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Abstract—Fusing multiple views of different cameras in a
visual sensor network (VSN) require the calculation of a con-
sensus. As a result we are able to overcome the uncertainties
from the tracking algorithm and physical constraints in the
observed environment. This paper addresses the topic of reaching
a consensus within VSN of calibrated or uncalibrated cameras. In
contrast to several proposed techniques, where the consensus is
calculated on all cameras simultaneously, our approach calculates
the consensus on a single camera. Furthermore, the responsibility
for this calculation is migrated to the camera actually detecting
the object with a better subjective view than its neighbors. This
saves resources and reduces the communication overhead within
the network.

I. INTRODUCTION

A main task of VSNs is the surveillance of large areas to
identify suspicious changes in the environment or to classify
human behavior. Typically, these networks consist of a combi-
nation of cameras with overlapping and non-overlapping field
of views (FOVs) as well as observable and non-observable
areas of the contributing cameras. To perform a multi-view
tracking, VSNs require a collaborative way to agree upon
the different outputs of each camera. Therefore, the cameras
act as autonomous agents, analyze the retrieved data locally
and exchange only processed data. This data is necessary
to form a joint decision and finally, reach a global state, a
consensus for all participating cameras in a VSN as done in
[1], [2], [3], [4]. Reaching a consensus is defined as reaching
an agreement regarding certain features. These features are
retrieved as results of the tracking algorithm. They could
represent appearance (color, size) or spatio-temporal (time,
location) observations.

Tracking algorithms offer the information needed by the
consensus algorithm. Depending on different parameters such
as distance, orientation or occlusions of the tracked object they
have a different performance. However, this is not reflected
in state-of-the-art consensus algorithms which assume perfect
tracking and do not cope with errors. Moreover, the neighbor-
hood is assumed to be known [1].

Contrary to state-of-the-art consensus algorithms, we do
not employ all available cameras in the network, but rather
transfer the algorithm from one camera to another dependent
on the tracking result. The camera to perform the algorithm
is selected by comparing the utility of its tracking result with
the others in the neighborhood. A similar approach to migrate
the leadership is presented in [5].

The remainder of this paper is organized as follows: Section
II briefly describes the problem covered in this paper and spec-
ifies the considered VSN. Section III explains the main parts
of the consensus algorithm. Furthermore, it describes how to
enhance this algorithm in a VSN of calibrated (III-A) and
uncalibrated cameras (III-B). Finally, Section IV summarizes
the paper and gives an outlook on future work.

II. PROBLEM FORMULATION

In this paper we consider a VSN with a fixed set of cal-
ibrated or uncalibrated cameras C partially with overlapping
FOVs. In addition, full observability is assumed. Their task
is to monitor the environment and to identify a set of objects
O moving in their FOV. The communication between these
cameras is assumed to be lossless. The VSN performs a
distributed tracking algorithm, meaning, each camera is able to
detect and track dedicated objects within its FOV. Furthermore,
it is assumed that the tracker classifies the objects and assigns
each tracked object an utility α of the tracking result for
each camera, as done in [6]. Furthermore, the VSN reaches a
consensus on position and velocity in a network of calibrated
cameras and a consensus on classification in a network of
uncalibrated cameras. To reduce the communication overhead,
we do not calculate the consensus on each camera individually.
In each step, a single camera is selected automatically based
on the utility of the tracking result. This camera collects
all necessary data and calculates the consensus. The main
advantage of migrating the consensus algorithm to a single
camera is a decrease of communication overhead. Compared to
state-of-the-art consensus algorithms, where data is exchanged
to all participating cameras, our approach employs only a
single camera to calculate the consensus. Furthermore, de-
creasing the overall communication overhead can be realized
by exchanging messages only within the neighborhood. In a
calibrated network the neighborhood can be derived easily; in
an uncalibrated network we identify the neighborhood using
a vision graph as proposed in [6].

III. REACHING A CONSENSUS

Generally, a consensus describes an agreement over all the
states xi ∈ R of the cameras yielding to a single, in this case,
one-dimensional value

x1 = x2 = . . . = xconsenus. (1)



The consensus calculation for the proposed VSN uses
the Kalman Consensus Algorithm introduced in [1]. For its
computation it requires additionally an information vector u,
an information matrix U and the estimated state of the tracked
object x. In the calibrated as well as in the uncalibrated
network the utility αj is calculated for each time step on each
camera for a certain object as proposed by [6]. This utility is
used by the consensus algorithm to weight the tracking result.
Therefore, a message mj transmitted from each camera to the
camera currently holding the consensus responsibility needs
to have following content

mj = (uj , Uj , xj , αj). (2)

As in [1] the sensor data is fused for further consensus cal-
culation. In our approach the fusion is extended by weighting
the information matrix with the utility αj .

A. Consensus in a VSN of calibrated cameras

In a VSN of calibrated cameras the neighborhood can
be easily determined. In addition to tracking objects, the
calibrated camera of a VSN is able to map the object’s image
plane position to the ground plane. Therefore, we can reach a
consensus, e.g., on the object’s ground plane position.

The cameras in the neighborhood transmit position together
with utility to the camera having the consensus responsibility
as in Equation 2. The current state describes the position
xj = (xj , yj) and could be further enhanced by additionally
transmitting the velocity of the object vj .

The camera responsible for the consensus calculation has
then all the necessary data to reach a consensus for the
location of the object on the ground plane of all cameras in its
neighborhood. These steps are summarized in Algorithm 1.

B. Consensus in a VSN of uncalibrated cameras

In a VSN of uncalibrated cameras the neighborhood is
usually not known. To overcome this problem, we use the
approach of a vision graph as proposed by [6], [7]. The
control strategy as in [6] manages tracking responsibilities
and learns the neighborhood relations. Instead of the tracking
responsibility, our approach transfers the responsibility to
calculate the consensus to the camera having the best utility
of the tracked object.

For a VSN of uncalibrated cameras we cannot reach a
consensus on the ground plane position of the object. When
transmitting the message in Equation 2, we could use for the
state xj a parameter, e.g., indicating the class of an object.
This parameter could be used to calculate a consensus on the
object classification. As for the calibrated network, this camera
has then all necessary data for calculating a consensus on the
tracked object.

Furthermore, compared to [1], [2], [4], where the neigh-
borhood is assumed to be known, our approach determines
the neighborhood along with the consensus calculation using
the utility of the tracking result. As described in [6], a link
weighted according to the utility is created between the camera
calculated the consensus and the camera having the best

utility of the object in the next step. We change the proposed
unidirectional link to a bidirectional link. Additionally, links
should be created to cameras, where the utility was not high
enough to win, but is still satisfactory for our application.
The strength of the links follows the pheromone evaporation
rule and is dependent on the network and the tracked object’s
characteristics as described in [6].

Since the neighborhood is calculated out of the data already
used for the consensus calculation, there is no additional
communication necessary.

Algorithm 1 Reaching a consensus and migrating its respon-
sibility in a VSN

Camera ci ∈ C owns the object ok
FOR each object ok

1) Send auction initiation to neighbors cj ∈ C
2) Receive data from all cj , where αj > 0 as in Eq. 2
3) Weight tracking results
4) Calculate consensus
5) Migrate responsibility of calculating the consensus

from ci to camera with best αj

IV. SUMMARY AND OUTLOOK

In this paper we presented a new approach for calculating
the consensus in a VSN with calibrated and uncalibrated
cameras. A future step is to validate the proposed algorithm
with simulations and further, with a physical test bed.

The addressed VSN is able to fully observe the area of
interest. A further step is to extend the transferring behavior
of the algorithm to VSNs that also deal with non-observable
areas, so called gaps.
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