
obtain a Pareto-optimal trade-off curve.   
We have tested and compared two models of the system: (i) Model-1: a deterministic model 
with known workload where the images are captured at a constant rate, (ii) Model-2: a 
stochastic model with workload estimation using a multi-layer Artificial Neural Network 
(ANN) with back-propagation algorithm. In Model-1, the images are captured at a constant 
rate and buffered in the service queue at the smart camera. Since the request rate is constant, 
the PM takes decisions only on the current state of the queue and the power mode of the SP. In 
Model-2, the smart camera runs a vehicle detection algorithm and the other cameras are 
triggered only at the detection of a vehicle.  

 

Figure 4 – Depiction of the system under power management 

 
The traffic data used in Model-2 comprises a 24-hours recording of highway traffic where we 
measured vehicles arrival times with a vehicle detection algorithm. We use a fix-sized window 
on the history of previous inter-arrival times and input them to the ANN. The ANN estimates 
the length of the next inter-arrival period and this estimation is incorporated to the RL 
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algorithm in the form of SR state. In sleep state, based on the estimated state of the workload, 
the PM decides after how many requests buffered in the queue, it would be appropriate to 
wake-up the board and process the requests. At each selected action, it gets an immediate pay-
off in terms of a scalar cost. In the same way, when the SP is in idle mode, the PM executes a 
selected time-out value as an action, based on the estimated state of the workload and 
calculates its immediate cost in terms of the immediate power consumption. Figure 4 depicts 
the system under power management. 
Although the two systems have different arrival rates of the requests, the number of requests 
processed is same and the comparison is made on the basis of both power consumption and 
system response. In Model-1, the request rate is constant and relatively higher. Therefore, the 
SP has to wakeup earlier at the accumulation of certain number of requests in the SQ. This 
does increases the power consumption due to more frequent transitions, but the average 
latency per request does not exceed a certain level. Whereas in Model-2, the arrival rate varies 
over time and during the low arrival rate, the SP spends more time in sleep state until certain 
number of requests is buffered in the SQ. Intuitively, this should decrease the power 
consumption, but the average latency per request should also increase. However, the workload 
prediction works fine here. It avoids the SP to spend unnecessary time both in idle state and 
the sleep state. Not only it decreases the overall power consumption, but also keeps the 
average latency per request at the same level as in Model-1. Apart from this, it gives a much 
wider curve of power vs. latency. At the sacrifice of some higher latency, more power savings 
can be achieved.  

 
Figure 5 – A comparison of RL-based Model-1, Model-2 and other policies 

 
Figure 5 shows a comparison of power vs. latency trade-off curves of Model-1 and Model-2.  
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The two models were also compared with some existing policies as shown in Figure 5. RL-
based models achieve higher power savings with an acceptable level of system response.  
 
Use-case scenarios 
After explanation of the technical details of the proposed platform, we shortly review two 
possible use-case scenarios and the advantages of our platform in comparison to single-
camera solutions. 
 
Vehicle classification scenario 
Visual vehicle detection using standard computer vision methods (e.g. [12]) delivers high 
accuracy predictions. However, for 24/7 operation the detection/classification accuracy has to 
be nearly perfect due to the high number of vehicles that pass by. Therefore, our system 
allows using 3D information as additional cue to verify detection hypothesis (i.e. changed 
blobs detected by the background model). While eliminating hypothesis where no vehicle is 
present (see Figure 6), the 3D cue can also give additional information used for classification 
of the passing vehicle, such as rough dimensions (height, width, and length). 
 

       
Figure 6: Visual input (visible spectrum camera) and corresponding disparity map. 3D reconstruction of 

the road surface eliminates false-positive detection. Objects that are present would result in a height 

elevation above the ground-plane. 

 
Fused sensing  
3D reconstruction of vehicles is a useful technology to increase the robustness and accuracy 
of a monitoring system. However, homogeneous camera setups (e.g. RGB and RGB) will not 
work for all different external conditions (e.g. night/day, summer/winter, sunshine/rain...) that 
will occur in traffic surveillance. However, there exist cameras that are suited for such specific 
conditions. Our heterogeneous setup does not only deliver 3D reconstructions if both cameras 
are working, but also combines the condition-specific advantages of both cameras. Both 



MobiTrick – Mobile Traffic Checker                             9
      
   

9 

cameras can also be used individually, which enables a wider range of applications than a 
single camera system would allow for. 
 
Conclusion 

The paper presents a mobile traffic monitoring system, a brief description of vision-based 
building-blocks and work on online power management of the sensing platform. Being a full-
fledged image processing based traffic monitoring system, our sensing platform is small, 
compact and flexible and can easily be deployed to any environment without any change in 
the road infrastructure. In addition, deployment and maintenance requires minimum effort and 
expertise. 
We described all vision-based building blocks necessary to perform different applications, 
such as vehicle classification or over-width detection. Since our platform features two 
cameras, it enables 3D reconstruction of the visual input which increases robustness in 
comparison to 2D processing (e.g. cast shadow removal) and also enables better classification 
due to additional processing cues. 
From the power management perspective, we compared two different models and showed that 
our approach is applicable for both constant-rate service requests (Model-1) and event-based 
service requests (Model-2) which are both very relevant for various traffic applications. In 
comparison with the traditional DPM approaches (time-out, predictive), our RL-based DPM 
models give much wider power vs. latency trade-off curves. Our future work on power 
management of the sensing platform includes improving the RL-based algorithm by 
incorporating time-out values at sleep state also which may result in better system response. 
Moreover, we are aiming to extend our algorithm to target an embedded computing platform 
having higher number of sleep and idle states.  
 
 
Acknowledgement 
This work has been supported by the Austrian FFG project MobiTrick (8258408) under the 
FIT-IT program. 
 
References  

1. U. A. Khan, M. Quaritsch, B. Rinner (2011). Design of a Heterogeneous, Energy- 
Aware, Stereo-Vision Based Sensing Platform for Traffic Surveillance, in proceedings of 
the Ninth Workshop on Intelligent Solutions in Embedded Systems.  

2. J. M. Pedram (2002). Power Aware Design Methodologies, Kluwer Academic, Norwell, 
USA. 



MobiTrick – Mobile Traffic Checker                             10
      
   

10 

3. Benini et al (1999). Policy Optimization for Dynamic Power Management, IEEE 
Transactions on Computer Aided Design, vol. 18, pp. 813-833.  

4. Srivastava et al (1996). Predictive System Shutdown and Other Architecture Techniques 
for Energy Efficient Programmable Computation, IEEE Transactions on VLSI Systems, 
vol. 4, pp. 42-55.  

5. Y. -H. Lu, G. D. Micheli (2001). Comparing System Level Power Management Policies, 
IEEE Transactions on Design Test of Computers, vol. 18, 10-19.   

6. Y. Wang et al (2011). Deriving a Near-Optimal Power Management Polilcy Using 
Model-Free Reinforcement Learning and Bayesian Classification, in 48th ACM Design 
Automation Conference.  

7. G. Dhiman, T. Rosing (2006). Dynamic Power Management Using Machine Learning, 
in IEEE International Conference on Computer Aided Design.  

8. P. M. Roth (2008). On-line Conservative Learning. PhD thesis, Graz University of 
Technology, Faculty of Computer Science. 

9. Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof 
(2009). On-line Random Forests, in Proc. IEEE On-line Learning for Computer Vision 
Workshop. 

10. Peter Pinggera (2011). Recovery of Depth Information Using Paired Optical And 
Thermal Images, MSc. Thesis, Graz University of Technology, Faculty of Computer 
Science. 

11. Heiko Hirschmüller (2008), Stereo Processing by Semi-Global Matching and Mutual 
Information, IEEE Transactions on Pattern Analysis and Machine Intelligence. 

12. Paul A. Viola, Michael J. Jones (2001). Rapid Object Detection using a Boosted 
Cascade of Simple Features. In Proc. IEEE Conference on Computer Vision and Pattern 
Recognition. 


