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Abstract—In this paper, we propose strategies for merging
occupancy probabilities of target existence in multi-UAV co-
operative search. The objective is to determine the impact of
cooperation and type of information exchange on search time
and detection errors. To this end, we assume that small-scale
UAVs (e.g., quadrotors) with communication range limitations
move in a given search region following pre-defined paths
to locate a single stationary target. Local occupancy grids
are used to represent target existence, to update its belief
with local observations and to merge information from other
UAVs. Our merging strategies perform Bayes updates of the
occupancy probabilities while considering realistic limitations in
sensing, communication and UAV movement—all of which are
important for small-scale UAVs. Our simulation results show
that information merging achieves a reduction in mission time
from 27% to 70% as the number of UAVs grows from 2 to 5.

I. INTRODUCTION

The coordination of small-scale unmanned aerial vehicles
(UAVs) for search operations, referred to as multi-UAV
cooperative search, is an emerging research area and is
applied in areas such as search & rescue [1], [2], disaster
management [3], forest fire [4] and target detection [5].
Since search missions are typically time critical and span
a large geographical area, a single UAV is often not able
to complete the mission on time. A team of UAVs provides
more resources and can therefore perform the search more
efficiently. However, cooperation among individual UAVs is
necessary to operate as team.

Generally, in multi-UAV cooperative search each UAV
maintains a map of the search area (known as search map,
cognitive map or probability map) that serves as the UAV’s
knowledge base of the state of the search region. At the
beginning of the search mission, the initial map reflects
prior knowledge about the search region. As the UAV moves
around and observes some parts of the search region, the
corresponding parts of the map are updated to incorporate
the information gained by the UAV’s surveillance sensor. The
ultimate goal of each UAV is to gain as much information
as possible about potential target locations. The UAV must
therefore decide what information to send or receive to/from
other UAVs, when to share information and how to utilize
the shared information to plan their movement actions in the
most effective way. These decisions are important as each
UAV is likely to perceive (parts of) the search region differ-
ently due to some deviations in the available information at
the UAVs.

We can define multi-UAV cooperative search by three
components: (i) sensing the search region and updating the
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search map by individual UAVs, (ii) sharing local infor-
mation with each other, and (iii) making mutual decisions
about actions, e.g., where to move in the search region
to minimize the time of search. In this paper, we focus
on the first two components and advance the state of the
art by a new approach of distributed information merging
considering limitations in sensing performance, information
exchange and connectivity. In the presented approach we do
not assume perfect sensing and consider detection and false
alarm probabilities for the surveillance sensors. We model the
search space by a discrete 2D map where each cell represents
the occupancy probability of a target. Whenever a new
observation is available, the UAV performs a Bayes update
for the corresponding occupancy probability in its local map.
By exchanging and merging local map information the team
of UAVs is able to achieve a faster search mission and
an improved detection performance as compared to non-
cooperative search. Our key contributions include (i) a formal
system model for cooperative search considering limitations
in sensing, information exchange and network connectivity,
(i1) the introduction of resource-efficient merging strategies
of information from multiple UAVs and (iii) a detailed
comparison of the proposed strategies. Our simulation results
show that information merging achieves a reduction in mis-
sion time from 27% to 70% as the number of UAVs grows
from 2 to 5.

The rest of the paper is organized as follows. Section II
discusses the related work in cooperative search. In Section
III, we introduce the problem formulation. Section IV de-
scribes our approach of information merging among UAVs.
In Section V, we present and discuss the simulation results.
Section VI concludes the paper with a brief discussion.

II. RELATED WORK

In cooperative search, a team of UAVs shares its local
information such as past trajectories, current position, (parts
of) the search map or planned movement actions of UAVs.
The UAVs then merge the information and coordinate their
actions to efficiently and effectively accomplish the search
mission. In centralized coordination, the merging and coor-
dination is either performed on a single UAV or a ground
station—both equipped with sufficient computing equipment
and connected with all other UAVs during the mission.
The team’s performance is highly sensitive to a failure
of the centralized node and communication limitations. In
distributed coordination, control, information merging and
decision making are distributed among the UAVs. Distributed
coordination increases the robustness of the team, but in-
troduces control overhead and may lead to performance



degradations due to decisions based on limited information.

We can classify existing multi-UAV search operations
into three approaches. The first approach focuses on ef-
ficiently covering the search region, the second approach
concentrates on decentralized data fusion, and the third
approach is based on mutual decision making using shared
information. Essentially, all approaches require sharing of
some information among UAVs, but the amount and type of
shared information varies. Similarly, decision-making can be
performed at the UAV level or the group level. Challenges for
all approaches include the representation of the search space,
the information merging as well as the various limitations of
the UAVs such as physical maneuverability, sensing range,
flight time and communication.

A. Efficient area coverage based approaches

Initial work in multi-UAV cooperative search [6] focuses
on how to efficiently visit all cells of the search region multi-
ple times. This early work performs lookahead path planning
and considers maneuverability constraints of the UAVs. Co-
ordination is limited to sharing position information of the
UAVs and does not consider any sensor model. To increase
efficiency, this work is extended to reduce overlapping in
UAV paths by using artificial potential field [7]. Neural
network, reinforcement learning [8], group dispersion pattern
[9], K-shortest path search [10], [11] and mixed integer linear
programming [12] have also been explored for efficient area
coverage. Similarly, Voronoi partitioning [13], [14], [15],
[16] has also been used to restrict the movement of each
UAV to a specific partition to avoid overlaps in their paths.
In contrast to the previous approaches, [5] efficiently covers
the search region for detecting targets without storing the
history of visits. In all these approaches no merging of target
information in the individual search maps is performed.

B. Decentralized data fusion based approaches

Instead of sharing a centralized map and UAV motion
information for path planning, the UAVs exchange sensor
observations and update their own search maps in this
approach [17]. The entries of the search map represent a
probability distribution of the target location. All UAVs
update their probability map based on their own and shared
sensor observations using a Bayesian approach considering
a sensor model which only includes the sensor’s detection
probability. The UAVs assume that the target is always
present in the search region and terminate the search mission
when the cumulative probability of target existence exceeds a
threshold [18], [19]. Probability of detection and probability
of false alarm have also been included in the sensor model
to reach a decision about the target existence or absence in
the search region [20], [21]. The decision strategy for each
approach differs and the performance depends on the prior
probability distribution about the target location. The goal is
to show how information on a single target location can be
maintained in a distributed manner between a team of UAVs.
These approaches do not consider communication limitations
among the UAVs.

C. Mutual decision making based approaches

As opposed to the previous approaches where the UAVs
share data and each UAV individually decides what to do
next (passive coordination), mutual decision making based
approaches use active coordination, i.e., the UAVs agree on
actions and mutually decide what to do next. An example
of this work is to search a target where UAVs arrange
themselves to move in equally-spaced parallel tracks [22].
UAVs exchange messages to maintain proper distance among
them in order to cover the whole search region uniformly.
Negotiation among UAVs [23] is another approach that has
been used to reduce the uncertainty about the target existence
and to avoid covering the same area by multiple UAVs
simultaneously. In a similar method, neighboring UAVs ex-
change proposals and mutually decide using self-assessment
based decision making to cover a specific sub-region [24].
Coordination in UAVs for the selection among a discrete
set of pre-computed trajectories [25] and the selection of
information to be shared [26] also involve limited mutual
decision making.

This paper introduces a generic framework for cooperative
multi-UAV search and compares different strategies for infor-
mation merging. The key differences to related work include
the consideration of limited communication and sensing as
well as the efficiency of the merging strategies in terms of
computation and memory requirements—all of which are
essential in small-scale UAVs.

III. SYSTEM MODEL

We model the search region {2 as a rectangular ground
plane where a team of UAVs search for a target of interest.
The search region is logically divided into C' equally-sized,
disjoint cells, and each cell is identified by ¢ = (z,y)
where x and y are the coordinates of its center. This two
dimensional grid of cells is used to maintain the occupancy
probability of target and therefore serves as our search map.
A target may be any object of interest a-priori defined by
the user, e.g., a lost person or a fire source in the forest,
and is assumed to occupy at most a single cell. A single
stationary target is either present or absent throughout the
entire search mission. The occupancy probability is modeled
as a Bernoulli distribution, i.e., X. = 1 (a target is present in
cell ¢) with probability P. and X. = 0 (no target is present
in cell ¢ ) with probability 1 — P,.. Definite knowledge about
target existence or absence in a specific cell c is represented
as P. = 1 or P. = 0, respectively. No knowledge about
target existence is thus represented as P, = 0.5.

There are N homogeneous UAVs moving at a fixed
altitude' above the search region and each UAV maintains
its own search map. At each time step the UAVs can move
to a single distinct cell and take a single observation. For
sake of simplicity, we represent the location of a UAV; (i =
1,2,...,N) at time step ¢ by the coordinates of the cell
in the search map ¢;; = (%, ¥,t). We assume that each

This assumption is made for simplicity. The proposed strategies are
applicable to UAVs with different altitudes as well.



UAV is equipped with (i) a position sensor which facilitates
the UAV to know its location within the resolution of a
cell at any time; (ii) a surveillance sensor that is able to
cover the entire cell; (iii) a wireless communication unit
for exchanging information with other UAVs in the team;
and (iv) a computing unit for performing local map updates.
The independent sensor observation by UAV, in cell ¢ at
time step ¢ is represented as O; ... Two observation results
are defined for each cell, ie., O;cr = 0 or Oy = 1.
However, we do not assume perfect sensing and represent the
sensor’s detection probability and false alarm probability by
the constant parameters p and g, respectively, i.e., P(Oi,c’t =
11X, = 1) = p and P(O; ., = 1|X. = 0) = g, for all
cells and UAVs. Whenever a UAV; visits a given cell ¢, the
information associated with that cell P, is updated in the
search map of UAV; based on its sensor observation and
prior probability in cell c.

The mobility of each UAV is discretized in time by
allowing the vehicle to make only decisions at discrete time
intervals, referred to as time steps. The mobility is also
discretized in space by only allowing the vehicle to move
to left, right, forward, backward or stay at the current cell
at each time step. This discretization of mobility in time
and space is well suited for small-scale, battery powered
quadrotor UAVs. Currently, we assume predefined paths for
the UAVs to move, i.e., a sweep mobility model, and do not
bias the mobility of UAVs by information gained during the
mission. We assume the wireless communication onboard
the UAVs have range limitations. Thus, information can
only be exchanged when the UAVs are within the specified
communication range. We further assume that there are no
delays or failures in communication once the UAVs are
within this range. We ignore mutual decisions on UAV
movement, and hence concentrate on coordination in terms
of information sharing and merging, where the key is to
show how information of one UAV can be combined with
information from other UAVs so that the team can work
together to locate the target more efficiently in terms of
mission time and location errors.

Primarily, each UAV updates its own search map using
its own sensor observations. Due to different UAV locations,
errors in the surveillance sensor, number of visits to a given
cell and especially limited communication range, the UAVs
may have different probabilities of target existence for a
given cell. Individual probabilities by various UAVs for a
given cell should be merged to calculate a probability that
best represents information about the target existence in that
cell. Utilizing the information from other team-mates a UAV
can improve the search in two ways: (i) by increasing its
observability of the search region by taking into consider-
ation other UAVs’ observations and (ii) by improving its
knowledge in a given cell by merging probabilities in that
cell by other UAVs. In the following section we discuss the
information merging strategies in more detail.
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Fig. 1. Information merging for multi-UAV cooperative search (process
within single UAV). Coordinated update depicted in the dashed box is not
deployed for the search strategies without merging.

IV. INFORMATION MERGING

As the mission starts, N UAVs initialize their search
maps with P .o = 0.5 for ¢ = 1,..,N and for all
¢, which represents complete uncertainty or lack of prior
knowledge about the search region 2. Each UAV in the
team starts taking sensor observation at its current location.
Based on the sensor observation O; .+ and prior probability
P;ci—1 in the current cell ¢;, Vi, the UAVs update the
occupancy probability to P; . in their own search maps.
This uncoordinated map update by individual UAVs depend
on the detection and false alarm probabilities of surveillance
sensor on board the UAVs. Each UAV then broadcasts the
updated information to other UAVs in the team. Depending
on the communication range, the UAVs in the team now have
at most NV values for the visited ¢;’s at time ¢. A merging
strategy takes into consideration all values corresponding to
c; that are visited at time ¢ and determines a new occupancy
probability that best represents the existence of target at the
current cells of each UAV. Each UAV then moves to the next
cell in the search region according to its mobility model and
continues the merging process at the new cell. The process
is depicted in Fig. 1 which is executed by each UAV at every
time step. The search is finished when any of the N UAVs
identifies a cell ¢ with P. > B, where B is a predefined
detection threshold to stop the search.

Fig. 2 represents a small search region with a single target
and the local 4 x 4 search maps of three UAVs having
unlimited communication. Fig. 3 shows the information
contents of UAV; after exchange of information with all
other UAVs. Sharing and merging of information result in at
most IV cell updates in each individual search map. To avoid
confusion, we use the notation c¢; to represent location of
UAV; and P; ., to represent occupancy probability of UAV;
at the location of UAV; (j =1,2,...,N). As indicated in
Fig. 1 there are two different updates performed by each UAV
at each time step: uncoordinated map update and coordinated
map merging. Uncoordinated map update requires only local
information and results in the “uncoordinated” occupancy
probability. Coordinated map merging combines this local
uncoordinated probability with information from other UAV's
and computes the actual probability P; ., which is stored
in the search map. Obviously, when no information from
other UAVs is available, coordinated map merging is not
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Fig. 2. Local 4 X 4 search maps of three UAVs (a, b and c) and the search
region (d) marked with the UAVs’ positions (dots) and the target position
(star).
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communication.

possible and we simply use the uncoordinated occupancy
probability as new cell value.? In the following, we describe
the uncoordinated update and propose several strategies for
map merging in more detail.

A. Uncoordinated search map update

The probability in the current cell ¢ is updated using
Bayesian rule [27], [16], which uses the sensor characteristics
(p and q), sensor observation O; ., and prior probability in
cell c. The Bayesian rule is given by

PPic,t—1 : . —
P, _ pPici—1 + q(1—=Psct—1) if Oz’c’t =1
1,¢,t (1=p)Pict—1 if O, -0
(1-p)Pict—1 + (1-q)(1—Pic,t—1) bet
(D

It can be shown from Eq. (1) that P ., =1if P; .o =1
and Py, =0if Pjco=0forallt >0.Ifp=0, P,
becomes 0 once UAV; gets a sensor observation equal to 1,
and will remain unchanged regardless of future observations.
We consider 0 < P .0 <1,0<p<1l,and 0 < g < 1.

B. Map merging

In this section, we propose four strategies to merge in-
formation from multiple UAVs. We consider different types

2For the sake of simplicity, we do not distinguish between uncoordinated
and merged occupancy probabilities throughout the remainder of this paper.

of information and communication limitations. We start
with unlimited communication and then elaborate on the
modifications required for efficient implementation of each
strategy under limited range condition.

1) Belief update: Each UAV,; computes the uncoordinated
occupancy probability for cell ¢;, stores it at its search map
and broadcasts the updated probability value to the other
UAVs. All UAVs which receive this information, overwrite
the previous probability value at ¢; in their own maps. Thus,
a UAV; receives updated information from other UAVs and
updates its search map by

Pi,c]' = Pj,c]' (2)
where j = 1,2, ..., N assuming that UAVs don’t visit a cell
concurrently.

2) Average: Each UAV; computes the uncoordinated oc-
cupancy probability for cell c;, stores it at its search map
and broadcasts the updated probability value to the other
UAVs. The UAVs receiving this updated value for cell c;
update their own maps depending on the previous value of
cell ¢;. UAV; overwrites the occupancy probability in cell
c; by the received value, if the previous probability value
is 0.5 and replaces it by the average of the values in its
own map and the received messages otherwise. UAV, has
to fully believe UAV; for a given cell, if only UAV; has
some information in that cell. Otherwise UAV,; averages the
information contributed by itself and UAV;. UAV; updates
its map by

&qz{?”; f Fie, =05 )
= pe1 Prc; otherwise, (n < N)

where n depends on the communication range. If the com-
munication range is limited, the probability values for ¢; may
differ in the local search maps due to updates at different time
steps (Section IV-C). In this case n is equal to the number of
UAVs with different values for ¢; within the communication
range. If the communication range is unlimited, all UAVs
(j # 1) have up-to-date knowledge for the probability value
in ¢; in their local search maps. Thus, we compute the
average only from the UAV currently observing c; and the
UAV,, ie., n = 2.

3) Modified occupancy grid map merging: Integrating
occupancy grids [28] is a well-known technique used in
simultaneous localization and mapping (SLAM). We propose
a modified version of this strategy which better fits to the
search process and include it as a comparison with the state-
of-the-art. The original merging rule is given as

iogm _ odds., 4
€ 1+ oddse, @
odds., = H odds;.., 5)
j=1
P;.,
odds; = 75— ©



TABLE I
MERGING OCCUPANCY PROBABILITIES IN A GIVEN CELL MULTIPLE
TIMES USING INTEGRATING OCCUPANCY GRIDS METHOD.

Time Ol,c 02,c Pl,c P2,c
to - - 0.5 0.5
t1 1 (false alarm) | — 0.9 0.9
to - 0 (true negative) | 0.9 0.9

where Pcifgm is the probability of occupancy at c; calculated
through integrating occupancy grid maps (OGMM)?.

In our cooperative search, we model the target existence
also as occupancy probability of a cell. The OGMM method
aims to reinforce cell values and thus reaches low or high
probability values very fast. This property supports quick
decision making but results in a considerable amount of
detection errors, if the repetitive observations include false
alarm and false negatives. Table I shows an example of this
problem for specific values of p = 0.9 and ¢ = 0.1, where at
time ¢; one UAV receives false alarm from its sensor and the
other UAV has no observation at cell c. The merging results
in updating both the maps at P; . and P, . with value 0.9.
At a later time t5, one of the UAVs observes true negative
at cell ¢ but merging of values brings no change in both
the maps. The probability of occupancy at ¢ is now fixed
to 0.9 and can not be reduced by even infinite numbers of
correct observations in that cell. The detection of another
false alarm at ¢ will further increase the value of P, leading
to exceeding the threshold value and terminating the search
with an erroneous result. Thus, integrating occupancy grid
maps in its original form is not suitable for cooperative
search scenario.

The effect of this problem can be reduced if we restrict the
output of the integrating occupancy grid technique to change
slowly. In order to do so, we combine the average value
of occupancy probabilities at ¢; and occupancy value using
integrating occupancy grids at c; by a weighted average.

P., = v(P9) + (1 — v)(PL9™) (7)
where N
1
pwI=-N\"p 8
Y= ; e (®)

The weight v can be chosen based on the sensor parame-
ters and search constraints.

4) Sensed data sharing: Instead of sharing probability
values, the UAVs can share their current locations and sensor
observations with each other. In this strategy, each UAV
keeps a record of sensor observations for each and every
cell in the search region and updates the P, iteratively based
on the total number and type of observations in cell c. The
strategy enables UAVs to share full information but requires
more memory, computation power and bandwidth if surveil-
lance sensors are heterogeneous with different characteristics

3This rule is adopted from SLAM where robots develop partial maps
using occupancy grids and integrate the partial occupancy grids at the end
of the SLAM process by using Eq. (4).

(p and ). The updated probability in cell ¢ by a UAV can
be calculated by iteratively using Eq. (1) for all consecutive
observations from all UAVs.

C. Communication range limitations

When the communication range is unlimited, the presented
strategies do not need to utilize the time index of a given
observation, since each UAV can hear the broadcast of
every other UAV at all times. However, in situations where
the communication range is limited, each UAV can only
communicate to UAVs that are within its communication
range. This likely results in different probability maps at each
UAV and it is essential to correctly interpret the maps, e.g.,
to avoid double counting of observations in the sensed data
sharing strategy.

In order to maintain the timeliness of the occupancy
probabilities we introduce a simple time stamping mecha-
nism. Whenever a probability value is changed, we capture
the time stamp of this update. If this update is caused by
an observation of the cell, we capture the current time. If
this update is caused by merging cell values from different
UAVs, we take the most recent time stamp among the
contributing cell values as new time stamp. The time stamps
are stored in the search maps and are exchanged together
with the probability values of the cells. Map merging is only
performed in those cells which have different time stamps
wrt. the neighboring UAVs.

Observe that adding time stamps (i.e., history of obser-
vations) to the search map increases the information to
be exchanged and processed by the UAVs. Therefore, the
performance of each strategy will depend on not only the
communication range but also the available bandwidth for
data transmission. The effect of bandwidth limitations on
cooperative search will be analyzed in future work.

D. Best case analysis for a single cell

Given the values of p, ¢ and the threshold B, we can
calculate the minimum number of observations required in
cell c to satisfy the condition P, > B, if the target is present
in cell c. This condition is satisfied when all observations
taken at the target cell equal 1. According to Eq. (1), for a cell
¢, the first updated probability in case of positive observation
is given by,

_ 250
pPy + q(1 - P)

where P, represents initial probability in cell ¢ and is equal
to 0.5. Assume that target is present in cell ¢ and each time
step the sensor generates positive observation O, = 1. The
iterative solution of this equation yields

Py 9

me,1
P, = 10
ppm—l + Q(l - Pm—l) ( )
™ P
Py, = P > (11

PPy +qm (1 — P)

where P,, represents the updated value in cell ¢ at m!"
observation. To find the minimum number of observations
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Fig. 4. Minimum number of observations required in a single cell to
satisfy condition P. > B (corresponds to the best case, i.e., when a target
is present in the visited cell and the observation is equal to 1.)

such that, P,,, > B, we need to find the value of m which
can be obtained by

Py(1 - B) q
w2 (B )

Given the values of p, ¢, and B, Eq. (12) can be used
to estimate the minimum number of observations (F,, >
B) required in a cell if there is a target. Fig. 4 shows the
analytical number of observations obtained using Eq. (12)
(represented with m in the legend) and simulation results. In
simulation results, we iteratively update the initial probability
of 0.5 and count the number of observations (that are always
positive) till the probability is equal to or greater than B.

(12)

V. SIMULATION RESULTS

To evaluate the effectiveness of our proposed merging
strategies, we simulate a search region of 10 x 10 cells with
a single stationary target located at (6,7). We initialize the
location of upto N = 5 UAVs at randomly selected cells
and consider a standard sweep model for the mobility of
UAVs. We consider B = 0.99 which means the search is
finished if one of the UAVs finds a cell ¢ in its own map
with P, > 0.99 and that cell is designated as location of the
target. If the result of search is a cell other than (6,7), we
record a detection error. We perform simulations to compare
the results of our proposed strategies in case of no com-
munication, limited communication and full communication
among UAVs. We use the communication range in terms of
cells and consider two UAVs in range when the Euclidean
distance between them is less than or equal to the specified
communication range. All results are based on 1000 runs
of simulations and v = 0.7 in modified OGMM merging
strategy. We also present results for uncoordinated search,
where UAVs only use their own observations to update their
maps as reference.

First, we consider full communication, where all UAVs
can exchange information at each time step and evaluate
our strategies for various values of ¢ and N. Fig. 5 and
Fig. 6 show the average number of time steps required and
the percentage of erroneous results versus the false alarm
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Fig. 5. The effect of increasing ¢ on the search time (time steps) and
location errors with 2 UAVs (p = 0.9, unlimited communication).
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Fig. 6. The effect of increasing ¢ on the search time (time steps) and
location errors with 5 UAVs (p = 0.9, unlimited communication).

rate g for 2 and 5 UAVs, respectively. The figures show that
degrading the quality of the sensor (increasing the value of
q) increases the number of time steps to locate the target
in all strategies. Comparing the results in these figures, in
contrast to other strategies, the errors for the average strategy
reduces as the value of ¢ increases. This reduction in errors
comes with a cost of overshoot in time steps. The repetitive
behavior or jumps in the plots are due to the fact that there
are a fixed number of observations required to exceed the
threshold for certain ranges of ¢ (as explained in Fig. 4). As
the value of ¢ increases within a given range, the number of
false alarms increases but the number of steps required to
reach a decision remains constant. Having consecutive false
alarms in a cell will end up in an erroneous result. While
not presented here due to space limitations, decreasing the
value of p for fixed value of ¢ increases the number of time
steps required to terminate the search.

Second, we show the effect of increasing the number of
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Fig. 7. The effect of increasing the number of UAVs on the search time
and the location errors (p = 0.9, ¢ = 0.2, unlimited communication).

UAVs on our merging strategies with unlimited communi-
cation. Fig. 7 shows the effect of increasing the number of
UAVs with fixed values of p = 0.9 and ¢ = 0.2 on the
search time. Note that increasing the number of UAVs with
coordinated map updates is more efficient than increasing the
number of UAVs in uncoordinated search. It is evident from
Fig. 7 that sensed data merging and belief update require less
time to search the region but at the cost of higher location
errors. We can tune the value of v in the modified OGMM
strategy to obtain better results depending on the values of
p, q and the number of UAVs.

Third, we evaluate our proposed strategies for limited
communication with fixed values of p, ¢ and the number
of UAVs. Fig. 8 and Fig. 9 show the effect of increasing the
communication range on time steps required to terminate the
search and percentage of erroneous results for 2 and 5 UAVs,
respectively. We show the results for no communication to
unlimited communication (in a 10 x 10 grid with communi-
cation range < 14). As the communication range increases,
the performance of these strategies converge to a point that
is consistent with the results of Fig. 7.

Finally, we show the percent gain for the various merging
strategies with respect to uncoordinated search in Table
II. We define the percent gain as (7, — T.)/Ty) * 100,
where T}, and T represent time steps for uncoordinated and
coordinated search respectively. In general, the improvements
rise with increasing the number of UAVs. In our simulations,
the minimum gain we can achieve for minimum number of
UAVs (i.e., 2 UAVs) is 27% and the maximum gain that we
can reach for maximum number of UAVs (i.e., 5 UAVs) is
70%. The improvement is also increasing with enlarging the
communication range but saturates once the communication
is stable. Note that when there is unlimited communication,
exchanging the probability maps (i.e., belief update) is suffi-
cient to perform as good as sharing all observations. As the
communication range reduces, the improvements with belief
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Fig. 8. The effect of increasing the communication range on the search
time and the location errors (2 UAVs, p = 0.9,q = 0.2).
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Fig. 9. The effect of increasing communication range on time steps (5
UAVs, p = 0.9,¢ = 0.2).

update also reduce (from 70% to 41%) since the UAVs meet
each other at different times and keep different maps, while
sharing observations still sustains high improvements. In this
case, increasing the number of UAVs is also not sufficient.
Therefore, under stringent communication, deployed merging
strategy needs to be chosen carefully.

VI. CONCLUSIONS

We presented merging strategies for information from
multiple UAVs in a cooperative search scenario. We showed
that the proposed strategies enable cooperative search better
than uncooperative search even with pre-defined and fixed
path mobility of UAVs. The strategies are well suited for
higher number of UAVs as increasing the number of UAVs
increases the gain (in terms of time and errors) compared to
uncooperative search. The improvement due to increase in
communication range saturates once the communication is
stable. Sharing of full information, as discussed in sensed
data sharing strategy, is efficient time-wise but requires



TABLE I
PERCENTAGE GAIN IN TERMS OF TIME STEPS WITH RESPECT TO UNCOORDINATED SEARCH (p = 0.9,q = 0.2)

Communication range = 2 (cells) Communication range = 6 (cells) Communication range = 14 (cells)

BU AVG MOGM | SDS BU AVG MOGM | SDS BU AVG MOGM | SDS

N=2 15.6 -7.2 14.7 36.7 30.9 22.9 32.6 37.0 39.8 27.4 32.1 39.9

N=3 | 204 2.1 16.2 48.0 50.6 14.5 36.8 52.3 54.5 23.1 33.1 52.0

N=4 | 39.6 5.8 28.7 67.6 64.0 23.9 51.3 68.6 63.5 25.6 43.8 64.8

N=5 | 41.6 8.0 29.7 70.9 70.0 40.0 61.1 69.5 69.4 37.0 57.8 69.8
BU=Belief update, AVG=Average, MOGM=Modified OGMM, SDS=Sensed data sharing

more resources. Other strategies are resource efficient and
involve trade-off in time-to-search and number of errors.
We did not consider biasing the mobility of UAVs and did
not plan cooperative paths based on information obtained
from sharing and merging which will be included in our
future research. We also plan to include the mobility of
target and communication bandwidth limitations in our future
publications.
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