
Demo: Demonstrating Autonomous Handover in
Heterogeneous Multi-camera Systems

Jennifer Simonjan, Lukas Esterle,
Bernhard Rinner

Alpen-Adria-Universität Klagenfurt, Austria
firstname.lastname@aau.at

Georg Nebehay, Gustavo F. Domínguez
Austrian Institute of Technology

Vienna, Austria
firstname.lastname@ait.ac.at

ABSTRACT
We have developed a self-aware multi-camera multi-object
tracking application for distributed heterogeneous smart cam-
era networks. This application is able to track multiple per-
sons through the network whereby the cameras are able to
transfer the tracking responsibility between each other in
a self-organizing manner without any central control. This
application runs on top of a fully distributed middleware,
designed for extensibility and robustness as well as heteroge-
neous hardware and network technologies. Our demonstra-
tor has been deployed in a laboratory environment consisting
of different hardware platforms and network technologies.

Categories and Subject Descriptors
Computer systems organization [Embedded and cyber-
physical systems]: Sensor Networks; Computer systems
organization [Architectures]: Other architectures—Self-
organising autonomic computing ; Computing methodologies
[Computer vision]: Computer vision problems—Tracking

Keywords
Smart camera networks, multi-camera tracking, distributed
systems, heterogeneity, self-organisation

1. INTRODUCTION
Distributed smart camera networks have been in the focus

of research for several years [5, 1, 6]. Application domains
range from traffic control, elderly and home monitoring,
to surveillance of public areas. In practice, extending dis-
tributed smart camera networks after the initial deployment
is not trivial. Due to the fast technological progress, changes
in hardware, operating systems and networking have to be
considered when extending a distributed smart camera net-
work. Thus, applications executed in smart camera net-
works need to be able to deal with those heterogeneities. A
distributed middleware can help to tackle these challenges.
The middleware as well as the applications on top should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICDSC ’14, November 04 - 07 2014, Venezia Mestre, Italy
Copyright 2014 ACM 978-1-4503-2925-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2659021.2669474

allow network extension and should be able to run on vari-
ous hardware platforms with different network connections.
To reduce resource consumption of the smart cameras in the
network, only a single camera should track the object of in-
terest. The camera with the best view of the object should
be the one responsible for tracking. Thus, a handover is
required to transfer the tracking responsibility to another
camera, whenever the object leaves the field of view (FOV)
of the camera currently tracking it.

In this paper, we present a distributed multi-camera track-
ing application, which is able to track multiple objects through
a heterogeneous smart camera network. The main bene-
fits of this application are manifold: the camera network
(i) continuously tracks objects in a distributed fashion, (ii)
is robust and adaptive to camera failure and newly added
cameras, and (iii) is self-aware, with respect to the avail-
able resources and the current context, and therefore able
to adapt to changes during runtime. The main objective
of our demonstrator is to show self-awareness within smart
camera networks.

The remainder of this paper is organized as follows: In
Section 2 we describe our demonstrator, including the net-
work architecture, the software modules and features. Some
evaluation results are shown in Section 3. Section 4 briefly
describes our planned ICDSC demo presentation and Sec-
tion 5 concludes the paper.

2. THE DEMONSTRATOR
Our demonstrator is able to track multiple objects through

a heterogeneous smart camera network and serves as case
study for self-awareness in computing systems 1. If a person
leaves the FOV of the camera that is currently tracking it,
the tracking responsibility is passed to the camera with the
best view of the object. This process, known as handover, is
based on an auction mechanism used to determine the cam-
era with the best view of the object [4]. Upon the end of
the auction, the tracking responsibility is transferred to the
winning camera, which tries to continue tracking immedi-
ately. Further, the camera images and tracking information
are periodically transmitted to a host PC, where they are
visualized using a graphical user interface (UI).

The distributed publish-subscribe middleware system Ella [3]
is used to facilitate this distributed tracking application on
heterogeneous hardware. Since the application runs upon
the middleware Ella, all modules are realized as publishers
and/or subscribers.

1http://www.epics-project.eu/

2.1 Smart Camera Network
Fig. 1 shows the current setup of the smart camera net-

work which consists of six cameras. Four of them are mounted
in a laboratory room (cameras 1–4) with overlapping FOV.
The other two cameras are placed outside in the corridor
(cameras 5 and 6). This smart camera network was used to
run and test the multi-object tracking application and the
underlying middleware. Cameras 1 to 4 are connected via

Laboratory

Corridor

Lounge

5

1

4

2

3

4

56

Figure 1: The deployment of our demonstrator. The
smart cameras are depicted by a black square and
the FOV is indicated by red lines.

wired Ethernet, while the other two cameras are connected
via WiFi. Our demonstrator is composed by different hard-
ware platforms. Cameras 1 to 4 are Atom-based platforms
(1.6 GHz processor, 2 GB RAM, 30 GB internal SSD hard
disk) from SLR Engineering2. Cameras 5 and 6 are ARM-
based platforms composed by Pandaboards3 and Logitech
C920 web cameras. The Pandaboard is an Open OMAP
4 mobile software development platform. The OMAP 4 is
a System-on-a-Chip, featuring a dual-core 1.2 GHz ARM
Cortex-A9 MPCore CPU. Both camera systems are Linux
based and run Ubuntu 10.04 LTS.

The middleware and the demonstrator application, run-
ning on these six cameras, are implemented in C#.Net.
C#.Net programs allow their execution on all major oper-
ating systems, supported by Mono.

2.2 Multi-object tracking application
The application is organized in three main modules: (i) im-

age acquisition and tracking, (ii) handover, and (iii) user
interface (UI). The interaction of these three modules is
depicted in Fig. 2. All modules are realized as publishers
or subscribers. A subscriber shows its interest in specific
data by subscribing to any data of the corresponding type.
Publishers transmit their data to all subscribers in the net-
work for the corresponding type. The UI visualizes the video
feed acquired by each camera as well as the tracking results,
which are transmitted by the tracking module operating on
each camera. The tracking results contain the location of
the tracked object in the image, its size, and the tracking
confidence. This information enables the user interface to
draw a bounding box around the tracked object. Addition-
ally, each camera operates a handover module responsible for
deciding on the tracking responsibility. If the object leaves
the FOV of the camera currently tracking it, the handover

2http://www.slr-engineering.at/smart camera
3http://www.pandaboard.org/

Tracking &
ImageAcquisitonUser Interface

(Host application)

Subscribe.To<Image>
Subscribe.To<TrackingResults>

S
ub

sc
rib

e.
To

<T
ra

ck
in

gR
es

ul
ts

>

Handover

Publishes(Image)
Publishes(TrackingResults)

P
ub

lis
he

s(
Tr

ac
ki

ng
R

es
ul

ts
)

Subscribe.To<AuctionState>

Publish(AuctionState)

Camera node

Other
Cameras

Figure 2: The modules of our application. The host
PC runs a UI and each camera runs a tracking and
a handover module.

module recognizes that and initiates an auction for this ob-
ject. Thus, the handover module of this camera becomes an
auctioneer. During the auction, the auctioneer accepts bids
from all cameras. Cameras determine their valuation of ob-
jects, and hence their bid, based on the respective tracking
confidence. With the arrival of the first bid, an auction timer
is started. The winner of the auction is determined as soon
as the auction timer has elapsed. Thereafter, the tracking
responsibility for the corresponding object is transferred to
the camera with the highest bid. Since the application is
capable of multi-object tracking, the user can choose addi-
tional objects to track.

2.2.1 Camera module - Tracking and Image Acqui-
sition

The tracking module is responsible for both, acquiring im-
ages as well as tracking objects within the field of view. Ad-
ditionally, the tracking module transmits images and track-
ing results to other interested components in the system (i.e.,
UI). After start-up of this module, it begins to periodically
transmit images. It manages a list of all objects, the corre-
sponding camera is currently tracking. Every time the user
chooses a new object, the user interface informs the track-
ing module of the corresponding camera about the object
to be tracked by transmitting a model description. Upon
receiving this model description, the tracking module starts
tracking and transmitting tracking results.

The tracker itself is implemented in C++ and is embedded
into this module as native code. On each camera, tracking
is realized by performing an association between the objects
that were selected in the user interface and candidate ob-
jects in the current frame, which are identified by perform-
ing a foreground-background segmentation. The tracking
approach is based on the method described in [2].

The association between templates and candidates is es-
tablished by interpreting the problem of associating tem-
plates and candidates as a transportation problem, where
the distances between the respective feature vectors are the
transportation costs and the goal is to minimize all trans-
portation costs. This problem can be solved optimally by
employing the well-known Hungarian algorithm. Addition-
ally, the reciprocal of the transportation cost for a successful
association is reported to other components as the tracking
confidence.

2.2.2 Camera module - Handover
The main goal of the handover module is the coordination

of tracking responsibilities for objects of interest in order to
track them continuously and in a robust fashion within the
network of distributed smart cameras.

During a handover, an auction is performed, as described
by Esterle et al. [4]. The camera, having lost an object,
becomes an auctioneer and solicits bids from all available
cameras in the network. This solicitation contains a descrip-
tion of the object enabling other cameras to search for the
object of interest. The advertisement is sent out when the
current tracking confidence of a tracked object falls below
a certain threshold. This happens whenever the object is
going to leave the FOV of the camera. The bidders submit
their instantaneous tracking confidence as bids; the bidder
with the highest bid wins the auction and thus the tracking
responsibility.

To reduce the network traffic, each camera builds a vi-
sion graph during runtime to learn about its direct neigh-
bours. The handover module can then decide to inform just
a few of the cameras about the auction. The vision graph
assigns each neighbour a link strength. Taking inspiration
from ant foraging and their employed pheromones, when-
ever a camera wins an auction the link strength (artificial
pheromone) between the auctioneer and the winning camera
is increased. Moreover, the pheromones evaporate over time
in case no handover occurs. Using this information, each
camera knows which of its neighbouring cameras most often
won the auction and is likely to win the auction again. The
handover module can then decide to just inform the cameras
with a high link strength of an auction, since one of those
will win with high probability. In a network with a high
number of cameras this mechanism can reduce the amount
of message drastically. A detailed description of how this
vision graph is build can be found in [4].

2.2.3 Host module - User Interface
The user interface runs on the desktop computer and re-

ceives images and tracking results of all available cameras.
Upon the arrival of an image, the user interface visualizes it.
For every camera, a new window opens to show the captured
images of the corresponding camera. The user can choose
one or more objects to be tracked, by drawing a bound-
ing box around the desired objects into the UI. Afterwards,
the UI informs the tracking module of the corresponding
camera by sending a message which contains the selected
model. The tracking module receiving this message imme-
diately starts with the tracking process and transmitting
tracking results.

3. EVALUATION RESULTS
Table 1 shows an overview of the average CPU and mem-

ory usage on each hardware platform in the network, do-
ing single and a multi object tracking. According to this
table, there is no significant difference on the performance
when doing single or multi object tracking. Regarding the
CPU utilisation, the SLR cameras perform a little better
than the Pandaboards. However, the Pandaboard systems
are designed for energy-efficient usage and consume only 3
Watts. Compared to that, the SLR cameras consume up
to 20 Watts, which means that developers have to find the
best trade-off between computational power and energy con-
sumption for their application.

Hardware Tracking mode avg. CPU Util. avg. Mem Usage

SLR Camera Single Object 78.50% 5.89 ∗ 107B
SLR Camera Multi Object 77.19% 7.07 ∗ 107B
Pandaboard System Single Object 81.38% 8.06 ∗ 107B
Pandaboard System Multi Object 84.37% 8.1 ∗ 107B
Desktop PC UI 2.53% 6.5 ∗ 107B

Table 1: Overview of performance measurements.

4. ICDSC DEMO SETUP
For the ICDSC demo we plan to present the completely

functional multi-camera multi object tracking application
which performs the following tasks: (i) tracking of objects in
a single camera, (ii) tracking of multiple objects autonomously
in a network of distributed smart cameras, (iii) self-awareness
in the context of network congestion, and (iv) robustness
and adaptivity in terms of added and removed cameras from
the network. To meet the challenge of heterogeneity, we
will track multiple objects through a smart camera network
consisting of four SLR Engineering cameras and two Pand-
aboard based web cameras. All tasks will be shown via
remote connection to the laboratory at the Alpen-Adria-
Universität Klagenfurt and streaming of the contents to the
conference location.

5. CONCLUSION
In this paper, we have presented the multi-camera multi-

object tracking demonstrator. Our demonstrator supports
various hardware platforms using different network technolo-
gies. Possible future extensions can include an autonomous
initialization of objects to be tracked, an implementation of
the user interface for portable devices such as tablet PCs and
smartphones, or increasing the number and heterogeneity of
network nodes.

Acknowledgement
This work is supported by Lakeside Labs GmbH, Klagenfurt, Aus-
tria and is funded in part by the European Union Seventh Frame-
work Programme under grant agreement no257906.

6. REFERENCES
[1] H. Aghajan and A. Cavallaro. Multi-camera networks:

principles and applications. Academic press, 2009.
[2] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object

tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(5):564–577, May 2003.

[3] B. Dieber, J. Simonjan, L. Esterle, G. Nebehay,
R. Pflugfelder, G. Fernandez, and B. Rinner. Ella:
Middleware for Multi-camera Surveillance in Heterogeneous
Visual Sensor Networks. In Proceedings of the Seventh
ACM/IEEE International Conference on Distributed Smart
Cameras, Palm Springs, USA, 2013.

[4] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner.
Socio-economic vision graph generation and handover in
distributed smart camera networks. ACM Transactions on
Sensor Networks, 10(2), 2014.

[5] M. Reisslein, B. Rinner, and A. Roy-Chowdhury. Smart
camera networks [guest editors’ introduction]. Computer,
47(5):23–25, 2014.

[6] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and
W. Wolf. The evolution from single to pervasive smart
cameras. In Proceedings of the second ACM/IEEE
International Conference on Distributed Smart Cameras
2008. ICDSC 2008., pages 1–10, 2008.

