Austrian Computer Science Day, June 2014
On Privacy-Protecting and Self-Organizing Cameras

Bernhard Rinner
http://bernhardrinner.com
Ubiquitous Cameras

• We are surrounded by billions of cameras in public, private and business spaces
• Various well-known domains
 – Transportation
 – Security
 – Entertainment
 – Mobile
• Cameras serve a purpose and provide some utility
 – Providing documentation/archiving
 – Increasing security
 – Enabling automation
 – Fostering social interaction
Paradigma Shifts in Video Processing

- Towards online/onboard processing
- Towards distributed, in-network analysis
- Towards ad-hoc deployment and mobile and open platforms
- Towards user-centric applications

Emergence of Smart Camera Networks!
Smart Cameras as Enabling Technology

- Smart cameras combine
 - sensing,
 - processing and
 - communication
 in a single embedded device

TrustEYE.M4 prototype on top of RaspberryPi

- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Agenda

1. Onboard privacy protection in (single) camera
 - Explore tradeoff among utility/protection/resources
 - Embed protection mechanisms close to sensor
2. Autonomous in-network analysis
 - Self-organize tracking in camera networks
 - Learn advantageous strategies of cameras
Onboard Privacy Protection
Privacy Protection in Images

Utility and Privacy-Protection Tradeoff

Utility

Multi-dimensional design space

Privacy-Protection

no selected global full
Observations and Key Challenges

• Most techniques focus on protecting sensitive regions from unauthorized access
 – Global filters protect entire frame
 – Object-based filters protect ROIs (depend on detection performance)

• No single best privacy protection method, but a large design space along protection/utility/resource dimensions

• Privacy protection goes hand-in-hand with security to provide
 – Non-repudiation
 – Confidentiality

Approach: Trustworthy Sensing (TrustEYE)

- **Objective:**
 - Protect access to sensor via a trusted component “TrustEYE”
 - Make security and privacy protection an inherent feature of the image sensor
 - Provide resource-efficient and adaptable privacy protection filters

- **Benefits:**
 - Sensor delivers protected and pre-filtered data
 - Strong separation btw. trusted and untrusted domains
 - Camera software does no longer have to be trustworthy
 - Security can not be bypassed by application developers
 - TrustEYE is anchor for secure inter-camera collaboration

http://trusteye.aau.at/
TrustEYE Overview

Camera Host System

Application-Specific Computer Vision
and
General Purpose OS and Software Framework

Network Interface

Camera Data

Non-Sensitive Image

Abtracted Sensitive Data
(e.g., Edge Image, Histogram, ...)

Protected Sensitive Data
(e.g., Faces), Image Signatures, Timestamps,...

Secure Element

Raw Data

Image Sensor
Privacy Protection by Cartooning

- Abstract parts or entire image by **blurring and color filtering**
- Cartooning pipeline

ROI-based cartooning

- **Embed cartooning** as privacy feature into smart cameras
ROI-based Cartooning

(c) MediaEval Dataset

- Privacy protection depends on performance of region detectors (faces, persons etc.)
- Adapting the filter characteristic beneficial

Adjustable Global Cartooning

original

cartooning (small)

cartooning (std)

cartooning (strong)

(c) MediaEval Dataset
Evaluating Privacy/Utility Tradeoff

• Establish an **objective evaluation framework** among key dimensions, i.e.,
 - Privacy protection
 - Utility
 - Appearance
 - Resource consumption
 - Identification of objects of interest
 - Detection/tracking of objects
 - Structural similarity with unprotected frame
 - Achievable frame rate

• Measure the performance using standard CV algorithms with protected videos (and use labeled test data as ground truth)
 - Independently for each frame
 - Measure protection among object’s traces

Comparison of Global Filter Approaches

- Performance of standard CV algorithms compared to unprotected video or other protection filters

Cartooning

Blurring

Pixelation

Protection: object re-identification performance

Utility: object detection performance

Appearance: structural similarity index
TrustEYE.M4 Architecture

Bottom Side (not visible):
2MB SRAM, TPM Security IC, Power Management IC (LiPo Charger), Micro USB Connector, Reset Button
TrustEYE.M4 Prototypes

• Processing board (50x50 mm)
 – ARM Cortex M4 @ 168MHz
 – 4 MB SRAM
 – TPM IC: ST33TPM12SPI via SPI
 – Keil RTX RTOS

• WiFi extension board (50x50 mm)
 – Redpine Signals RS9110-N-11-02
 – 802.11 b/g/n
 – Encryption: WPA2-PSK, WEP
 – Interconnect: SPI bus on 15pin ext. header

• RaspberryPI mounting option
 – Interconnect: SPI bus via dedicated RPI
 – Daterate: 32 Mbit/s

B. Rinner
TrustEYE in Action
Autonomous In-Networking Analysis
Self-organizing Camera Network

• Perform autonomous, decentralized and resource-aware network-wide analysis

• Demonstrate **autonomous multi-object tracking** in camera network
 – Exploit single camera object detector & tracker
 – Perform camera handover
 – Learn camera topology

• **Key decisions** for each camera
 – When to track an object within its FOV
 – When to initiate a handover
 – Whom to handover
Virtual Market-based Handover

- **Initialize auctions** for exchanging tracking responsibilities
 - Cameras act as self-interested agents, i.e., maximize their own utility
 - Selling camera (where object is leaving FOV) **opens the auction**
 - Other cameras **return bids** with price corresponding to “tracking” confidence
 - Camera with highest bid continues tracking; trading based on **Vickrey auction**

Fully distributed approach
no a-priori topology knowledge required
Camera Control

- Each camera acts as an agent maximizing its utility function
 \[U_i(O_i) = \sum_{j \in O_i} [c_j \cdot v_j \cdot \Phi_i(j)] - p + r \]

- Local decisions
 - When to initiate an auction (at regular intervals or specific events)
 - Whom to invite (all vs. neighboring cameras)
 - When to trade (depends on valuation of objects in FOV)

- Learn neighborhood relations with trading behavior (“pheromones”)
 - Strengthen links to buying cameras
 - Weaken links over time
Learn Neighborhood Relationships

• Gaining knowledge about the network topology (vision graph) by exploiting the trading activities
• Temporal evolution of the vision graph
Six Camera Strategies

• **Auction initiation**
 – “Active”: at regular intervals (at each frame)
 – “Passive”: only when object is about to leave the FOV

• **Auction invitation**
 – “Broadcast”: to all cameras
 – “Smooth”: probabilistic proportional to link strength
 – “Step”: to cameras with link strengths above threshold (and rest with low probability)

• **Selected strategy influences network performance (utility) and communication effort**
Tracking Performance

- Tradeoff between utility and communication effort

Scenario 1 (5 cameras, few objects) Scenario 2 (15 cameras, many objects)

- Emerging Pareto front

[Esterle et al. Socio-Economic Vision Graph Generation and Handover in Distributed Smart Camera Networks. ACM Trans. Sensor Networks. 10(2), 2014]
Assigning Strategies to Cameras

• Identical strategy for all cameras may not achieve best result

Homogeneous strategies (3 cameras) Heterogeneous strategies (3 cameras)

• Strategy depends on various parameters (FOV, neighbors, scene ...)
 – Let cameras learn their best strategy
Decentralized Multi-Agent Learning

- Exploit **bandit solver** framework to maximize global performance
 - Co-dependency among agents’ performance
 - Complex relationship between local reward global performance

Multi-camera Experiment

- Indoor demonstrator with 6 cameras tracking 6 persons
- Each camera performs
 - Color-based tracking
 - Fixed or adaptive handover strategies (bandit solvers)
 - Exchange of color histograms for person re-identification
Conclusion

• Smart cameras process video data onboard and collaborate autonomously within the network

• Our cartooning approach protects image data “at the sensor” but stills provides reasonable utility with low resource usage

• We apply socio-economic techniques to learn control strategies for autonomous multi-camera tracking
 – Global configurations emerge from local decision using local metrics
 – Adaptive strategies extend Pareto front of best static configurations

• Techniques applicable to various decentralized networked systems (e.g., Internet of Things)
Acknowledgements & Further Information

Pervasive Computing group
Institute of Networked and Embedded Systems
http://nes.aau.at
http://bernhardrinner.com

Funding support

• KWF/FWF “Trustworthy Sensing and Cooperation in Visual Sensor Networks”
• FP7 FET “Engineering Proprioception in Computing Systems”