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ABSTRACT

We present an end-to-end approach for trajectory clustering from
aerial videos that enables the extraction of motion patterns in urban
scenes. Camera motion is first compensated by mapping object tra-
jectories on a reference plane. Then clustering is performed based
on statistics from the Discrete Wavelet Transform coefficients ex-
tracted from the trajectories. Finally, motion patterns are identified
by distance minimization from the centroids of the trajectory clus-
ters. The experimental validation on four datasets shows the effec-
tiveness of the proposed approach in extracting trajectory clusters.
We also make available two new real-world aerial video datasets to-
gether with the estimated object trajectories and ground-truth cluster
labeling.

Index Terms— Aerial videos, trajectory clustering, motion pat-
terns, trajectory features.

1. INTRODUCTION

The extraction of motion patterns corresponding to the movement
of people and vehicles in a scene may aid behavior prediction [1],
abnormality detection [2, 3] and tracking [4]. Motion patterns can
be extracted by analyzing the motion information between consec-
utive two frames [5–7] or by analyzing motion information across
multiple frames (object trajectories) [8–12]. The former category of
approaches is suitable for extracting short-range patterns, whereas
the latter category helps extracting long-range patterns when the tra-
jectory information is available [7,12]. As most frameworks assume
stationary cameras [1,10,12–14], a particular challenge is extracting
motion patterns from aerial videos as they require camera motion
compensation.

Methods exist that cope with camera motion but are not aimed
at motion pattern extraction. These methods rely on the availability
of Geo-spatial Information System (GIS) information and perform
geo-registration of the aerial video to estimate depth cues for iden-
tifying buildings, trees and roads [15] or segment areas with motion
based on the background-foreground modeling without distinguish-
ing motion patterns by registering the input frames with a generated
background mosaic [16].

Trajectory-based methods generally rely on clustering spatio-
temporal features [8–11] or frequency-domain features such as DFT
coefficients [12, 17]. Hu et al. [8] presented a hierarchical trajectory
clustering framework that separates the trajectories of vehicles and
persons and then subclusters trajectories of each category to extract
motion patterns. Anjum and Cavallaro [9] introduced a framework
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that performed independent multi-feature trajectory clustering and
then fused their results to identify patterns. Wang et. al [13] pro-
posed a method to learn motion patterns using the Dual Hierarchical
Dirichlet Processes. The authors in [13] introduced an advancement
of Dual-HDP model called Dynamic Dual-HDP model in [11] that
enabled updating motion patterns dynamically. Zhang et al. [10]
applied trajectory clustering in a block-based scene representation
based on Gaussian Mixture Models (GMM) to learn motion patterns.
Recently, Hu et al. [12] proposed an incremental trajectory cluster-
ing algorithm to learn motion patterns based on Dirichlet Process
Mixture Model (DPMM).

This paper presents an end-to-end approach for trajectory clus-
tering for motion pattern extraction in aerial videos. The overall
method involves compensating camera motion in the estimated tra-
jectories and performing trajectory clustering to identify motion pat-
terns (Fig. 1). To perform clustering, we use a feature that encapsu-
lates trajectory information using their Discrete Wavelet Transform
(DWT) coefficients. We demonstrate the effectiveness of the pro-
posed approach compared to the state of the art on four real-world
datasets. We also introduce two new real-world aerial datasets for
parking lot and traffic junction scenes, which are made available on-
line together with the estimated trajectories and ground-truth cluster
labeling at http://uav.lakeside-labs.com/publications/test-data.

This paper is organized as follows. Sec. 2 describes the cam-
era motion compensation in trajectories. Sec. 3 explains the feature
extraction and trajectory clustering. The experimental setup is pro-
vided in Sec. 4 and results in Sec. 5. Sec. 6 concludes the paper.

2. MOTION COMPENSATION

We aim to identify motion patterns produced by people and vehicles
in urban scenes using videos captured by UAVs equipped with a top-
down looking camera. Let X = {Xi}Ii=1 be a set of trajectories Xi of
moving objects on the image plane obtained using a video tracker,
where I is the total number of trajectories. kini

i and kend
i denote

the start and end frames for Xi: Xi = [Xk
i ]

kend
i

k=kini
i

, and K is the
total number of frames in the video sequence, V . The position of an
object at each frame k of V is defined as Xk

i = [(xki , y
k
i )], where

(xki , y
k
i ) are the coordinates of an object on the image plane.

Let X̂i denotes the trajectory obtained from Xi after compen-
sating camera motion and X̂ = {X̂i}Ii=1 be the corresponding set
of compensated trajectories. We compensate the camera motion in
the trajectories, X, based on the homography computation under the
assumption of planar object motion and minimal perspective distor-
tions.

Our aim is to map all trajectories on a common frame, Iref , se-
lected from the frames of V . The choice of Iref is made so as to
ensure that it overlaps with the remaining frames. Given Xi, Xk
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Fig. 1. Proposed pipeline - V : video sequence; I: tracker initializa-
tion set; X: trajectory set; Xi: trajectory i; X̂: compensated trajec-
tory set; fi: feature vector; C, M: set of clusters and motion patterns.

is to be mapped on Iref by computing a homography, Hk,ref , be-
tween Ik and Iref . To this end we use the standard feature-based
alignment method [18] that involves extracting point features in Ik
and Iref , determining point correspondences and computingHk,ref

with the best correspondences obtained by applying RANSAC. We
employed the widely-used SIFT point features [19].

Although alternative approaches to homograhy-based camera
motion compensation [20, 21] are suitable for segment-long [21]
or sequence-long [20] optical flow-advected dense trajectories (be-
longing both to background and foreground), they are not directly
applicable to object trajectories that can have variable lengths and
different kini

i and kend
i .

After the computation of the homography matrix, (xki , y
k
i ) can

be mapped onto Iref as:
[
w x̂ki , w ŷki , w

]T
= Hk,ref

[
xki , y

k
i , 1
]T ,

where (x̂ki , ŷ
k
i ) are the corresponding coordinates ofXk

i in Iref ob-
tained by dividing the left-hand-side of equation by w. Similarly, all
the positions inXi can be mapped onto Iref to get the corresponding
compensated trajectory, X̂i. In this way, all Xi are transformed onto
Iref to obtain X̂ = {X̂i}Ii=1, the set of compensated trajectories on
Iref (Fig. 2). Because the presence of non-planar SIFT matches and
mismatches can introduce inaccuracies in the homography computa-
tion and hence in the compensated trajectories, we apply RANSAC
to reduce these errors.

3. FEATURE EXTRACTION AND CLUSTERING

We first encode the time-varying information of the trajectories X̂ =

{X̂i}Ii=1 for clustering. Then we apply a trajectory-clustering pro-
cedure to X̂ thus yielding a set of clusters C = {Cn}N̄n=1. Each
cluster, Cn, is used to represent the corresponding motion pattern,
Mn (i.e. each Mn is a representative spatio-temporal trend of ob-
ject motion in the scene).

Feature extraction in the frequency domain was demonstrated
to be appropriate for trajectory clustering [12, 17, 22] using a set
of DFT or DWT coefficients. Due to the time-frequency localiza-
tion, DWT can better capture the changing frequency information
along trajectories and has a lower complexity (O(N)) than DFT
(O(N log N)) [23], where N is the number of points along the
trajectory. DWT was also used for trajectory retrieval by Sahouria
and Zakhor [24].

We use Haar wavelets to capture local variations in trajectories
using the single-level implementation of Mallat’s algorithm [25] for
computing the DWT coefficients. Haar wavelets were also used in
the existing works [23, 24] and were reported to perform better than
Daubechies and Coiflet wavelets [23]. For a given trajectory X̂i,
we therefore compute the DWT (Haar wavelets) of the 1-D data,

x̂i(k) = {x̂ki }
kend
i

k=kini
i

and ŷi(k) = {ŷki }
kend
i

k=kini
i

.
To build a feature vector, we use the computed approxima-

tion DWT coefficients of x̂i(k), Cx̂i , and ŷi(k), Cŷi , to formulate
the DWT-based feature for X̂i as follows: fi = (fx̂i , fŷi), where
fx̂i = (min(Cx̂i),Qx̂i

25,Q
x̂i
50,Q

x̂i
75,max(Cx̂i)) encapsulates the non-

parametric statistics for the coefficients including the minimum

Fig. 2. Motion-compensated trajectories overlaid on the image cre-
ated by registering frame 1 (Iref ) and frame 7729 of the Parking Lot
dataset (left) and by registering frame 13468 (Iref ) and frame 4785
of the Traffic Junction dataset (right).

coefficient value, the first quartile or 25th percentile (Qx̂i
25), the

second quartile or 50th percentile (Qx̂i
50), the third quartile or 75th

percentile (Qx̂i
75), and the maximum coefficient value in Cx̂i . Like-

wise, fŷi = (min(Cŷi),Qŷi
25,Q

ŷi
50,Q

ŷi
75,max(Cŷi)). Instead of using

the first few coefficients [23, 24], fi captures the overall distribu-
tion of coefficients non parametrically in terms of fx̂i and fŷi , thus
providing a more comprehensive trajectory description.

We perform clustering using the feature fi computed for each
X̂i to extract a set C = {Cn}N̄n=1 of N̄ trajectory clusters, where
Cn denotes cluster n. We use the trajectory clustering algorithm
proposed in [9], which uses an incremental procedure to select the
bandwidth parameter in Mean-shift procedure and does not require
the prior knowledge of N̄ , the number of clusters. The bandwidth
parameter is initialized with 20% of the range of the feature space
of fi. As done in [9], the outlier trajectories are defined as those
having the normalized absolute distance from the centroid of corre-
sponding dense clusters greater than τ1 = 0.95 or those belonging
to sparse clusters (i.e. whose number of trajectories is less than 10%
of the median cardinality among all the clusters). Unlike the method
in [9], the proposed framework uses a DWT-based feature space and
addresses the challenge of camera motion compensation in the tra-
jectories.

Each resulting Cn is then associated to a motion pattern Mn.
A motion pattern Mn is defined by the trajectory that minimizes
the distance from the centroid of that cluster without considering
the direction of motion. The minimization uses the trajectory mean
point and length (kend

i −kini
i ) to capture the spatial location and the

elongation of the patterns.
Examples of Cn and Mn are shown in Fig. 3.

4. EXPERIMENTAL SETUP

We perform the experimental validation of the proposed framework
on four datasets (Tab. 1). The first two are our newly-introduced
datasets captured using an octocopter UAV (AscTec Falcon 8) at low
altitudes (≈ 20− 40 m) in Parking Lot and Traffic Junction scenes
containing persons and vehicles. We extracted real trajectories, X,
using the Mean-shift tracker [26] with manual initializations to track
the moving objects until they leave the scene. The tracker is initial-
ized for each object, where I denotes the set of initializations for all
targets.

The other two datasets are Students003 [27] and Train Sta-
tion [28] captured from a top-downish static camera (i.e. no need
for camera motion compensation). We use the provided ground-
truth trajectories for Students003 and the provided real trajectories
extracted using KLT tracker [29] for Train Station. Most of the
trajectories in Train Station are short-duration tracklets obtained by
repeated tracker initializiations and dealing with tracklets is out of
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Fig. 3. Visualization of the results for the extracted clusters and motion patterns (color coded) forM1 (second row),M2 (third row),M3
(fourth row) and the proposed method (fifth row) to be compared with the ground truth (first row). The clusters are shown on planes along
z-axis in each plot. Motion patterns are superimposed on the original frame and shown in the lowest plane in each plot.

the scope of the proposed framework. We therefore use only the
longer trajectories (length, kend

i − kini
i > 600) in our experiments

with Train Station.

We compare the proposed methods with three alternative ap-

proaches, namelyM1, M2 andM3. M1 uses a DFT-based fea-
ture (fdfti ) [12,17] that represents a trajectory using the first five DFT
coefficients of x- and y- coordinates of X̂i. M2 uses as features the
start and end points of each trajectory, fsei . To compare with fdfti (fsei ),



Table 1. Summary of the dataset. Key - FS: frame size as
height × width (pixels); NF: number of frames; NT: no. of tra-
jectories; CLT: combined length of all trajectories (frames); FPS:
frames per second.

Dataset FS NF NT CLT FPS
Parking Lot 1080× 1920 9517 54 29483 30

Traffic Junction 540× 960 16154 236 42311 30
Students003 576× 720 5405 417 207304 25
Train Station 480× 720 46009 762 557345 23

fi is replaced with fdfti (fsei ) in the proposed framework. M3 is the
method performing mean-shift trajectory clustering using multiple
spatio-temporal feature spaces [9] applied on the compensated tra-
jectories.

The quantitative evaluation is done by computing the accuracy
of the learned clusters, R, and the precision (P ) and recall (R) of
the extracted motion patterns. The accuracy is computed as fol-
lows [12]: R = 1

N̄

∑N̄
n=1

bn
Bn

, where bn is the number of trajectories
with the same ground-truth cluster label and the highest proportion
in the learned cluster Cn, andBn is the number of trajectories in Cn

with N̄ denoting the number of learned clusters. The ground-truth
cluster labeling was done manually by multiple annotators for Park-
ing Lot and Traffic Junction, and by one annotator for Students003
and Train Station. P and R are computed using correct (true posi-
tive), incorrect (false positive) and missed (false negative) patterns.
A motion pattern is considered correct if it lies within a ground-truth
cluster. For a complete evaluation, P andR should be analyzed with
R since a correct pattern may have originated from an inaccurate
cluster. The average R, P and R are computed for five runs on each
dataset.

5. ANALYSIS OF THE RESULTS

In this section we present the evaluation of the proposed framework
in extracting trajectory clusters and patterns, its robustness and dis-
cuss its computational complexity.

We performed the evaluation and comparison quantitatively
(Tab. 2) and qualitatively (Fig. 3). The clusters generated using the
proposed feature, fi, are more accurate (highest R and highest R).
The highest R andR are however associated with a small P on Traf-
fic Junction, Students003 and Train Station due to false positives.
Except for Parking Lot,M1 has the best P . M2 is the second best
in terms of R and R (its R is the same as for the proposed method
on Parking Lot).

As the performance of the pipeline can be affected by the pres-
ence of tracking failure-ridden trajectories, we induce tracking fail-
ures by selecting the first half of randomly selected p% trajectories in
each dataset, p = 0, 10, . . . , 50, and analyze its effect on R forM1,
M2,M3 and the proposed method (Tab. 3). In the evaluation of R
the tracking failure-ridden trajectories are removed from the ground
truth clusters as outliers. The results show that the proposed method

Table 2. Evaluation of the clustering and motion pattern extraction
forM1,M2,M3 and the proposed method in terms of R, P and
R.

Method Parking Lot Traffic Junction Students003 Train Station
R P R R P R R P R R P R

M1 .64 .48 .53 .67 .67 .27 .41 .90 .40 .32 .60 .18
M2 .72 .41 1 .82 .46 .40 .78 .74 .43 .80 .46 .36
M3 .56 .63 .33 .70 .40 .33 .51 .60 .28 .33 .35 .18
Prop. .89 .65 1 .88 .52 .50 .90 .58 .51 .82 .45 .50

Table 3. Effect of inducing tracking failures to p% randomly se-
lected trajectories on the clustering accuracy in terms of the mean
(µ) and standard deviation (σ) of R for p = 0, 10, . . . , 50.

Method Parking Lot Traffic Junction Students003 Train Station
µ (σ) µ (σ) µ (σ) µ (σ)

M1 .45 (.18) .53 (.13) .29 (.10) .23 (.07)
M2 .57 (.13) .66 (.19) .66 (.21) .60 (.19)
M3 .41 (.20) .54 (.15) .37 (.13) .20 (.09)
Prop. .64 (.27) .67 (.19) .69 (.22) .52 (.22)

has the best mean R on all datasets except Train Station where it is
the second best toM2. In terms of variation of R,M1 is better due
to its smallest σ on all datasets except Parking Lot. From the view-
point of UAV operations, the tracking failures may be caused as a
result of abrupt UAV movements leading to larger inter-frame target
displacement on the image plane (Fig. 4), which could be accounted
for in the tracking algorithm [30].

Finally, we consider the computational cost for the whole
pipeline. The computational effort used by the camera motion
compensation in trajectories is significantly greater than that for the
other stages due to the need of calculating homography for each
frame where trajectories exist. The motion-compensation block is
seven orders of magnitude larger (for Parking Lot) and six orders of
magnitude larger (for Traffic Junction) than each of the remaining
stages. The higher computational effort for the compensation stage
for the Parking Lot is due to its larger frame size (Tab. 1). The
major contributor in the computational effort of the compensation
stage is the computation of SIFT features due to the combined com-
putational complexity of its multiple steps [31]. The effort in the
compensation stage can be reduced by replacing SIFT with a feature
that can be computed faster.

6. CONCLUSIONS

We presented a pipeline for extracting trajectory clusters and motion
patterns from aerial videos of urban scenes. The pipeline involves
applying camera motion compensation to trajectories extracted in
the image plane and performing clustering using a feature that encap-
sulates trajectory information non-parametrically using DWT coeffi-
cients. We performed the experimental validation and comparison of
the framework on four datasets. The results showed the effectiveness
of the proposed method in identifying trajectory clusters and motion
patterns. Moreover, considering the scarcity of aerial datasets, we
also introduced two new real-world aerial datasets of urban scenes
and made them available online together with the estimated trajec-
tories and ground-truth cluster labeling. Future work could involve
reducing the computational effort of the compensation stage. Addi-
tionally, it would also be useful to determine the direction of each
extracted motion pattern.

Fig. 4. Tracking results for inter-frame target displacements sim-
ulated by regularly dropping (m-1) frames from the sequence:
m=0,2,4,6,8 (blue, green, magenta, black, yellow) [32]. Tracking
failure occurs for m=8 (rightmost image).
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