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Wireless sensor networks (WSN) are an attractive platform for monitoring and measuring physical phenomena. WSNs typically
consist of hundreds or thousands of battery-operated tiny sensor nodes which are connected via a low data rate wireless network. A
WSN application, such as object tracking or environmental monitoring, is composed by individual tasks which must be scheduled
on each node. Naturally the order of task execution influences the performance of the WSN application. Scheduling the tasks such
that the performance is increased while the energy consumption remains low is a key challenge.

In this paper we apply online learning to task scheduling in order to explore the trade-off between performance and energy
consumption. This helps to dynamically identify effective scheduling policies for the sensor nodes. The energy consumption for
computation and communication is represented by a parameter for each application task. We compare resource-aware task scheduling
based on three online learning methods: independent reinforcement learning (RL), cooperative reinforcement learning (CRL) and
exponential weight for exploration and exploitation (Exp3). Our evaluation is based on the performance and energy consumption
of a prototypical target tracking application. We further determine the communication overhead and computational effort of these
methods.

Index Terms—Wireless sensor networks; Task scheduling; Resource-awareness; Independent reinforcement learning; Cooperative
reinforcement learning; Bandit solvers.

I. INTRODUCTION

A wireless sensor network (WSN) is an attractive platform
for various applications including target tracking, environ-
mental monitoring, data aggregation and smart environments.
The application is composed by tasks which need to be
executed during the operation on the sensor nodes. The sensor
nodes are typically supplied by batteries and thus pose strong
limitations on energy but also on computation, storage and
communication capabilities [1], [2], [3], [4].

The scheduling of the individual tasks has a strong influ-
ence on the achievable performance and energy consumption.
WSNs operate in a dynamic environment where the need
for adaptive and autonomous task scheduling is well recog-
nized [5]. Since it is not possible to schedule the tasks a priori,
online and resource-aware task scheduling is required for a
WSN. For determining the next task to execute, the sensor
nodes need to consider the impact of each available task on
the energy budget and the application’s performance. There
is trade-off between application performance and resource
consumption, and the task scheduler of the node should be
able to adapt to changes in the environment. For example, in
a target tracking application, sensor nodes should frequently
execute the tracking task when objects are within the field
of view (FOV). Since tracking is very resource consuming,
this task should be avoided when no object to track is nearby.
Thus, task scheduling is an important issue to improve the
energy/performance trade-off, and we investigate scheduling
methods which are able to learn effective scheduling strategies
in dynamic environments. We also investigate the effect of
cooperation/communication among neighboring nodes with
the local observations for task scheduling which is typical in a
WSN. Cooperation among neighboring nodes has an impact on

the overall application state and is able to further improvement
on the energy/performance trade-off. Since resource-awareness
is an important aspect we consider energy consumption for the
tasks scheduling and aim for low resource consumption of the
scheduling algorithms.

In this paper we apply online learning to task scheduling in
order to explore the trade-off between performance and energy
consumption. We compare resource-aware task scheduling
based on three online learning methods: independent rein-
forcement learning (RL), cooperative reinforcement learning
(CRL) and exponential weight for exploration and exploitation
(Exp3). Our evaluation is based on a simulation study of the
performance and energy consumption of a prototypical target
tracking application. We further determine the communication
overhead and computational effort of these methods.

The rest of this paper is organized as follows. Section II
discusses related work, and section III introduces the problem
formulation. Section IV describes the underlying system model
for task scheduling based on online learning. In section V we
present the three task scheduling methods. Section VI presents
the experimental setup and discusses the simulation results for
a target tracking application. Section VII concludes this paper
with a summary and brief discussion on future work.

II. RELATED WORKS

In a resource-constrained WSN, effective task scheduling
is very important for facilitating the effective usage of re-
sources [6]. The cooperative behavior among sensor nodes by
exchanging data among neighboring nodes can be very helpful
to schedule the tasks in a way that the energy consumption
is reduced and also a considerable performance is maintained.
Most of the existing methods of tasks scheduling in WSN do
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not provide online scheduling of tasks. They mainly consider
static task allocation instead of focusing on distributed task
scheduling. The main difference between task allocation and
task scheduling is that task allocation deals with the problem
of determining a set of task assignments on a sensor net-
work that minimizes an objective function such as the total
execution time [7], [8]. On the other hand, the objective of
task scheduling is to determine the best temporal order of
tasks for each sensor node. In offline scheduling, the complete
information about the system activities are available a priori,
and the schedule can be determined at compile time. Due to the
high dynamics of WSN complete system information is only
available at runtime which requires online scheduling [9]. In
the following paragraphs we discuss related task scheduling
approaches for WSN and stress the key differences to the
presented approach.

Guo et al. [10] propose a self-adaptive task allocation
strategy in a WSN. They assume that the WSN is composed of
a number of sensor nodes and a set of independent tasks which
compete for the sensors. They neither consider distributed
tasks scheduling nor the trade-off among energy consumption
and performance.

Giannecchini et al. [11] propose an online task scheduling
mechanism called collaborative resource allocation to allocate
the network resources between the tasks of periodic appli-
cations in WSNs. This mechanism does also not explicitly
consider energy consumption.

Frank et al. [6] propose an algorithm for generic task
allocation in wireless sensor networks. They define some
rules for the task execution and propose a role-rule model
for sensor networks where ”role” is used as a synonym for
task. It is a programming abstraction of the role-rule model.
This distributed approach provides a specification that defines
possible roles and rules for how to assign roles to nodes.
This specification is distributed to the whole network via a
gateway or alternatively it can be pre-installed on the nodes.
A role assignment algorithm takes into account the rules and
node properties, which may trigger execution and in network
data aggregation. This generic role assignment approach does
consider the energy consumption but not the ordering of tasks
to sensor nodes.

Krishnamachari et al. [12] examine the channel utilization as
resource management problem by a distributed constraint sat-
isfaction method. They consider a wireless sensor network of
n nodes placed randomly in a square area with a uniform, in-
dependent distribution. This work tests three self-configuration
tasks in wireless sensor networks: partition into coordinating
cliques, formation of Hamiltonian cycles and conflict-free
channel scheduling. They explore the impact of varying the
transmission radius on the solvability and complexity of these
problems. In the case of partition into cliques and Hamiltonian
cycle formation, they observe that the probability that these
tasks can be performed undergoes a transition from zero to
one. This constraint satisfaction approach neither addresses
mapping of tasks to sensor nodes nor discusses the resource
consumption/performance trade-off.

Dhanani et al. [13] compare utility-based information man-
agement policies in sensor networks. Here, the considered

resource is information or data, and two models are distin-
guished: the sensor-centric utility-based model (SCUB) and
the resource manager (RM) model. SCUB follows a distributed
approach that instructs individual sensors to make their own
decisions about what sensor information should be reported
based on an utility model for data. RM is a consolidated
approach that takes into account knowledge from all sensors
before making decisions. They evaluate these policies through
simulation in the context of dynamically deployed sensor net-
works in military scenarios. Both SCUB and RM can extend
the lifetime of a network as compared to a network without
maintaining any policy. This approach do not address the task
scheduling to improve the resource consumption/performance
trade-off.

Shah et al. [14] introduce a task scheduling approach
for WSN based on an independent reinforcement learning
algorithm (RL) for online tasks scheduling. They use Q
learning [15] for the task scheduling. Their approach relies
on a simple and fixed network topology consisting of three
nodes and a static value for the reward function. They further
consider neither any cooperation among neighbors nor the
energy/performance trade-off.

In our previous work [16] we applied cooperative reinforce-
ment learning (CRL) for online tasks scheduling. We used
SARSA(λ) [17] learning and introduced cooperation among
neighboring sensor nodes to further improve the task schedul-
ing. In this paper we introduce exponential bandit solvers
to online task scheduling, i.e., we apply Exp3 (exponential
weight for exploration and exploitation) [18] which is an
adversarial or non-stochastic bandit solver. We compare RL,
CRL and Exp3 for the tasks scheduling in a target tracking
application and analyze the performance in terms of tracking
quality/energy consumption trade-off. The proposed approach
also considers the cooperation where each node shares local
observations of object trajectories with the neighboring nodes.

III. PROBLEM FORMULATION

In our approach the WSN is composed by N nodes rep-
resented by the set N̂ = {n1, . . . , nN}. We abstract the
deployment of the WSN by a simple 2D space where each
node has a known position (ui, vi) and a given sensing
coverage range which is simply represented by a circle with
radius ri. All nodes within the communication range Ri can
directly communicate with ni and are referred to as neighbors.
The number of neighbors of ni is given as ngh(ni). The
available energy of node ni is modeled by a scalar value Ei.

The WSN application is composed by A independent tasks
(or actions) represented by the set Â = {a1, . . . , aA}. Once
a task is started at a specific node, it executes for a specific
(short) period of time and terminates afterwards. Each task
execution on a specific node ni requires some energy Ẽj either
for computation or communication and contributes to the
overall application performance P . The energy consumption
for computation and communication is represented by Ẽj
for processing tasks and communication tasks, respectively.
Thus, the execution of task aj on node ni is only feasible
if Ei ≥ Ẽj . The set Â is known at the initiation of the
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Fig. 1. General framework for task scheduling using online learning.

applications and does not change during the operation. The set
of available nodes N̂ can change during operation, e.g., due to
completion of its energy source. The overall performance P is
represented by an application-specific metric (cp. Section IV
for more details). On each node, an online task scheduling
takes place which selects the next task to execute among the
A independent tasks. The task execution time is abstracted
as a fixed period. Thus, scheduling is required at the end of
each period which is represented as time instant ti. We only
consider non-preemptive scheduling.

The ultimate objective for our problem is to determine the
order of tasks on each node such that the overall performance
is maximized while the energy consumption is minimized.

IV. SYSTEM MODEL

The task scheduler operates in a highly dynamic envi-
ronment, and the effect of the task ordering on the overall
application performance is difficult to model. Figure 1 depicts
our scheduling framework where its key components can be
described as follows:
• Agent: Each sensor node embeds an agent which is

responsible for executing the online learning algorithm.
• Environment: The WSN application represents the envi-

ronment in our approach. Interaction between the agent
and the environment is achieved by executing actions and
receiving a reward function.

• Action: An agent’s action is the currently executed appli-
cation task on the sensor node. At the end of each time
period ti each node triggers the scheduler to determine
the next action to execute.

• State: A state describes an internal abstraction of the
application which is typically specified by some system
parameters. In our target tracking application, the states
are represented by the number of currently detected
targets in the node’s FOV and expected arrival times of
targets detected by neighboring nodes. The state transi-
tions depend on the current state and action.

• Policy: An agent’s policy determines what action will
be selected in a particular state. In our case, this policy

determines which task to execute at the perceived state.
The policy can focus more on exploration or exploitation
depending on the selected setting of the learning algo-
rithm.

• Value function: This function defines what is good for
an agent over the long run. It is built upon the reward
function values over time and hence its quality totally
depends on the reward function [14].

• Reward function: This function provides a mapping of the
agent’s state and the corresponding action to a reward
value that contributes to the performance. We apply a
weighted reward function which is capable of expressing
the trade-off between energy consumption and tracking
performance.

• Cooperation: We consider the information exchange
among neighboring nodes as cooperation. The received
information may influence the application’s state of a
sensor nodes.

A. Set of actions

We consider the following actions in our target tracking
application:

a) Detect Targets: This function scans the field of view
(FOV) and returns the number of detected targets in the FOV.

b) Track Targets: This function keeps track of the targets
inside the FOV and returns the current 2D positions of all
targets. Every target within the FOV is assigned with a unique
ID number.

c) Send Message: This function sends information about
the target’s trajectory to neighboring nodes. The trajectory
information includes (i) the current position and time of the
target and (ii) the estimated speed and direction. This function
is executed when the target is about to leave the FOV.

d) Predict Trajectory: This function predicts the veloc-
ity of the trajectory. A simple approach is to use the two most
recent target positions, i.e., (xt, yt) at time tt and (xt−1, yt−1)
at tt−1. Then the constant target’s speed can be estimated as

v =
√

(xt − xt−1)2 + (yt − yt−1)2/(tt − tt−1) (1)

e) Intersect Trajectory: This function checks whether
the trajectory intersects with the FOV and predicts the ex-
pected time of the intersection. This function is executed by all
nodes which receive the “target trajectory” information from
a neighboring node. Trajectory intersection with the FOV of a
sensor node is computed by basic algebra. The expected time
to intersect the node is estimated by

t̃i = DPiPj
/v (2)

where DPiPj
is the distance between points Pj and Pi. Pj

represents the point where the trajectory is predicted at node
j and Pi corresponds to the trajectory’s intersection points
with the FOV of node i (cp. Figure 2). v is the estimated
velocity as calculated by Equation 1.

f) Goto Sleep: This function shuts down the sensor node
for single time period. It consumes the least amount of energy
of all available actions.
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Fig. 2. Target prediction and intersection. Node j estimates the target
trajectory and sends the trajectory information to its neighbors. Node i checks
whether the predicted trajectory intersects its FOV and computes the expected
arrival time.

B. Set of states

We abstract the application by three states at every node.

• Idle: This state indicates that there is currently no target
detected within the node’s FOV and the local clock is too
far from the expected arrival time of any target already
detected by some neighbor. If the time gap between the
local clock Lc and the expected arrival time NET is
greater than or equal to a threshold Th1 (cp. Figure 3),
then the node remains in the idle state. The threshold Th1
is set to 5 based on our simulation studies. In this state,
the sensor node performs Detect Targets less frequently
to save energy.

• Awareness: There is currently also no detected target in
the node’s FOV in this state. However, the node has
received some relevant trajectory information and the
expected arrival time of at least one target is in less than
Th1 clock ticks. In this state, the sensor node performs
Detect Targets more frequently, since at least one target
is expected to enter the FOV.

• Tracking: This state indicates that there is currently at
least one detected target within the node’s FOV. Thus,
the sensor node performs tracking frequently to achieve
high tracking performance.

Obviously, the frequency of executing Detect Targets and
Track Targets depends on the overall objective, i.e., whether to
focus more on tracking performance or energy consumption.
The states can be identified by two application variables,
i.e., the number of detected targets at the current time Nt
and the list of arrival times of targets expected to intersect
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Fig. 3. State transition diagram. States change according to the value of two
application variables Nt and NET . Lc represents the local clock value and
Th1 is a time threshold.

with node NET . Nt is determined by the task Detect Targets
which is executed at time t. If the sensor node executes the
task Detect Targets at time t then Nt returns the number of
detected targets in the FOV. Each node maintains a list of
appearing targets and the corresponding arrival time. Targets
are inserted in this list if the sensor node receives a message
and the estimated trajectory intersects with the FOV. Targets
are removed if a target is detected by the node or the expected
arrival time with an additional threshold Th1 has expired.

Initially each node has no idea about which task to perform
at which state. They learn this scheduling online over time.
For example, Track Targets is necessary task for keep tracking
when the target is in FOV. The application learns online about
the next task to execute based on our proposed methods. If the
sensor node does not perform the Track Targets task when
the target is in FOV, there is a chance to miss the target
which implies less tracking quality. But this situation could
provide better energy efficiency, since Track Targets task
consumes highest amount of energy among all the tasks. So,
selection of a particular task at each time step or scheduling
of tasks provides an impact on overall tracking quality/energy
consumption trade-off.

Figure 3 depicts the state transition diagram where Lc is
the local clock value of the sensor node and Th1 represents
the time threshold between Lc and NET .

C. Reward Function

The reward function is a key system component for express-
ing the effect of the task execution on the system performance
and resource consumption. Thus, both aspects should be
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covered by the reward function. Among the various options
we simply merge energy consumption and system performance
using a balancing parameter. In detail, the reward function in
our algorithm is defined as

r = β(Ei/Emax) + (1− β)(Pt/P ) (3)

where the parameter β balances the conflicting objectives
between Ei and Pt. Ei represents the residual energy of the
node. Pt represents the number of tracked positions of the
target inside the FOV of the node. Emax is the maximum
energy level of sensor node and P is the number of all possible
detected target’s positions in the FOV. These two parameters
are used for normalizing the energy and performance parame-
ters. By modifying the balancing parameter β we can control
whether more focus is put on energy efficiency or system
performance.

V. ONLINE LEARNING METHODS FOR TASK SCHEDULING

We use RL, CRL and Exp3 for the task scheduling in
a multi-target tracking application. These three methods are
online machine learning methods for task scheduling. RL and
CRL are reinforcement learning methods. In RL, we do not
exchange information among neighboring nodes. In CRL and
Exp3, we exploit cooperation by exchanging trajectory infor-
mation among neighboring nodes. In the following subsections
we briefly describe the three learning methods and explain
the their key parameters. For our experiments we abstract the
tracking application with the same tasks, states and reward
function.

A. Independent reinforcement learning (RL)

RL task scheduling follows the work of Shah et al. [14]
which uses traditional Q learning [15] as online learning
strategy. In Q learning the scheduling policy is represented
by a two-dimensional matrix Qt+1(s, a) indexed by state-
action pairs. The optimal Q value for a particular action in a
particular state is the sum of the reinforcement received when
that action is taken and the discounted best Q value for the
state that is reached by taking that action [15].

The main idea of RL is to allow each individual sensor
node to self-schedule its tasks and allocate its resources by
learning their usefulness in any given state while honoring
the application defined constraints and maximizing the total
amount of reward over time.

In Q learning every agent needs to maintain a Q matrix for
the value functions. Initially all entries of the Q matrix are zero
and the agent of the nodes may be in any state. Based on the
application defined variables, the system goes to a particular
state. Then it performs an action which depends on the status
of the nodes. It calculates the Q value for this (state, action)
pair as

Qt+1(st, at) = (1−α)Qt(st, at)+α(rt+1(st+1)+γVt(st+1))
(4)

Vt+1(st) = max
a∈A

Qt+1(st, a) (5)

where, Qt+1(st, at) means the update of the Q value at time
t+1 after executing the action a at time step t. rt+1 represents
the immediate reward after executing the action a at time t,
Vt represents the value function for node at time t and Vt+1

represents the value function at time t + 1. max
a∈A

Qt+1(st, a)

means the maximum Q value after performing an action from
the action set A for the agent i. γ is the discount-factor which
can be set to a value in [0, 1]. For higher γ values, the agent
relies more on the future than the immediate reward. α is the
learning rate parameter which can be set to a value in [0, 1].
It controls the rate at which an agent tries to learn by giving
more or less weight to the previously learned utility value.
When α is close to 1, the agent gives more priority to the
previously learned utility value.

Algorithm 1 depicts the RL algorithm.

Algorithm 1 Q learning for task scheduling.
1: Initialize Q(s, a) = 0. Where s is the set of states and a

is the set of actions
2: while Residual energy is larger than zero do
3: Determine current state s by application variables
4: Select an action a which has the highest Q value
5: Execute the selected action
6: Calculate Q value for the executed action
7: Calculate the value function for the executed action
8: Shift to next state based on the executed action
9: end while

B. Cooperative reinforcement learning (CRL)

The CRL task scheduling follows a cooperative SARSA(λ)
learning algorithm. SARSA(λ) [17], also referred to as State-
Action-Reward-State-Action, is an iterative algorithm that
approximates the optimal solution without knowledge of the
transition probabilities which is very important for a dynamic
system like WSN. At each state st+1 of iteration t + 1, it
updates Qt+1(s, a), which is an estimate of the Q function by
computing the estimation error δt after receiving the reward
in the previous iteration. The SARSA(λ) algorithm has the
following update rule for the Q values:

Qt+1(st, at)← Qt(s, a) + αδtet(st, at) (6)

for all s,a.
In Equation 6, α ∈ [0, 1] is the learning rate which

decreases with time. δt is the temporal difference error which
is calculated by following rule:

δt = rt+1 + γ1fQt(st+1, at+1)−Qt(st, at) (7)

In Equation 7, γ1 is a discount-factor which varies from
0 to 1. The higher the value, the more the agent relies on
future rewards than on the immediate reward. rt+1 represents
the reward received for performing action. f is the weight
factor [19] for the neighbors of agent i and can be defined as
follows:
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f =
1

ngh(ni)
if ngh(ni) 6= 0 (8)

f = 1 otherwise. (9)

An important aspect of an RL-framework is the trade-off
between exploration and exploitation [20]. Exploration deals
with randomly selecting actions which may not have higher
utility in search of better rewarding actions, while exploitation
aims at the learned utility to maximize the agent’s reward.

In our proposed algorithm, we use a simple heuristic where
exploration probability at any point of time is given by

ε = min(εmax, εmin + k ∗ (Smax − S)/Smax) (10)

where εmax and εmin define upper and lower boundaries
for the exploration factor, respectively. Smax represents the
maximum number of states which is three in our work and
S represents the current number of states already known. At
each time step, the agent calculates ε and generates a random
number in the interval of [0, 1]. If the selected random number
is less than or equal to ε, the system chooses a uniformly
random task (exploration) otherwise it chooses the best task
using Q values (exploitation).
SARSA(λ) improves learning through eligibility traces

et(s, a) (cp. Equation 6). Here λ is another learning parameter
similar to α for guaranteed convergence. γ2 is the discount-
factor. In general, eligibility traces give a higher update factor
for recently revisited states. This means that the eligibility
trace for a state-action pair (s, a) will be reinforced if st ∈ s
and at ∈ a. Otherwise, if the previous action at is not greedy,
the eligibility trace is cleared.

The eligibility trace is updated by the following rule:

et(st, at) = γ2λet−1(st, at) + 1 if st ∈ s and at ∈ a (11)
et(st, at) = γ2λet−1(st, at) otherwise. (12)

Algorithm 2 depicts the cooperative SARSA(λ) learning
algorithm.

Algorithm 2 SARSA(λ) learning algorithm for target track-
ing application.

1: Initialize Q(s, a) = 0 and e(s, a) = 0
2: while Residual energy is larger than zero do
3: Determine current state s by application variables
4: Select an action a, using policy
5: Execute the selected action
6: Calculate reward for the executed action (Eq. 3)
7: Update the learning rate (Eq. 13)
8: Calculate the temporal difference error (Eq. 7)
9: Update the eligibility traces (Eq. 12)

10: Update the Q-value (Eq. 6)
11: Shift to next state based on the executed action
12: end while

The learning rate α is decreased slowly in such a way that it
reflects the degree to which a state-action pair has been chosen

in the recent past. It is calculated as

α =
ζ

visited(s, a)
(13)

where ζ is a positive constant. visited(s, a) represents the
visited state-action pairs so far [21].

C. Bandit solvers (Exp3)

We use the classical adversarial algorithm Exp3
(Exponential-weight algorithm for Exploration and
Exploitation) for the task scheduling [18].

Algorithm 3 depicts the bandit solver algorithm Exp3.

Algorithm 3 Task Scheduling by Bandit Solver Exp3
1: Parameters: Number of tasks A, Factor κ ≤ 1
2: Initialization: wi,0 = 1 and Pi,1 = 1/A for i = 1, 2, . . . , A
3: while Residual energy is larger than zero do
4: Determine current s based on application variables
5: Select an action a ∈ {1, 2, . . . , A} based on the Pt
6: Execute the selected action
7: Calculate the reward: rt+1

Pa,t

8: Update the weights: wa,t = wa,t−1e
κrt+1)

9: Calculate the updated probability distribution:
10: Pj,t+1 = (1− κ) wa,t∑A

j=1
wj,t

+ κ
A , j = 1, 2, . . . , A

11: Shift to next state based on the executed action
12: end while

In Exp3 the parameter κ controls the probability with
which arms are explored in each round. At each time step
t, Exp3 draws an action a according to the distribution
P1,t, P2,t, . . . , PA,t. This distribution is a mixture of the uni-
form distribution and a distribution which assigns to each
action a probability mass exponential in the estimated reward
for that action. Intuitively, mixing the uniform distribution is
done to make sure that the algorithm tries out all A actions
and gets good estimates of the rewards for each action.

Exp3 works by maintaining a list of weights wi for each
of the actions, by using these weights to decide which action
to take next based on a probability distribution Pt and by
increasing the relevant weights when the reward is positive.
The egalitarianism factor κ ∈ [0, 1] tunes the desire to pick
an action uniformly at random. If κ = 1, the weights have no
effect on the choices at any step.

VI. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate the task scheduling methods using a WSN
multi-target tracking scenario implemented in a C# simula-
tion environment. The simulator consists of two stages: the
deployment of the nodes and the execution of the tracking
application. In our evaluation scenario the sensor nodes are
uniformly distributed in a 2D rectangular area. A given number
of sensor nodes are placed randomly on this area which can
result in partially overlapping FOVs of the nodes. However,
placement of nodes on the same position is avoided. Network
parameters such as the number of nodes, the sensor radius
and the transmission radius can be configured in our simulator.
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Action Energy Consumption
Goto Sleep 1 unit
Detect Targets 2 units
Intersect Trajectory 3 units
Predict Trajectory 4 units
Send Message 5 units
Track Targets 7 units

TABLE I
ENERGY CONSUMPTION OF THE INDIVIDUAL ACTIONS.

Once these network parameters are configured, we can run the
simulation with our selected algorithm.

Targets move around in the area based on a Gauss-Markov
mobility model [22]. The Gauss-Markov mobility model was
designed to adapt to different levels of randomness via tuning
parameters. Initially, each mobile target is assigned with a
current speed and direction. At each time step t, the movement
parameters of each target are updated based on the following
rule

St = ηSt−1 + (1− η)S +
√
1− η2SGt−1 (14)

Dt = ηDt−1 + (1− η)D +
√
1− η2DG

t−1 (15)

where St and Dt are the current speed and direction of the
target at time t. S and D are constants representing the mean
value of speed and direction. SGt−1 and DG

t−1 are random
variables from a Gaussian distribution. η is a parameter in
the range [0, 1] and is used to vary the randomness of the
motion. Random (Brownian) motion is obtained if η = 0, and
linear motion is obtained if η = 1. At each time t, the target’s
position is given by the following equations:

xt = xt−1 + St−1cos(Dt−1) (16)

yt = yt−1 + St−1sin(Dt−1) (17)

In our simulation we limit the number of concurrently
available targets to seven. The total energy budget for each
sensor node is considered as 1000 units. Table I shows the
energy consumption for the execution of each action. We set
the discount factors γ = 0.5, γ1 = 0.5 and γ2 = 0.5 for the
online learning algorithms and vary the learning rate according
to Equation 13. We set ζ = 1 for calculating learning rate in
Equation 13. We set k = 0.25, εmin = 0.1, εmax = 0.3 and
Smax = 3 in Equation 10. We set λ = 0.5 for the eligibility
trace calculation by Equation 12. We set the egalitarianism
factor κ = 0.5 for Exp3. We consider the sensing radius
as ri = 5 and communication radius as Ri = 8. We set
these fixed values for the parameters based on our simulation
studies. For each simulation run we aggregate the achieved
tracking quality and energy consumption and normalize the
tracking quality and energy consumption to [0, 1].

For our evaluation we perform the following four experi-
ments with the following assumptions of parameters.

1) To find out the trade-off between tracking quality and
energy consumption, we set the balancing factor β of
the reward function between [0.1,0.9] in 0.1 steps, keep
the randomness of moving target as η = 0.5, set the
egalitarianism factor of Exp3 as κ = 0.5 and fix the
topology to five nodes.

Fig. 4. Tracking quality/energy consumption trade-off for RL, CRL and Exp3
by varying the balancing factor of the reward function β.

2) We vary the network size to check the trade-off between
tracking quality and energy consumption. We consider
three different topologies consisting of 5, 10 and 20
sensor nodes where the coverage ratio is 0.0029, 0.0057
and 0.0113, respectively. The coverage ratio is defined
as the ratio of the aggregated FOV of all deployed sensor
nodes over the area of the entire surveillance area. We
keep the balancing factor β = 0.5 and the randomness of
the mobility model η = 0.5 constant for this experiment.

3) We set the randomness of moving tar-
gets η to one of the following values
{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9} and set
the balancing factor β = 0.5 and fix the topology to
five nodes.

4) We evaluate RL, CRL and Exp3 in terms of aver-
age execution time and average communication effort.
These values are measured from twenty iterations and
represent the mean execution times and the mean of
Send Message task executions.

Figure 4 shows the results of our first experiment. Each data
point in these figures represents the average of normalized
tracking quality and energy consumption of ten complete
simulation runs. The results show the tracking quality/energy
consumption trade-off for RL, CRL and Exp3 by varying
the balancing factor β between [0.1,0.9] in 0.1 steps. We
observe that CRL and Exp3 provide similar results, i.e., the
corresponding data points are closely co-located. RL is more
energy aware but is not able to achieve high tracking quality.

Figure 5 shows the results of our second experiment. In
this experiment, each data point represents the average of
normalized tracking quality and energy consumption of ten
complete simulation runs by varying the network size to one
of the values {5, 10, 20} for each methods. Here the same
trend can be identified, i.e., the CRL and Exp3 achieve almost
similar results in terms of tracking quality/energy consumption
trade-off and RL shows less tracking performance with the
higher energy efficiency.

Figures 6, 7 and 8 show the results of our third ex-
periment. In this experiment, each data point represents
the average of normalized tracking quality and energy
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Fig. 5. Tracking quality/energy consumption trade-off for RL, CRL and Exp3
by varying the network size.

Fig. 6. Tracking quality/energy consumption trade-off for RL, CRL and Exp3
by varying the randomness of target movement, η = 0.10, 0.15 and 0.20.

consumption of ten complete simulation runs by vary-
ing the randomness of moving objects η to one of these
values {0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.70, 0.90} for
each methods. From these figures, it can be seen that CRL
and Exp3 outperform RL in terms of achieved tracking per-
formance. We can see that for lower randomness, η=0.5, 0.7
and 0.9, RL and Exp3 show very close results for tracking
performance. But for higher randomness, η= 0.1, 0.15 and
0.2, RL gives poor performance with regard to tracking
performance.

Table II shows the comparison of RL, CRL and Exp3 in
terms of average execution time and average communica-
tion effort. These values are derived from twenty iterations
and represent the mean execution times and the mean of
Send message task executions. We find that RL is the most
resource-aware scheduling algorithm. Exp3 requires 25% more
and CRL requires 86% more execution time, respectively. The
communication overhead is similar for both Exp3 and CRL.

Fig. 7. Tracking quality/energy consumption trade-off for RL, CRL and Exp3
by varying the randomness of target movement, η = 0.25, 0.30 and 0.40.

Fig. 8. Tracking quality/energy consumption trade-off for RL, CRL and Exp3
by varying the randomness of target movement, η = 0.50, 0.70 and 0.90.

Avg. Execution Time Avg. Comm. Effort
RL 0.036 s 0

CRL 0.067 s 29
Exp3 0.045 s 27

TABLE II
COMPARISON OF AVERAGE EXECUTION TIME AND AVERAGE NUMBER OF

TRANSFERRED MESSAGES (BASED ON 20 ITERATIONS).

VII. CONCLUSION

In this paper we applied online learning algorithms for
resource-aware task scheduling in WSNs. We analyzed and
compared the performance of online task scheduling methods
based on the three learning algorithms: RL, CRL and Exp3.
Our evaluation results show that these methods provide differ-
ent properties concerning achieved performance and resource-
awareness. The selection of a particular algorithm depends on
the application requirements and the available resources of
sensor nodes.

Future work includes the application of our resource-aware
scheduling approach to different WSN applications, the im-
plementation on our visual sensor network platforms [23]
and the comparison of our approach with other variants of
reinforcement learning methods.
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