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Abstract

The use of multiple small-scale UAVs to support first responders in disaster
management has become popular because of their speed and low deployment
costs. We exploit such UAVs to perform real-time monitoring of target ar-
eas by fusing individual images captured from heterogeneous aerial sensors.
Many approaches have already been presented to register images from homo-
geneous sensors. These methods have demonstrated robustness against scale,
rotation and illumination variations and can also cope with limited overlap
among individual images.

In this paper we focus on thermal and visual image registration and pro-
pose different methods to improve the quality of interspectral registration for
the purpose of real-time monitoring and mobile mapping. Images captured
by low-altitude UAVs represent a very challenging scenario for interspectral
registration due to the strong variations in overlap, scale, rotation, point of
view and structure of such scenes. Furthermore, these small-scale UAVs have
limited processing and communication power. The contributions of this pa-
per include (i) the introduction of a feature descriptor for robustly identifying
corresponding regions of images in different spectrums, (ii) the registration
of image mosaics, and (iii) the registration of depth maps. We evaluated
the first method using a test data set consisting of 84 image pairs. In all
instances our approach combined with SIFT or SURF feature-based regis-
tration was superior to the standard versions. Although we focus mainly on
aerial imagery, our evaluation shows that the presented approach would also
be beneficial in other scenarios such as surveillance and human detection.
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Furthermore, we demonstrated the advantages of the other two methods in
case of multiple image pairs.

Keywords: real-time UAV mapping, visual and thermal images, image
registration, depth map, 3D registration

1. Introduction

Unmanned aerial vehicles (UAVs) are used extensively in the military
domain and are becoming increasingly popular for other applications. Re-
cent advances in technology, material science, and control engineering have
made the development of small-scale UAVs possible and affordable. In par-
ticular, small-scale UAVs with a total weight of approximately 1 kg and a
diameter of less than 1m are now highly accessible for civilian use and pose
new research questions. These UAVs are commonly equipped with sensors
such as accelerometers, gyroscopes, and barometers that provide automatic
stabilization as well GPS receivers that spatially report their location. Ad-
ditionally, some UAVs can support the weight of additional sensors such as
visual and infrared cameras. Figure 1 shows two such UAVs equipped with
different sensors.

UAVs fitted with cameras can provide aerial views of regions that would
otherwise be inaccessible. This type of UAV is useful in many applications
such as environmental monitoring, surveillance and law enforcement, border
control, farmland and crop monitoring, object detection, construction site
assessment, and disaster management. Most importantly, such scenarios of-
ten involve highly dynamic target regions (e.g., a forest fire) and therefore
existing information (e.g., maps) may no longer be valid. Hence, the overall
goal is to provide a quick and accurate overview of the affected area, typ-
ically spanning hundreds of thousands of square meters. Composite aerial
images can be refined and updated over time and can be augmented with
additional information, such as detected objects or the changes in the scene.
When covering large areas at conventional imaging resolutions using such
small-scale UAVs, the overview image typically needs to be generated from
dozens of individual images. Often, several UAVs are employed to cope with
the stringent time constraints of dynamic environments and the flight time
limitations of a single UAV. Commercially available UAVs are often required
to fly at altitudes of less than 100m and use specialized software to convert
the acquired images into a single mosaic image. This process, referred to as
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(a) MD4-200 with a visual camera. (b) AscTec Pelican with an
FLIR Tau-2 thermal camera.

Figure 1: Two UAVs with different sensors.

image mosaicking, generates a broad overview image of the target area from
which users can extract the desired information.

Fused images of a target scene from different sensors (e.g., visual and
thermal) provide additional information for monitoring purposes. Nowadays
exploiting imagery captured at different spectral bands is commonplace in
various applications such as inspection, surveillance or recognition. In the
case of fixed sensors or camera settings, the registration of images is relatively
easy because the intrinsic and extrinsic parameters of the cameras can be
determined, i.e., the relative orientation of stereo cameras is fixed and as a
result the transformation for the image alignment can be computed based
on purely geometric information. However, when this piece of information
is missing or corrupt, the registration is more challenging and is typically
accomplished using shared image feature recognition.

This paper deals with the robust registration of visual and thermal im-
ages captured by different sensors. The alignment process typically follows
the following steps: (i) extraction of features in the individual images, (ii)
matching corresponding feature points and identifying inliers between them,
and (iii) computing the transformations for aligning individual images. Im-
portantly, images of different spectrums may include rather distinct infor-
mation. In general, the larger the wavelength difference between captured
images, the greater the likelihood of feature dissimilarity. In this paper we
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focus on extracting robust features which can be used to identify correspon-
dences. Following a general discussion of feature point matching in thermal
and visual images and we focus on the registration of low-altitude aerial im-
ages captured by small-scale UAVs. For such UAVs, the number of images
and the positions from which they are captured are usually predefined by
constraints on flight time, communication bandwidth and local processing
power (Quaritsch et al., 2010; Wischounig-Strucl et al., 2011). In our expe-
rience, these images put heavy requirements on the registration algorithms
because of the strong variations in overlap, scale, rotation, point of view and
structure of the scene (Yahyanejad et al., 2010).

This paper introduces feature descriptors for the robust identification of
correspondences between images of different spectrums, the registration of
image mosaics and registration based on depth maps. We introduce a robust
feature, derived from the edges, and demonstrate a quantifiable improvement
in the quality of the points identified in the general case. Furthermore,
we propose two methods to improve the registration of low-altitude aerial
images. The first method exploits visual and thermal image mosaics, whereas
the second utilizes a scene’s depth map to perform feature extraction and
registration.

In Section 2 related work is presented and compared with the presented
approach and in Section 3 we analyse the performance of existing feature
extraction methods for interspectral registration. Section 4 and 5 respectively
introduce robust features along the edge and two registration methods for
UAV imagery. Experimental results and analysis are presented in Section 6.

2. State of the art

The challenges of interspectral registration are largely determined by the
type of the camera used. Important aspects include:

Altitude: Are the images taken from satellites or from lower altitudes (e.g.,
aircrafts)?

Quality: What is the noise level or resolution the images?

Timing: Are the images taken at the same time?

Spectrum: What is the difference in wavelengths of the different electro-
magnetic bands?
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Overlap: How large is the overlap and what is the transformation function
(relative translation, scale, rotation) between images? Are the images
taken from different points of view?

Many interspectral registration techniques have been employed to register
the different bands of satellite images. Fonseca and Costa (1997) proposed
an automatic satellite image registration based on wavelets. They mainly fo-
cused on the registration of images taken from the same sensor. Mahdi and
A. Farag (2002) proposed a cooperative parallel optimization based on a ge-
netic algorithm to match the different bands of multispectral satellite images.
For time efficiency, their method requires a parallel implementation of the ge-
netic algorithms and a supervisor process. Hong and Zhang (2005) described
an automated registration technique by combining feature-based and area-
based matching for high resolution satellite images. They employed wavelet-
based feature extraction and a relaxation-based image matching technique to
reduce the local distortions caused by terrain relief. Although they managed
to speed up the registration process, they only considered the registration
of panchromatic with multispectral images which are almost in the same
spectral range. Kim and Kim (2012) focused on the problem of parallax
removal caused by different viewpoints. They improved the registration pro-
cess by correcting the terrain relief using a rigorous sensor model with precise
sensor parameters and ellipsoidal height information extracted from Digital
Elevation Model (DEM) data. Kern and Pattichis (2007) proposed robust
interspectral registration using mutual-information models. As the shape of
a mutual-information surface is related to the frequency-domain character-
istics of the imagery, this information may be used to iteratively optimize a
target function and find the appropriate registration parameters. Lee (2010)
performed coarse-to-fine multispectral satellite image registration, using the
Speeded Up Robust Features (SURF) (Bay et al., 2008) for fast initial feature
extraction and handling the possible differences in scale and orientation. He
then applied the Harris operator to extract more features. In contrast, Teke
and Temizel (2010) suggested the use of the SURF feature extraction method
to perform the whole registration process. Teke’s method takes advantage of
the SURF parameters in cases when there is no rotation (Upright-SURF) or
no scale differences (Scale-Restricted SURF) between two images.

Satellite remote sensing is not the only field where interspectral registra-
tion plays a critical role. Medical imaging, object or face detection, surveil-
lance and UAV remote sensing are other fields that are growing rapidly and
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where image registration has become very important. Schaefer et al. (2008)
performed multi-modal (thermal and visual) medical image registration and
overlay. By exploiting a priori knowledge of the human body, they segmented
both types of image to find the matching body area. Kong et al. (2006) and
Vaidehi et al. (2011) also used a priori knowledge about the human face to
register and fuse the thermal and visual face images. Istenic et al. (2007)
registered thermal and visual images of the facades of buildings. Since most
buildings present straight lines, they performed a Hough transform over the
images to extract the latter as mutual features. Likewise, the methods de-
veloped by Coiras et al. (2000) and Šegvic (2005) rely on having sufficient
straight lines or structured polygons as a prerequisite for registration. Du
and Raksuntorn (2008) presented an algorithm for the automatic registra-
tion of near-infrared and visual image sequences taken by a UAV. Since both
cameras are mounted on a single UAV (i.e., the relative orientation is fixed),
the computation of the extrinsic parameters of the cameras prior to flight
is less expensive. Unlike all the mentioned works, which are based on in-
dividual images for registration, Joo et al. (2003) performed registration by
using sequences of frames with moving objects. They first extract the mov-
ing region of each image as the target area, then they perform matching and
registration over that region. While this method does have some advantages,
it fails completely in the absence of moving objects.

In this paper we present three robust methods of feature extraction for
interspectral image registration. Our methods do not rely on any prior knowl-
edge about the scene and are able to deal with images with completely dif-
ferent spatial and temporal resolution, scale and orientation, as well as a low
amount of overlap. Our first method extends existing robust feature extrac-
tion methods to the domain of interspectral image registration. The other
two methods extract additional features in the presence of multiple pairs of
thermal and visual images. Both methods are useful for the registration of
low-altitude aerial images.

3. System overview

This work was performed as part of the project Collaborative Microdrones
(cDrones). 1 The core idea of the project is to deploy multiple small-scale

1http://uav.aau.at/
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Figure 2: System architecture of our multi-UAV project.

UAVs to support first responders in disaster assessment and management. In
particular, we use commercially available quadrocopters since they are agile,
easy to fly and stable in the air due to their on-board sensors such as GPS
and IMU. Each UAV is also equipped with a camera. Figure 2 describes the
system architecture of the project.

The intended application can be sketched as follows: The operator first
specifies the areas to be observed on a digital map and defines quality pa-
rameters for each area (Quaritsch et al., 2008). Quality parameters include,
among others, the spatial and temporal resolution of the generated overview
image and the minimum and maximum flight altitude (Quaritsch et al.,
2010).

Based on the user’s input, the system generates plans for the individual
UAVs to cover the observation areas (Quaritsch et al., 2011). These are
then partitioned into smaller areas corresponding to individual pictures to
be taken by a particular UAV flying at a certain height. The partitioning
must overlap neighboring images as required by the stitching process. Given
a partitioning, we can discretize the continuous areas to be covered to a set
of so-called picture-points. The picture-points are placed in the center of
each partition at the chosen height. The pictures are taken with the camera
pointing downwards (nadir-view).

The mission planner component generates routes for individual UAVs
such that each picture-point is visited within the constraints of the UAV’s
resource limitations. The images together with metadata (i.e., the position
and orientation of the camera) are transferred to the base-station during
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(a) GUI showing new images over outdated back-
ground.
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(b) Sample mission showing re-
stricted areas and planned routes.

Figure 3: User interface and mission planning.

flights where the individual images are stitched into an overview image. Fig-
ure 3 illustrates samples of mission planning and aerial image acquisition
within the scope of the project. Restricted areas (e.g., buildings and danger-
ous areas) are marked as obstacles. After planning is finished, the mission is
executed. The UAVs take off fully autonomously, fly the specified routes and
send the pictures to the ground station. Mosaicking the individual images
and constructing an overview image is the final step of the procedure.

Additionally, various other applications have been considered within the
scope of the project, such as object detection and tracking, multi-UAV area
coverage to help the first responders with disaster management, construction
site monitoring, and advertising. Sample images, videos and demonstrations
are available on the project web-page. 2

4. Analysis of existing feature extraction methods

As previously described, feature extraction is a fundamental step for regis-
tration. Although most of the conventional feature extraction methods (such
as edge detection or corner detection) can be used to identify the mutual
information between visual and thermal images, constructing an appropri-
ate descriptor for finding matching pairs is not so simple. As an example,

2http://uav.aau.at/
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(a) Harris corners in the visual image. (b) Harris corners in the thermal image.

Figure 4: The result of Harris operator over a pair of visual and thermal images.

Figure 4 shows the utilization of the Harris operator (Harris and Stephens,
1988) over a pair of visual and thermal images. This figure demonstrates
the differences in the corners extracted in the visual and thermal images.
Moreover, the correlation-based matching of the corners fails because of the
different intensity pattern and the rotation difference between the two im-
ages. In general, the task of matching and removing the outliers and finding
the transformation becomes challenging in presence of relative rotation and
scale between images.

A multi-scale Harris operator and some other scale-invariant, rotation-
invariant, illumination-invariant and affine-invariant feature extraction and
matching methods have been proposed (Hansen and Morse, 1999; Dufour-
naud et al., 2000; Mikolajczyk and Schmid, 2004; Lin et al., 2010) to cope
with this limitation. However, the methods with a well-defined robust lo-
cal descriptor, such as SIFT (Lowe, 2004) and SURF (Bay et al., 2008), are
gaining more attention. Equation 1 (Lowe, 2004) describes how the SIFT
method detects the keypoint locations.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y),
where G(x, y, σ) = 1

2Πσ2 e
−(x2+y2)

2σ2
(1)

The difference of the Gaussian is used as an approximation for the scale-
normalized Laplacian of Gaussian, σ2∇2G. The target keypoints are obtained
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(a) SIFT features with 43 scale
levels and Euclidean distance
threshold 1.2 for matching.

(b) SURF features with sam-
pling step 1 and initial lobe 1.

(c) Alignment and fu-
sion.

Figure 5: Registration of a thermal and visual pair by using SIFT and SURF.

by calculating the differences between different scales of Gaussian blur over
each octave and then by finding the local extrema based on comparing each
sample point with its eight neighbors in the current image and its nine neigh-
bors in the scale above and below. Since this method was initially designed
for the registration of the images taken from homogeneous sensors, it fails
if the parameters are not adjusted in the appropriate way. In other words,
when comparing a pair of thermal and visual images taken from the same
scene, we may receive matching keypoints at different scale levels even if the
images have exactly the same scale ratio. By experiment, we realized that a
larger number of scales in the SIFT method improves the registration quality
but requires greater computational power because more features needs to be
extracted. A detailed study regarding the scales of the SIFT method has
been performed by Morel and Yu (2011). If the initial octave is set to −1,
feature extraction starts with a double-sized image and consequently obtains
more keypoints. In practice, however, the increased image size does not affect
the registration quality because there are very few small features in most of
the low-resolution thermal images. Nevertheless, setting a lower threshold
for the multiplier coefficient of the Euclidean distance of the feature vectors
is advantageous for calculating the matching pairs because the matching re-
quirements are not so strict in case of different sensors. Figure 5(a) shows an
example registration result using the SIFT feature extraction with 43 scale
levels and an Euclidean distance threshold of s = 1.2 for matching. The
default parameter setting does not lead to a successful registration.

Speeded-Up Robust Features (SURF) (Bay et al., 2008) analyzes the
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different scale levels by up-scaling the box filter size rather than iteratively
reducing the image size. In this way the performance is highly improved.
The keypoint identification is based on an approximation of the determinant
of Hessian—instead of the Laplacian of Gaussian in the SIFT descriptor.
Figure 5(b) shows the same pair of images registered by SURF.

Both methods achieve approximately a 50% successful registration rate
by adjusting their parameters based on each scenario. In our dataset we have
tested different pairs of satellite images, images of human, images of the na-
ture and surveillance, images taken from UAVs and images from facade of
buildings. We show detailed results of this dataset in Section 7. Also with
the fixed parameters (described in Figure 5) both methods achieve a similar
performance. Figure 5(c) shows a sample aligned and fused result. In all our
experiments, we have used RANdom SAmple Consensus (RANSAC) (Fis-
chler and Bolles, 1981) and least median of squares (LMS) to remove the
outliers (among all matched pair-points) and calculate the appropriate sim-
ilarity transformation between images.

5. Robust features along the edge (RFAE)

Despite the acceptable performance of SIFT and SURF for interspec-
tral image registration, they have failed in some scenarios in which mutual
patterns are clearly available. Apparently both descriptors are inherently
designed to emphasize the patterns of the gradient changes around a specific
keypoint. Note that in different sensors, and more specifically considering
thermal and visual sensors, we often record a completely different intensity
value for each specific target region. This characteristic affects the matching
between the descriptors.

To overcome this problem some authors extract line structures from the
images to identify matching points (Coiras et al., 2000; Šegvic, 2005; Istenic
et al., 2007). The main limitation of these methods is that they require
a sufficient number of straight lines. Our approach extends this idea and
extracts the edge structures in the images. It uses then SIFT or SURF
to identify feature descriptors in the extracted binary edge image. This
preserves the scale, rotation and illumination invariant characteristics. In
our experiments we have used the Sobel operator as an approximation for
the intensity gradient in the images (Gonzalez and Woods, 1992), i.e.,
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(a) Successful registration by
extracting the features along
the edge.

(b) Overlaying the registration
on the original image pair.

(c) Alignment and fu-
sion.

Figure 6: Registration of a thermal and visual pair by using scale invariant features along
the edge.

Sx = 1
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 , Sy =
1
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 ,

Gradient: ∇I ≃ (Sx ∗ I,Sy ∗ I),

Gradient magnitude: ∥∇I∥ ≃ S(I) =
√
(Sx ∗ I)2 + (Sy ∗ I)2,

Gradient direction: Θ(∇I) ≃ arctan(Sx∗I
Sy∗I).

(2)

To extract the edges, the resulting image is converted to binary by a cutoff
threshold. Since the approximation of the gradient becomes bimodal, we
reduce the sensitivity of the descriptors to the change of gradient in a neigh-
borhood. Finally, the SIFT and SURF operate the difference of Gaussian or
determinant of Hessian over this binary image. In case of SIFT we adopt the
Equation 1 so that the difference of Gaussian along the edges is defined as

DE(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗B ◦ S(I(x, y), θ), (3)

where B is the binary operator based on the threshold θ and S is the So-
bel operator constructed as explained in Equation 2. Figure 6 shows the
registration of a pair of thermal and visual images taken from a building fa-
cade using our method. Note that the registration using merely the SIFT or
SURF features failed. A remaining question is how to define the appropriate
threshold, θ, for the conversion to the binary edge image. This threshold
can be estimated by a statistical analysis of different sensors or different
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image types. In our experiments, we extract the edges with three different
threshold values (θ ∈ {0.2, 0.4, 0.6}). We choose a pair (one threshold for
the thermal image and one threshold for the visual image) for registration
which maximizes our quality metric (cp. Section 7). Other edge detectors
such as Laplacian of Gaussian, Canny (Canny, 1986), line segment detec-
tor (Grompone von Gioi et al., 2012) are applicable to this method, however
they did not show considerable improvement in most of our scenarios.

Using this method we do not merely rely on long edges, but we also
consider edges and corners comprised of only few pixels. One important
advantage of RFAE over state of the art of registration using edge descriptors,
such as the method proposed by Meltzer and Soatto (2008), is that RFAE
does not necessarily consider a single edge. Since SIFT and SURF descriptors
are calculated over blobs, therefore they include the gradient distribution
of a region which may include multiple edges and their relative shape and
orientation. RFAE does not cope with local deformations that some shape-
based matching or medical image registration methods are handling (Klein
et al., 2011; Müller et al., 2005).

6. Interspectral registration by multiple thermal-visual image pairs

So far we have considered the general case of registering thermal and
visual images. In this section, we focus on registering low-altitude aerial im-
ages captured by small-scale UAVs. Because of the weight restrictions, these
aerial robots are typically not able to carry both types of cameras. For these
scenarios we improve the robustness of the registration by two methods. The
first method exploits entire visual and thermal mosaics. The second method
uses depth information to extract additional features for the registration. In
all proposed methods we consider the limited on-board processing power and
communication bandwidth to achieve a real-time monitoring.

6.1. Registration of mosaics.

As previously discussed, the RFAE method does not always improve in-
terspectral registration. Figure 7 shows an example where RFAE did not
improve the registration of two image pairs (i.e., IV1 with IT1 and IV2 with
IT2). The reason is that there are insufficient salient border lines and edges
which are visible in both image types. As indicated with green lines in Fig-
ure 7, one pair (IV1 with IT1) can be weakly registered with 7 SURF feature
matches.
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Figure 7: Interspectral registration by using multiple pairs.

Here we present a new method to exploit the image mosaics to strengthen
the interspectral registration. The mosaicking of aerial images taken from an
identical sensor is based on the homography H corresponding to the perspec-
tive transformation between each pair of images. Although the target scene
may not be completely planar, the choice of homography can be valid. In
other words, the error is negligible as long as we choose the features from a
dominant ground plane or the value of ϵd in Equation 6 is small (Yahyanejad
et al. (2011b) and Szeliski (2010) explain these concepts in more details).
Thus, pairwise registration can be seen as an initial step for mosaicking.
Registration within a specific spectrum (identical sensor) is typically more
robust and can be achieved even with a limited pairwise overlap. As shown in
Figure 7, the visual image IV2 is transformed to the coordinates of the visual
image IV1 by homography H̃IV2 ,IV1

. Similarly, the thermal image IT2 is trans-

formed to the coordinates of the thermal image IT1 by homography H̃IT2 ,IT1
.

By knowing one of the interspectral registration parameters, for example the
corresponding pair points between images IV1 , IT1 shown as R(x̃V1 , x̃T1), we
can calculate the corresponding pair points between images IV2 , IT2 by

R(x̃V2 , x̃T2) = R(H̃IV1 ,IV2
x̃V2 , H̃IT1 ,IT2

x̃T2), (4)

where x̃, H̃ are the points and the homography in homogeneous coordinates,
respectively. This formulation helps us to generalize the pairwise registration.

The interspectral registration between large mosaics can be done in two
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(a) Registered correspondences. (b) Overlayed and fused images.

Figure 8: Interspectral registration of two mosaics each constructed from 25 individual
images.

different ways. The first way is to generalize the approach shown in Figure 7
over multiple pairs. No matter if the registration fails in some pairs, the
mosaics can be registered as long as some of the thermal and visual images
are registered. However, this method needs to consider all corresponding
points, both within the homogeneous and the heterogeneous image types, for
the global optimization. In other words, we need to find out the homographies
which minimize the least mean squares (LMS) of the disparity error between
all pair points. This increases the complexity of the homography estimation
and the mosaic construction. Points that are considered in multiple image
pairs (when more than two images overlap) will be over-weighted in this
optimization. The knowledge of corresponding images, i.e., images which are
supposed to have some overlap, is also required for this method. The second
way is to first mosaic all the images from the same sensor and then register
the two final mosaics together. The thermal and visual mosaics shown in
Figure 8(a) are registered with this approach. The drawback here is that
handling large image mosaics and large number of corresponding points is
computationally expensive. In addition, errors in mosaicking homogeneous
images affect the interspectral registration accuracy.

6.2. Exploiting the 3D structure

In scenarios where UAVs provide sparse pictures from different points of
view, we can exploit methods from stereo vision to extract depth information.
In this section we describe how depth information helps for the registration
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of thermal and visual image mosaics. As explained by Yahyanejad et al.
(2011b) we reveal depth information of a scene by using stereo images of
the same scene taken from different points. We first calculate the disparity
vectors from the displacement of all feature pairs in the two stereo images.
Figure 9(b) depicts these disparity vectors as the displacement between two
feature points after the alignment. Since this requires stereo images, we can
only obtain the disparity vectors over the overlapping area of images taken
from different positions. The magnitude of a disparity vector corresponds
to the relative height difference of the corresponding feature point. The
direction of the vector determines whether the feature point is below or above
the average altitude. This helps us to construct a rough depth map as shown
in Figure 9(c).

We define our false-color depth map image, DM, which is constructed
using

Red component = DM(xni
, yni

, 1) =
dxi−mini dxi

maxi dxi−mini dxi
,

Green component = DM(xni
, yni

, 2) = ∥di∥−mini ∥di∥
maxi ∥di∥−mini ∥di∥ ,

Blue component = DM(xni
, yni

, 3) =
dyi−mini dyi

maxi dyi−mini dyi
,

di = (dxi
, dyi) = (xni

− x̂ni
, yni

− ŷni
),

xni
= (xni

, yni
, 1),

H(In, Im)x̃mi
= (x̂ni

, ŷni
, 1),

(5)

where the last two equations represent the augmented vectors to convert the
homogeneous coordinates back to the Cartesian coordinates; d represents the
disparity vector as displacement between point xn and its estimated position
x̂n; i is the index of the inliers among all corresponding feature points. All
color components are normalized to fit in the image intensity range. In other
words, the normalized x and y components of the disparity vector are used
as the red and blue components of the depth map, and the green component
of the depth map is the normalized magnitude of the disparity vector. The
missing pixels of the depth map image are estimated by interpolation.

We remove features with magnitude of disparity vector ∥di∥ larger than
a threshold ϵd. This threshold varies based on height variation of the objects
on the ground and flying altitude. In our scenario, we calculate this threshold
(in pixels) as follows:

ϵd =

⌈
maximum height variation

minimum flight altitude
× 50

⌉
, (6)
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where the height variation and the altitude are relative to the dominant
ground plane and ϵd ≥ 1. For example, we set the threshold to 5 pixels if
we have a maximum height variation of 4m and the flight height of 40m.
Note that at the first glance it might look similar to setting the RANSAC
threshold small, but in that case we might also reject some inliers just because
of their large displacement which slows down or even fails the convergence of
RANSAC, especially in cases with low amount of overlap. On the other hand,
as mentioned in Section 6.1, we use the features with less displacement which
are considered to be almost on the same ground plane for the calculation of
the homography. The features with larger displacement are exploited for
constructing the depth map.

By extracting the depth map of the overlapping area in both thermal
and visual image pairs, we are able to register those images by registering
their depth map. Regardless of existence of any mutual pattern or similarity
between visual and thermal images, the depth information of a target scene
provides consistent mutual information between two image types. In other
words, it is not necessary that the features from different spectrum to be close
to each other as long as we have enough sparse features. An automatic reg-
istration based on SURF features is shown by the green lines in Figure 9(c).
Note that since the standard SURF is performed over gray-scale images, and
since the orientation of the displacement is as important as its magnitude, we
perform the SURF over all dimensions of the false-color depth map image.
It can be done either over the average image of all the bands or by using the
union of the descriptors of all 3 bands together, which in practice the results
did not show much difference. We can generalize the depth map construction
from a pairwise depth map to a mosaic depth map. The disparity vectors
are constructed as explained in Equation 5. The process can be optimized
by a 2D bundle adjustment (global optimization).

An alternative is a 3D optimization by a full bundle adjustment and
estimating and reconstructing the 3D point positions (Snavely et al., 2006;
Furukawa and Ponce, 2010; Tingdahl and Van Gool, 2011). The 3D models
shown in Figure 10 are generated by such 3D reconstruction from the same
25 thermal and visual images as used in Figure 8. In general, a full 3D model
reconstruction achieves higher accuracy with more images. Despite this fact,
we often face more challenging scenarios such as sparse images with limited
overlap. Furthermore, most of the thermal cameras mounted on small-scale
UAVs have a lower resolution as compared to visual cameras and provide
an analog image. These cameras often do not have a global shutter and
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(a) Visual and thermal
images taken at initial
UAV position.

(b) Disparity vectors de-
picted in the overlapping
area with images taken at
a different UAV position.

(c) Computed depth maps of
the overlap. The green lines
indicate the registration based
on SURF.

Figure 9: Construction of the depth map from two image pairs by calculating the disparity
of the feature points. The upper row corresponds to the visual and the lower row to the
thermal images.

correcting the lens distortion is not straightforward (cp. Yahyanejad et al.
(2011a)). Hence, we typically see more noise in the 3D models constructed
from thermal images than from visual images. It is therefore difficult to
register these 3D models which also may be different in scale and orientation.
Most of the existing point cloud or 3D-mesh registration methods consider a
high accuracy of the models (e.g., laser scanned 3D models) or considering
a rigid transformation between models (Flöry and Hofer, 2010; Sehgal et al.,
2010; Song and Cheng, 2010).

Since we are more interested in 2D images and 2D registration, we perform
a mapping transformation to convert our 3D models to an equivalent depth
map. We first map all 3D points to a 2D plane Π, which is almost parallel
to the ground and the camera planes. This is performed by finding PiΠ, the
base point of the perpendicular of each 3D point Pi = (xi, yi, zi), to the plane
Π : ax + by + cz + d = 0 with a normal vector n = (a, b, c). Second, the
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(a) 3D model from 25 visual images. (b) 3D model from 25 thermal im-
ages.

Figure 10: 3D model reconstruction of the target area by using a full 3D bundle adjust-
ment.

distance d(Pi,Π) of the point Pi to the plane Π is translated to the intensity
value of the depth map image,

PiΠ = Pi −
axi + byi + czi + d

a2 + b2 + c2
n, d(Pi,Π) =

axi + byi + czi + d√
a2 + b2 + c2

. (7)

Figures 11(a) and 11(b) show such depth maps constructed from the
visual and thermal 3D models in Figure 10. Although the 3D reconstruction
is generally slow, the depth map results show a smoother image compared
to the fast depth map construction based on disparity. Figure 11(c) depicts
the automatic registration of the resulting depth maps by using the SURF
features. The registration in 2D can be done in few seconds, depending on
image resolution and processing power, which is much faster compared to
point cloud registration methods (for detailed computational complexity see
Section 7.4). One obvious advantage of this registration method for thermal
and visual images is the robustness against the image differences and spatial
changes, since we are registering the depth information and not the image
details. This is especially useful in cases with a high time difference between
two remote sensing activities, such as registering images captured in different
seasons of the year.
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(a) Corr. depth map
of the Figure 10(a).

(b) Corr. depth map of
the Figure 10(b).

(c) Automatic registration done using
the SURF features.

Figure 11: Extraction of the depth maps from the 3D models of Figure 10.

7. Results and discussion

This section presents further experimental results and discussions. First,
we evaluate the performance of the RFAE wrt. other feature extraction meth-
ods. Second, we extend the discussion on our registration by exploiting im-
ages mosaics and depth maps.

7.1. Evaluating RFAE for interspectral registration

The evaluation of the RFAE methods is based on a heterogeneous dataset
of 84 image pairs of different spectrums. This dataset consists of different
types of satellite images, images of human bodies, general surveillance images
and aerial images from low-altitude UAVs. The UAV-image dataset has
higher variation in scale (due to the varying flight altitude) and point of view
(due to the sparse picture points). On the other hand, in other scenarios,
the point of view and the orientations are almost constant. This is done to
emphasize the failure ratio of the other methods compared to RFAE, even
in less challenging scenarios. The resolution varies for visual images between
320×240 and 1047×1061 pixels and for thermal images between 320×240 and
584 × 512 pixels. The overlap ratio between the image pairs varies between
50% and 100%. Table 1 summarizes our dataset.

We performed the interspectral image registration over this dataset by
using the SIFT, SURF, upright SURF, RFAE and combination of SURF
with RFAE. We use a quality metric to evaluate the extracted features for the
purpose of interspectral registration. Although the number of corresponding
matched features (inliers) is an important factor for registration, it does not
provide any information regarding the distribution of the features. Irschara
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Description # of
images

Overlap Angle
between

principal axes

Resolution Max.
scale
ratio

Satellite images
from different

bands

34 100% 0 ◦ 0.3− 1.1MP 1

Images including
human body

16 > 90% < 3 ◦ 0.22−0.3MP 1.1

Images taken
from surveillance

cameras

14 > 85% < 5 ◦ 0.08−0.5MP 2.1

Aerial images
from UAV

20 > 50% < 17 ◦ 0.3− 1.1MP 1.4

Table 1: Detailed description of 84 pair of images as our dataset.

et al. (2009) mention the importance of this distribution, yet a clear definition
of their metric is missing. They consider the effective number of inliers in
terms of coverage multiplied by the raw number of inliers. This way if we
have two inliers over each other the metric improves which apparently should
not change. In our case, we only use the number of inliers for acceptance or
rejection of a registration based on a threshold. If a registration is accepted,
we can use our quality metric to evaluate it or compare it with other methods.
The success level of a registration increases when there are sufficient inliers
and they are distributed uniformly over the image. Nevertheless, a metric
which is modeling the deviation from a uniform distribution (cp. Schilcher
et al. (2008)) is not appropriate for our case. Such a metric is built to quantify
the inhomogeneity, so that adding an additional point very close to (or almost
over) an existing point reduces the magnitude of the metric. In our case the
metric should not change if we add a point exactly over an existing point
and should increase slightly if we add a point in the close neighborhood of
an existing point.

Suppose that an optimal feature distribution for the purpose of registra-
tion demands at least one feature point within a distance δ to any random
point in the image, we construct our metric as follows:

Q =
|
∪

i{x : ∥x− fi∥ < δ}|
A

×max
i,j

∥fi − fj∥
d

, (8)
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where x represents a point in the image, f an inlier feature point in the image,
i, j indexes of the inliers, A the area of the image which is equivalent to the
image resolution in pixels and d is the length of the diagonal of the image.
The denominators of the fractions aim to normalize the metric to the range
[0, 1]. The numerator of the first fraction represents the aggregated area of
all circles with radius δ centered at feature points. The first fraction of the
equation implies the coverage ratio of the feature points within the image.
The remainder of the equation describes the normalized maximum distance
between all possible feature point pairs. This favors the sparse features rather
than dense features which is an important factor for a successful registration.
The Q value takes its maximum, 100%, if and only if we have at least two
features over the two far corners of the image and there exist no circle with
radius δ in the image so that no feature falls inside this circle.

Defining the value for δ depends on different factors such as image qual-
ity and resolution. In our experiments we set δ to 10% of the image width.
We set a threshold and we accept only the registrations with at least 9 cor-
responding feature pairs (inliers). In our empirical study of more than 500
pairwise image registration we realized that at least 9 inliers are required to
achieve a reliable registration. We set the Q value to zero for unaccepted
registrations. We use this metric primarily for comparing different meth-
ods of registration over the same pair of images. For instance we can use
it to find the best parameters for an individual feature extraction method
(cp. Figure 12) or compare the registration performance between different
methods (cp. Figure 13). These samples also show that more inliers do not
necessarily result in an increase of the Q value. Note that the high Q value
in Figure 12(a) is caused by a single distant feature point, despite its small
number of inliers. This is exactly what we tried to achieve with our metric.
Dense and concentrated set of features are not reliable for registration, since
small errors cause large deviation in homography. Yet, one single distant fea-
ture prevents the large deviation in the homography estimation. The sparse
feature distribution in Figure 13(b) achieves also a high Q value with far less
inliers than in Figure 13(a).

This metric is used to identify the best registration for each pair of images
and classify our dataset as shown in Table 2. The fractions shown in this table
represent the ratio of the number of acceptable registrations to all number
of pairs.

Since satellite images have a relatively high overlap and are usually aligned
quite well with a fixed rotation and scale, most of the feature extraction meth-
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(a) SURF initial lobe=5, in-
liers=22, Q=17.2%.

(b) SURF initial lobe=3, in-
liers=38, Q=8%.

(c) SURF initial lobe=1, in-
liers=62, Q=16.6%.

Figure 12: Finding the initial lobe parameter of SURF which maximizes the Q value.

(a) SIFT method with in-
liers=102 and Q=22%.

(b) SURF method with in-
liers=31 and Q=23%.

(c) RFAE method with in-
liers=59 and Q=12%.

Figure 13: Finding the best method which maximizes the Q value. In this example SURF
has a higher Q value.

SIFT SURF U-SURF RFAE SURF+
RFAE

Satellite (low deviation) 24/24 24/24 24/24 24/24 24/24
Satellite (high deviation) 7/10 6/10 9/10 10/10 10/10
Human 0/16 0/16 2/16 12/16 12/16
Surveillance 1/14 2/14 4/14 12/14 12/14
UAV 13/20 14/20 2/20 13/20 17/20

Table 2: Successful registration ratios based on different feature extraction methods and
types of images.

ods succeed to register these images. In cases with high deviation between
the spectral bands (in which SURF, SIFT and upright SURF failed with the
registration), the RFAE method performs better for registration as shown in
Figure 14. The RFAE method shows the highest improvement for images of
human bodies. Figure 15 depicts a sample of such a thermal and visual image
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SIFT SURF U-SURF RFAE SURF+
RFAE

Satellite (low deviation) 72% 66% 71% 53% 68%
Satellite (high deviation) 45% 41% 49% 46% 52%
Human 0% 0% 1% 8% 8%
Surveillance 1% 3% 4% 18% 19%
UAV 9% 10% 1% 6% 11%

Table 3: Average Q values based on different feature extraction methods and types of
images.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 14: Registration between bands 1 and 4 of the Landsat satellite image of Iowa state
(Source: NASA/USGS).

registration. A similar improvement can be seen for surveillance scenarios
(cp. Figure 16). The interspectral registration of low-altitude aerial images
has turned out to be more challenging. Whenever a pair of aerial images does
not share enough mutual edge information, the RFAE method shows a weak
performance. However, in cases with more mutual edge information (such as
Figure 17) RFAE dominated the other methods. We therefore combine the
RFAE and SURF methods and choose the feature extraction method with
highest Q value for the registration of the images. As shown in the last col-
umn of Table 2, this combination chooses the best result among RFAE and
SURF and achieves the best overall registration performance.

Table 3 shows the average Q values of the same dataset used in Ta-
ble 2. Image pairs with high correlation (e.g., most of the satellite images)
show a high Q value. For these images, the success rate of registration by
using standard methods is higher rather than RFAE. The reason is that
standard methods are able to extract more detailed features as compared to
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(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 15: Registration of thermal and visual images of humans.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 16: Registration of thermal and visual surveillance images.

(a) Failed registration using SURF. (b) Successful registration using RFAE.

Figure 17: Registration of thermal and visual aerial images taken from low-altitude UAV.

RFAE which extracts merely features along the edges. On the other hand,
RFAE is dominant when images have a high deviation, yet with sufficient
mutual edges. The average Q values corresponding to images of surveillance
or human bodies imply the better performance of RFAE. Table 2 represents
mainly the interspectral registration acceptance rate while Table 3 represents
the quality of extracted features for the purpose of interspectral registration.
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7.2. Mosaic registration

As explained in Section 6.1, we are able to register two mosaics together
as long as there is one pair of images which can be registered among the
entire mosaics. Although we can achieve a higher accuracy when more image
pairs are registered, there is a general drawback in this type of registration.
In most of the constructed mosaics there is some deformation. This can be
due to the different angles of imaging from non-flat objects or some non-rigid
transformations performed in mosaicking. This problem in addition to the
accumulated error near the borders sometime cause some misalignment and
ghosting effect in the fusion as you can see in Figure 8(b).

7.3. Depth map registration

The registration of the depth map instead of the mutual image informa-
tion is often more complex and computationally expensive. However, there
is an advantage in cases of aerial imagery with low temporal resolution. To
demonstrate this advantage we tested the registration of aerial images taken
in summer and winter (cp. Figure 8). The images taken in different seasons
exhibit a very high variation. As shown in Figure 18(a), images of the same
spectrum (i.e., thermal mosaic in winter and thermal mosaic in summer) can
be only weakly registered by standard SURF. On the other hand, by our
depth map method we were able to successfully register even the more com-
plex scenario of interspectral registration with a high image variation over
time. Figure 18(b) shows such successful registration between thermal winter
mosaic and the visual summer mosaic.

In our proposed system, the visual computation is mainly done on the
ground station (cp. Section7.4). Despite this fact, our sparse depth map
construction and registration can be done in real-time onboard the UAVs.
The more computationally expensive tasks cannot be performed onboard.
The future work may include the implementation of advanced depth-map
construction for real-time registration (Banz et al., 2010; Hirschmuller, 2005;
McKinnon et al., 2012). The advantage of semi global matching is that the
output depth-map is already aligned with the image plane. However so far
these methods are focused on stereo or trinocular images (Heinrichs et al.,
2007) and an orthorectified depth-map mosaic based on multiple images is
challenging and time consuming.
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(a) Weak registration between thermal mo-
saics in summer and winter (same spec-
trum).

(b) Registration between thermal depth
map in winter and visual depth map in
summer (interspectral).

Figure 18: Registration between two set of aerial images taken in different seasons.

7.4. Further discussion

Although our experiments have been carried out using small-scale UAVs,
our results and methods may be extended to larger UAVs. As long as it is
possible to plan a flight mission with identical picture-points, the acquired
aerial images will be the same and the same methods are applicable. Ad-
ditionally, larger UAVs with more accurate sensors have the advantage of
providing more reliable metadata regarding flight behavior, in turn reducing
the search space for finding appropriate mosaicking parameters. This may
by crucial for mosaicking areas with few features or correspondences such as
water, desert, or highly dynamic scenes.

For disaster management and aerial monitoring images must be trans-
mitted to the ground station immediately. Hence, in our proposed system,
most of the image processing is done on the ground. This also avoids the
bottleneck of transmitting large mosaics with limited bandwidth. However,
performing the visual computation onboard is useful in scenarios where the
UAVs are required to follow a target or cooperate autonomously. Thus we
tested the onboard registration of a pair of image (Intel Atom 1.6GHz pro-
cessor on AscTec Pelican) and ascertained that on average it is twice as slow
as registration on ground stations (standard PC running at 2.66GHz). Both
cases are feasible in real-time, since the UAVs require around 5 seconds to
move between picture points. In our work, several tasks are executed on-
board, such as picture-point navigation, image compression and prioritized
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data transmission (Wischounig-Strucl et al., 2011). The complexity of per-
forming these tasks in real-time is within the limits of onboard processing
power, but a detailed description is beyond the focus of this paper.

On average, using Matlab on a standard PC running at 2.66GHz, we
were able to perform a single-pair registration of 1 megapixel images in 2 s.
The computational complexity of the interspectral registration between two
mosaics (considering each mosaic from n individual images) is approximately
n times more than a single-pair registration. The registration of the mosaics
in Figure 8 was performed in 57 s. The computation time for depth map
registration based on disparity vectors (cp. Figure 9) is on average 4 times
that of an equivalent single-pair registration. This is because we need to
register two pairs of images in order to construct a pair of depth maps,
resulting in 3 registrations and 2 depth map constructions. However, the
computational complexity of depth map registration based on a full bundle
adjustment is much higher. For example, the registration shown in Figure 11
required about 2 hours.

8. Conclusion

In this paper, we introduce methods for robust interspectral image reg-
istration for real-time monitoring. The methods are applicable for pairs
of images acquired at different wavelengths, however we mainly focused on
thermal and visual image registration. First we presented a general method
(RFAE) which exploits the existing scale-invariant feature extraction meth-
ods such as SIFT and SURF in order to extract the robust features along the
edges. Based on experimental results, our approach improves interspectral
registration noticeably. Second, we proposed two methods for increasing the
robustness of image registration and extracting additional features in cases
when more than one pair of images is available. The latter scenario was stud-
ied with a focus on thermal and visual aerial images acquired by low-altitude
UAVs. In scenarios involving multiple image pairs, image mosaics may be
used for interspectral registration or depth maps of a target scene may be
used for the feature extraction.
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