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Abstract—This paper presents a new method for estimating
the level of service (LOS) on motorways in the compressed
video domain. The method performs statistical computations
on motion vectors of MPEG4 encoded video streams within a
predefined region of interest to determine a set of four motion
features describing the speed and density of the traffic stream.
These features are fed into a Gaussian radial basis function
network to classify the corresponding LOS. To improve the
classification results, vectors of moving objects are clustered
and outliers are eliminated. The proposed method is designed
to be executed on a server system, where a large number of
camera live streams can be analyzed in parallel in real-time.
Evaluations with a comprehensive set of real-world training
and test data from an Austrian motorway have shown an
average accuracy of 86.7% on the test data set for classifying
all four LOS levels. With a mean execution time of 48 µs per
frame on a common server, hundreds of video streams can be
analyzed in real-time.

Keywords-real-time traffic information, level of service esti-
mation, compressed domain video analysis, feature extraction

I. INTRODUCTION

Traffic state - also known as level of service (LOS)
- detection has been a well investigated research area in
computer vision for several years. Numerous methods and
techniques for estimating the vehicles speed, the traffic
density, and the level of service on the roads exist, both in the
uncompressed and in the compressed video domain. Speed,
density, and LOS detection in the uncompressed domain
typically rely on background modeling, vehicle detection,
or feature-based tracking. The applied methods in this area
exploit various information available in and between succes-
sive raw frames (like edges, textures, and color distributions)
[1], [2]. A disadvantage of these uncompressed domain
approaches is that they are computationally expensive and
hence real-time performance in large camera networks is
sometimes difficult to achieve.

In the compressed video domain there is much less
information to exploit for determining the speed, density, and

LOS. Compressed domain methods typically utilize statisti-
cal features about motion vectors of macro blocks and DCT
coefficients of blocks to determine the speed and density of a
traffic stream. In the MPEG video encoding domain, various
approaches exist which reach LOS classification accuracies
up to 92% [3], depending on the number of levels being
classified and the illumination conditions of the camera (see
section II for details).

However, the existing approaches do not reflect the typi-
cally used LOS levels on the high- and motorways today -
at least not according to known LOS definitions like in [4]
and [5]. Moreover, some evaluations in these approaches
use hand-annotated training and test data. It is sometimes
difficult to manually distinguish especially between two
intermediate LOS levels, if more than two levels are used.
Reference speed and density data from highly accurate
sensors (e.g., inductive loops or triple-tech sensors) are
seldom used, although often available on motorways and
highly useful. And finally, the presented approaches mainly
do not come up with performance figures which enable
an estimation of how many camera live streams can be
analyzed in parallel on a common server host. This is of
great importance for our work since we aim at being able to
analyze hundreds of camera live streams from the Austrian
motorways in parallel.

This contribution describes two definitions of LOS, takes
one of them as reference, and proposes a model for es-
timating the prevailing LOS in the compressed MPEG4
video domain within a defined region of interest (ROI). The
estimations are based on a set of four statistical features
of selected motion vectors in the ROI, observed within an
observation period of one minute. The feature set includes:

F1: average region area covered (ARAC)
F2: average region object count (AROC)
F3: average region vector length (ARVL)
F4: average region object vector length (AROVL)

Features F1 and F2 estimate the density of the traffic



stream, features F3 and F4 both the density and the speed.
All calculations are based on a previous motion vector clus-
tering step to detect objects within the ROI. The computed
features as well as ground truth LOS data obtained from
triple-tech reference sensors are finally fed into a Gaussian
radial basis function network (GRBFN) to train and classify
the LOS. Evaluations on a 10 hours training and 1 hour test
set covering numerous examples of all four LOS levels have
shown an average classification accuracy of 78.2% on the
training set using cross-validation and 86.7% on the test set,
for all four LOS levels.

The remainder of this work is organized as follows.
Section II discusses related work in the area of vision-based
vehicle speed and density estimation in the compressed and
uncompressed video domains. Section III presents our LOS
classification method for the compressed MPEG4 domain
including details about our feature set. In section IV, exper-
imental results on a comprehensive real-world training and
test set are presented. Finally, section V concludes this paper
and presents potential future work.

II. RELATED WORK

In principle, level of service (LOS) classification based
on computer vision involves two types of features: features
that relate to the vehicles speed and features that relate to the
traffic density. For the uncompressed domain, the detection
of the traffic state has been extensively studied over the
past decades using background modeling [6], [7], vehicle
detection [8], [9], [10], or feature-based tracking [11], [12],
[1] algorithms. In [2], a new LOS classification method for
the uncompressed domain is presented. The method uses a
Gaussian radial basis function network to classify the traffic
state from optical flow-based motion features and edge-
based density features. The proposed method is designed to
run in real-time on smart cameras and achieves an average
classification accuracy of 86.2% for all LOS levels.

A comprehensive study about compressed-domain fea-
tures used for content analysis and indexing is provided
in [13]. Several publications deal with speed estimation in
the compressed domain. In [14], a method for estimating
the mean vehicle speed from MPEG4 motion vectors using
a calibrated camera is described. Motion segmentation is
applied to cluster the motion vectors and track the moving
vehicles. By estimating the speed from the length of the
motion vectors, the method achieves an accuracy of 85% to
92%. A similar approach is shown in [15]. Road markers are
used for auto calibration of a static surveillance camera. The
mean speed is estimated from the length of motion vectors
for a segmented road region or region of interest. In [3],
Porikli et al. present an unsupervised congestion estimation
approach for the compressed domain. The method utilizes
a Gaussian Mixture Hidden Markov Model to classify the
traffic condition from motion vectors and DCT features.

Table I
ABNORMAL TRAFFIC CLASSIFICATION OF DATEX II.

Level Velocity
(% of free-flow level) (km/h @ 130 km/h ref.)

stationary [0,10) [0,13)
queuing [10,25) [13,32.5)
slow [25,75) [32.5,97.5)
heavy [75,90) [97.5,117)

Experimental results indicate an accuracy of around 91%
for four different traffic states.

In this paper we present a new method for video-based
LOS detection in the compressed domain. It uses a similar
classification method as [2], however it does not use features
based on KLT optical flow. Instead it utilizes only motion
vectors of compressed MPEG4 streams to calculate both
speed and traffic density features. In order to perform real-
world, real-time tests, the proposed method is implemented
for MPEG4 encoded video elementary streams in simple
profile in accordance with the surveillance cameras of ASFI-
NAG - our national operator of motorways and expressways.

III. LOS CLASSIFICATION METHOD

A. LOS definition and motion vectors domain

Level of service (LOS) is a qualitative measure to describe
the operational conditions of a traffic stream. In theory,
two types of LOS definitions exist: those which take into
account only the speed of the vehicles (further referred as
LOS-1) , and those which consider the vehicles speed as
well as their density (further referred as LOS-2). DATEX
II[4], the upcoming European standard for exchanging traffic
related information between suppliers and consumers, is a
representant of definition type LOS-1. DATEX II defines the
LOS with reference to the free-flow level, i.e. the currently
allowed maximum speed at a certain road location. Based
on this reference, it defines the four abnormal traffic levels
stationary, queuing, slow, and heavy as shown in Table I.

In this table, the first column values define the relative
ranges of speed levels (in percent) with respect to the free-
flow speed. The second column values show the respective
speed range for a free-flow reference speed of 130 km/h,
with is the maximum allowed speed on motorways in
Austria. The table also shows that the level free-flow is
not included, since DATEX II is designed to only signal
abnormal traffic conditions. Nevertheless, it is questionable,
whether it is justified to consider the level free-flow as
normal traffic stream condition, since in heavy congested
areas free-flow may be the non-regular and hence “abnormal”
service level.

Computing the LOS based on LOS-1 definitions like in
DATEX II has the additional disadvantage that the density
is not considered at all. However, the density may have an
important impact on the change of the LOS from one time
instance to another, since the more dense the traffic becomes



Table II
LOS CLASSIFICATION FOR A SINGLE LANE ACCORDING TO [5].

Level 1 Lane
Velocity (km/h) Density (vehicles/km)

1 (free flow) [80,∞) [0,20]
2 (heavy) [80,∞) (20,50]
3 (queuing) [30,80) [0,50]
4 (stationary) [0,30) (50,∞)

the more likely the LOS will decrease. Motorway operators
like ASFINAG in Austria therefore typically use LOS-2
definitions for traffic state estimations on their roads. As
proposed in [5], the Austrian motorways operator’s service
book considers four classes of LOS: free-flow (level 1),
heavy (level 2), queuing (level 3), and stationary traffic (level
4). These levels are computed in dependence of the average
vehicle speed and density for each individual lane. Table
II illustrates the conditions for computing the service level
on a single lane on Austrian motorways. In this table, the
velocities are given in km/h and the densities in vehicles/km.

The investigated LOS classification method in this work is
based on the LOS-2 definition and utilizes the LOS classes
of Table II. It is designed to operate on a large set of parallel
video streams of static, uncalibrated surveillance cameras in
real-time. The Austrian motorways operator currently main-
tains more than 4000 surveillance cameras, whose video
streams are encoded as MPEG4 video elementary streams
(following the MPEG4 Visual standard [16]), in simple
profile. Therefore, the proposed method performs efficient
motion vector analysis in the compressed MPEG4 domain
and is evaluated with live camera streams in real-world, real-
time settings. However, our method is not limited to MPEG4.
It can be easily adopted to support H.264, which is the
upcoming standard also being used in the road surveillance
area.

B. Feature extraction and motion segmentation

Our method uses only motion vectors of the MPEG4 en-
coded camera video stream to calculate the feature set, which
is finally fed into a Gaussian radial basis function network
(GRBFN) to estimate the level of service. In contrary to most
vision-based detectors, this method neither relies on vehicle
tracking, nor does it decode the video stream to apply edge
or texture-based computations of the traffic density. It just
utilizes the available motion vectors in the encoded frames to
estimate both the speed and the density of the vehicles. This
is accomplished within a rectangular analysis area denoted
as region of interest (ROI), as illustrated in Figure 1(a). Due
to this ROI restriction, the calculated motion features are
local features which can be computed very fast.

Figure 1(b) shows a motion vector segmentation result
of the applied motion vector clustering algorithms (cp.
Algorithm 1 and Algorithm 2). The algorithm starts with
the elimination of vector outliers not belonging to the

(a) Region of interest specification. (b) Motion vector clustering.

Figure 1. Feature extraction using MPEG4-based optical flow in an
analysis area.

main traffic stream direction. The resulting set of motion
vectors is then used to perform a region growing approach
for clustering all vectors in the 8 neighborhood of each
vector. This approach is repeated recursively until no more
valid vectors are in the neighborhood or all macroblocks
of the ROI have been processed. Finally, detected clusters
which bound to each other are merged together. Figure 2
illustrates this region growing-based clustering algorithm. In
the feature set described below, the terms cluster and object
are used synonymously.

Figure 2. Region growing-based motion vector clustering.

C. Feature set specification

After the application of the region growing algorithm to
determine the objects within the ROI, four motion-based
features are calculated for a defined observation period of
frames N . In our evaluations, N is typically set to 1500 (i.e.,
an observation period of one minute at a frame rate of 25
fps). In all equations of the subsequent feature specifications,
k denotes the kth observation period within the stream.
ROIi denotes the ROI of the ith frame.

1) F1 - Average region area covered (ARAC): The ARAC
feature determines the average number of occupied mac-



Algorithm 1 ClusterMotionVectors
Input: MBROI {set of macro blocks in ROI}
Input: MVROI {set of macro blocks with motion vector}
Output: ClustersM {field of macro block cluster indexes}
clidx ← 0
MVOROI ← EliminateOutliers(MVROI)
for all mb ∈MBROI do

if mb ∈MVOROI∧ClustersM [mbidx] = undef then
clidx ← clidx + 1
AddBlock(ClustersM , clidx,mbidx)

end if
end for
ClustersM ←MergeClusters(ClustersM )

Algorithm 2 AddBlock
Input: Clusters {field of macro block cluster indexes}
Input: clidx {current cluster index}
Input: mbidx {current macro block index}
Output: Clusters {computed field of mb cluster indexes}

if mbidx < |Clusters| ∧Clusters[mbidx] = undef then
if hasV alidDirection(Clusters,mbidx) ∧
hasV alidLength(Clusters,mbidx) then
Clusters[mbidx]← clidx
for all nmbidx ∈ getNeighbours8(mbidx) do
AddBlock(Clusters, clidx, nmbidx) {recursive
region growing}

end for
end if

end if

roblocks in the ROI for observation period k. A macroblock
is said to be occupied, if there is a motion vector for this
block in the respective frame. This feature is used to learn
the average density of the traffic stream. Equation 1 specifies
the calculation of the ARAC feature.

ARACk =
1

N
·
(k+1)·N−1∑

i=k·N

OCCi

OCCi =
#occupied macroblocks in ROIi

#macroblocks in ROIi
(1)

2) F2 - Average region object count (AROC): The aver-
age number of detected objects in the ROIs of observation
period k is determined by the feature AROC. This feature is
also used to learn the average density of the traffic stream.
The calculation of this feature is given in Equation 2.

AROCk =
1

N
·
(k+1)·N−1∑

i=k·N

NORi

NORi = #objects in ROIi (2)

3) F3 - Average region vector length (ARVL): Feature
ARVL determines, within a given observation period k, the
averaged motion vector length of detected objects in the ROI
over N frames. Equation 3 illustrates the computation of
this feature. Here, Vi,j denotes the set of all motion vectors
belonging to object j in ROI i, and ‖~mi,j‖ the Euclidean
norm of a vector in this set. Variable NORi is the same as
in Equation 2 of feature AROC. In contrary to F4, discussed
in section III-C4, F3 is not only correlated to the average
motion vector length, but also depends on the traffic density.
For instance, for a constant average motion vector length, a
decreasing traffic density (i.e., less motion vectors) causes a
decrease of F3. Therefore, the main purpose of feature F3 is
to discriminate situations in a robust way, where the number
of motion vectors is low.

ARV Lk =
1

N
·
(k+1)·N−1∑

i=k·N

RV Li

RV Li =

{
1

NORi
·
∑NORi

j=1 OV Li,j if NORi > 0

0 else

OV Li,j =
1

|Vi,j |
·

∑
∀~mi,j∈Vi,j

‖~mi,j‖ (3)

4) F4 - Average region object vector length (AROVL):
Unlike ARVL, AROVL depends on the average motion length
with respect to the total number of detected objects in
period k. Therefore, the feature F4 is primarily correlated
to the average speed of objects. However, especially for a
low number of motion vectors the AROVL feature is more
susceptible to outliers than ARVL. Equation 4 illustrates the
computation of this feature. Variable RV Li has the same
meaning as in Equation 3.

AROV Lk =

{∑(k+1)·N−1
i=k·N RV Li

NOPk
if NOPk > 0

0 else

NOPk =

(k+1)·N−1∑
i=k·N

NORi (4)

D. Training and classifying the LOS

The computed features ARAC, AROC, ARVL, and AROVL
for each observation period k are fed into a Gaussian radial
basis function network (GRBFN)[17] to classify the average
traffic stream service level for this period. For modeling
and feeding a GRBFN we use the data mining workbench
Weka[18]. Several tests with all provided network models in
this workbench have shown that GRBFN achieves the best
results for classifying the LOS.

For training the network we use as ground truth LOS
data from highly accurate triple-tech sensors which utilize
a combination of Doppler radar, ultrasound, and passive



Free Flow Heavy Queuing Stationary Weighted Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Precision
Recall
Accuracy

Figure 3. Precision, recall, and accuracy of the GRBFN classifier.

infrared sensor technologies to determine vehicle speed
and road area occupancy. Training is accomplished with
a camera video stream over several hours, extracting our
described feature set for the ROI, and feeding the computed
features together with the LOS ground truth of the same
road location into the GRBFN.

IV. EXPERIMENTAL RESULTS

A. Data set and evaluation setup

The proposed LOS classification method was evaluated
with an 11 hours MPEG4 video elementary stream recorded
from a surveillance camera on an Austrian motorway. 10
hours of the video were used as training data, 1 hour was
used as test data. The video captures the traffic stream during
daylight and contains multiple occurrences of all four LOS
levels according to Table II. The encoding properties include
a CIF resolution (352x288) and frame rate of 25 fps. The
reference LOS provided by the triple-tech sensor at the same
location as the stream’s source camera was obtained from the
Austrian motorway authority. The reference vehicle speeds,
vehicle densities, and LOS values are averaged values over a
one minute observation period. Therefore, we set N = 1500
in the feature formulas above during the evaluation.

The evaluation was done off-line on a common Intel
Core2 Quad server computer. The motion segmentation,
feature computation, and LOS classification took about 48
µs per frame on average on the whole test video. This
performance result shows that the implemented method is
able to potentially process more than 800 camera streams @
25fps in parallel on one single server node in real-time. In
practice, the number of camera streams is typically limited
by the maximum transmission rate of the network link.

B. LOS classification

The GRBFN classifier was trained with 10-fold cross-
validation with features from a 10 hour training set. Pre-
cision, recall, and accuracy for the individual LOS classes

Table III
DISTRIBUTION OF TRAINING SAMPLES

LOS class number of samples
1 (free flow) 361
2 (heavy) 133
3 (queuing) 50
4 (stationary) 56

are shown in figure 3. It shows an average accuracy of the
proposed method of 78.2%. The free-flow and stationary
traffic classes show the highest precision and accuracy (>
85%), whereas heavy traffic is harder to discriminate and
has a significant lower classification rate. A major reason
might be that heavy traffic can only be distinguished from
free-flow using density features (cp. II), while the definition
of all other LOS levels includes speed and density features.

Table III lists the number of training samples used for
the different LOS classes. About 60% of the training set
are free-flow samples, 22% belong to heavy traffic, 8% are
queuing, and about 10% belong to the stationary traffic class.

(a) LOS ground truth

(b) LOS output of the GRBFN classifier

(c) Difference

Figure 4. Classification result for the test set compared to ground truth.

Further, we evaluated our LOS classifier on a one hour
test set that contains all 4 LOS classes. Figure 4 shows the
classification result of the test set, compared to the ground
truth LOS. On the test set, our method achieves an accuracy
of 86.7%. It shows that the method performs very well in
congestion detection. There is only one incorrectly classified
sample (queuing) which differs more than one level from the
ground truth (Figure 4(c)).

The proposed method delivers comparable results to re-
lated work in the compressed and uncompressed domain.
Compared to [2], the classification results on the training
set are about 8% lower, but the results on the test set
are about 8% higher. With the advantage of being able to
theoretically process 800 camera streams at 25 fps in real-
time. In comparison to the methods described in [14] and



[15], the classification results on the test set are about 6%
lower for free-flow and stationary traffic. However, these
methods do not take into account the traffic density and
require a time-consuming camera calibration step. Finally, in
comparison to [3], the method performance ratio is similar,
with the distinction that our method is evaluated using
ground truth data from highly accurate sensors on the roads.

V. CONCLUSIONS AND FUTURE WORK

A novel level of service (LOS) classification method
for the compressed MPEG4 video domain was presented.
The method utilizes only four statistical features of mo-
tion vectors in the encoded streams to estimate both the
speed and the density of the traffic stream in the video.
Together with ground truth LOS data obtained from triple-
tech reference sensors, the obtained features are fed into a
Gaussian radial basis function network (GRBFN) to train
and estimate the LOS with one minute observation periods.
Evaluations on an 10 hours training and 1 hour test data
set with a fair occurrence of all LOS levels have shown an
average accuracy of 78.2% on the training set using cross-
validation and 86.7% on the test set for all four LOS levels.
Performance evaluations on a common server computer have
shown an average frame processing time of 48 µs.

In future we plan to evaluate our method with non-ideal
weather and illumination conditions. A consideration of
MPEG4 AVC (also known as H.264) encoded streams is also
planned. There the number of macro blocks is higher than in
the regular MPEG4, which may improve the classification
results considerably.
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